[1]
|
Liao, X., Wang, B. and Kang, Y. (2020) Novel Coronavirus Infection during the 2019-2020 Epidemic: Preparing Intensive Care Units—The Experience in Sichuan Province, China. Intensive Care Medicine, 46, 357-360. https://doi.org/10.1007/s00134-020-05954-2
|
[2]
|
Gupta, M.D., Girish, M.P., Yadav, G., Shankar, A. and Yadav, R. (2020) Coronavirus Disease 2019 and the Cardiovascular System: Impacts and Implications. Indian Heart Journal, 72, 1-6. https://doi.org/10.1016/j.ihj.2020.03.006
|
[3]
|
Jayaraman, P., Rajagopal, M., Paranjpe, I., Suarez-Farinas, M., Liharska, L., Thompson, R., et al. (2025) Peripheral Transcriptomics in Acute and Long-Term Kidney Dysfunction in SARS-CoV2 Infection. Kidney360. https://doi.org/10.34067/kid.0000000727
|
[4]
|
Beghi, E., Feigin, V., Caso, V., Santalucia, P. and Logroscino, G. (2020) COVID-19 Infection and Neurological Complications: Present Findings and Future Predictions. Neuroepidemiology, 54, 364-369. https://doi.org/10.1159/000508991
|
[5]
|
Khan, S.M., Shilen, A., Heslin, K.M., Ishimwe, P., Allen, A.M., Jacobs, E.T., et al. (2022) SARS-CoV-2 Infection and Subsequent Changes in the Menstrual Cycle among Participants in the Arizona Covhort Study. American Journal of Obstetrics and Gynecology, 226, 270-273. https://doi.org/10.1016/j.ajog.2021.09.016
|
[6]
|
Alvergne, A., Kountourides, G., Argentieri, M.A., Agyen, L., Rogers, N., Knight, D., et al. (2023) A Retrospective Case-Control Study on Menstrual Cycle Changes Following COVID-19 Vaccination and Disease. iScience, 26, Article ID: 106401. https://doi.org/10.1016/j.isci.2023.106401
|
[7]
|
Wang, S., Mortazavi, J., Hart, J.E., Hankins, J.A., Katuska, L.M., Farland, L.V., et al. (2022) A Prospective Study of the Association between Sars-Cov-2 Infection and COVID-19 Vaccination with Changes in Usual Menstrual Cycle Characteristics. American Journal of Obstetrics and Gynecology, 227, 739.e1-739.e11. https://doi.org/10.1016/j.ajog.2022.07.003
|
[8]
|
Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665. https://doi.org/10.1002/gepi.21758
|
[9]
|
Boef, A.G.C., Dekkers, O.M. and le Cessie, S. (2015) Mendelian Randomization Studies: A Review of the Approaches Used and the Quality of Reporting. International Journal of Epidemiology, 44, 496-511. https://doi.org/10.1093/ije/dyv071
|
[10]
|
COVID-19 Host Genetics Initiative (2020) The COVID-19 Host Genetics Initiative, a Global Initiative to Elucidate the Role of Host Genetic Factors in Susceptibility and Severity of the SARS-CoV-2 Virus Pandemic. European Journal of Human Genetics, 28, 715-718. https://doi.org/10.1038/s41431-020-0636-6
|
[11]
|
Sun, Y., Ding, Z., Guo, Y., Yuan, J., Zhu, C., Pan, Y., et al. (2023) Causal Inference of Central Nervous System-Regulated Hormones in COVID-19: A Bidirectional Two-Sample Mendelian Randomization Study. Journal of Clinical Medicine, 12, Article 1681. https://doi.org/10.3390/jcm12041681
|
[12]
|
Canela-Xandri, O., Rawlik, K. and Tenesa, A. (2018) An Atlas of Genetic Associations in UK Biobank. Nature Genetics, 50, 1593-1599. https://doi.org/10.1038/s41588-018-0248-z
|
[13]
|
Sakaue, S., Kanai, M., Tanigawa, Y., Karjalainen, J., Kurki, M., Koshiba, S., et al. (2021) A Cross-Population Atlas of Genetic Associations for 220 Human Phenotypes. Nature Genetics, 53, 1415-1424. https://doi.org/10.1038/s41588-021-00931-x
|
[14]
|
Sun, B.B., Maranville, J.C., Peters, J.E., Stacey, D., Staley, J.R., Blackshaw, J., et al. (2018) Genomic Atlas of the Human Plasma Proteome. Nature, 558, 73-79. https://doi.org/10.1038/s41586-018-0175-2
|
[15]
|
Barton, A.R., Sherman, M.A., Mukamel, R.E. and Loh, P. (2021) Whole-Exome Imputation within UK Biobank Powers Rare Coding Variant Association and Fine-Mapping Analyses. Nature Genetics, 53, 1260-1269. https://doi.org/10.1038/s41588-021-00892-1
|
[16]
|
Schmitz, D., Ek, W.E., Berggren, E., Höglund, J., Karlsson, T. and Johansson, Å. (2021) Genome-Wide Association Study of Estradiol Levels and the Causal Effect of Estradiol on Bone Mineral Density. The Journal of Clinical Endocrinology & Metabolism, 106, e4471-e4486.
|
[17]
|
Folkersen, L., Gustafsson, S., Wang, Q., Hansen, D.H., Hedman, Å.K., Schork, A., et al. (2020) Genomic and Drug Target Evaluation of 90 Cardiovascular Proteins in 30,931 Individuals. Nature Metabolism, 2, 1135-1148. https://doi.org/10.1038/s42255-020-00287-2
|
[18]
|
Shin, S., Fauman, E.B., Petersen, A., Krumsiek, J., Santos, R., Huang, J., et al. (2014) An Atlas of Genetic Influences on Human Blood Metabolites. Nature Genetics, 46, 543-550. https://doi.org/10.1038/ng.2982
|
[19]
|
Pietzner, M., Wheeler, E., Carrasco-Zanini, J., Raffler, J., Kerrison, N.D., Oerton, E., et al. (2021) Author Correction: Genetic Architecture of Host Proteins Involved in SARS-CoV-2 Infection. Nature Communications, 12, Article No. 845. https://doi.org/10.1038/s41467-021-21370-6
|
[20]
|
Bowden, S.J., Doulgeraki, T., Bouras, E., Markozannes, G., Athanasiou, A., Grout-Smith, H., et al. (2023) Risk Factors for Human Papillomavirus Infection, Cervical Intraepithelial Neoplasia and Cervical Cancer: An Umbrella Review and Follow-Up Mendelian Randomisation Studies. BMC Medicine, 21, Article No. 274. https://doi.org/10.1186/s12916-023-02965-w
|
[21]
|
Tayyaba Rehan, S., Imran, L., Mansoor, H., Sayyeda, Q., Hussain, H.u., Cheema, M.S., et al. (2022) Effects of SARS‐CoV‐2 Infection and COVID‐19 Pandemic on Menstrual Health of Women: A Systematic Review. Health Science Reports, 5, e881. https://doi.org/10.1002/hsr2.881
|
[22]
|
Sigfrid, L., Drake, T.M., Pauley, E., Jesudason, E.C., Olliaro, P., Lim, W.S., et al. (2021) Long Covid in Adults Discharged from UK Hospitals after Covid-19: A Prospective, Multicentre Cohort Study Using the ISARIC WHO Clinical Characterisation Protocol. The Lancet Regional Health—Europe, 8, Article ID: 100186. https://doi.org/10.1016/j.lanepe.2021.100186
|
[23]
|
Li, K., Chen, G., Hou, H., Liao, Q., Chen, J., Bai, H., et al. (2021) Analysis of Sex Hormones and Menstruation in COVID-19 Women of Child-Bearing Age. Reproductive BioMedicine Online, 42, 260-267. https://doi.org/10.1016/j.rbmo.2020.09.020
|
[24]
|
Sun, W., Xia, L., Ji, C., Wei, Q., Zhang, J., He, S., et al. (2023) Relationship between Covid-Pandemic Anxiety and Sleep Disorder with Menstrual Disorders among Female Medical Workers. BMC Women’s Health, 23, Article No. 210. https://doi.org/10.1186/s12905-023-02314-2
|
[25]
|
Smith, O.P.M., Jabbour, H.N. and Critchley, H.O.D. (2007) Cyclooxygenase Enzyme Expression and E Series Prostaglandin Receptor Signalling Are Enhanced in Heavy Menstruation. Human Reproduction, 22, 1450-1456. https://doi.org/10.1093/humrep/del503
|
[26]
|
Smith, S.K., Abel, M.H., Kelly, R.W. and Baird, D.T. (1981) Prostaglandin Synthesis in the Endometrium of Women with Ovular Dysfunctional Uterine Bleeding. BJOG: An International Journal of Obstetrics & Gynaecology, 88, 434-442. https://doi.org/10.1111/j.1471-0528.1981.tb01009.x
|
[27]
|
Smith, S. (1981) A Role for Prostacyclin (PGI2) in Excessive Menstrual Bleeding. The Lancet, 317, 522-524. https://doi.org/10.1016/s0140-6736(81)92862-2
|
[28]
|
de Miguel-Gómez, L., Sebastián-León, P., Romeu, M., Pellicer, N., Faus, A., Pellicer, A., et al. (2022) Endometrial Gene Expression Differences in Women with Coronavirus Disease 2019. Fertility and Sterility, 118, 1159-1169. https://doi.org/10.1016/j.fertnstert.2022.09.013
|
[29]
|
Menakuru, S.R., Priscu, A., Dhillon, V.S. and Salih, A. (2022) The Development of Immune Thrombocytopenia Due to COVID-19 Presenting as Menorrhagia. Cureus, 14, e24160. https://doi.org/10.7759/cureus.24160
|
[30]
|
Rae, M., Mohamad, A., Price, D., Hadoke, P.W.F., Walker, B.R., Mason, J.I., et al. (2009) Cortisol Inactivation by 11β-Hydroxysteroid Dehydrogenase-2 May Enhance Endometrial Angiogenesis via Reduced Thrombospondin-1 in Heavy Menstruation. The Journal of Clinical Endocrinology & Metabolism, 94, 1443-1450. https://doi.org/10.1210/jc.2008-1879
|
[31]
|
Paik, H. and Kim, S.K. (2023) Female Reproduction and Abnormal Uterine Bleeding after COVID-19 Vaccination. Clinical and Experimental Reproductive Medicine, 50, 69-77. https://doi.org/10.5653/cerm.2023.05925
|
[32]
|
Phelan, N., Behan, L.A. and Owens, L. (2021) The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Frontiers in Endocrinology, 12, Article 642755. https://doi.org/10.3389/fendo.2021.642755
|
[33]
|
Stewart, S., Newson, L., Briggs, T.A., Grammatopoulos, D., Young, L. and Gill, P. (2021) Long COVID Risk—A Signal to Address Sex Hormones and Women’s Health. The Lancet Regional Health—Europe, 11, Article ID: 100242. https://doi.org/10.1016/j.lanepe.2021.100242
|
[34]
|
Takmaz, T., Gundogmus, I., Okten, S.B. and Gunduz, A. (2021) The Impact of Covid‐19‐Related Mental Health Issues on Menstrual Cycle Characteristics of Female Healthcare Providers. Journal of Obstetrics and Gynaecology Research, 47, 3241-3249. https://doi.org/10.1111/jog.14900
|
[35]
|
Alghamdi, I., Hussain, I., Alghamdi, M., Almalki, S., Alghamdi, M. and Elsheemy, M. (2014) The Pattern of Middle East Respiratory Syndrome Coronavirus in Saudi Arabia: A Descriptive Epidemiological Analysis of Data from the Saudi Ministry of Health. International Journal of General Medicine, 7, 417-423. https://doi.org/10.2147/ijgm.s67061
|
[36]
|
Gilhooly, P.E., Ottenweller, J.E., Lange, G., Tiersky, L. and Natelson, B.H. (2001) Chronic Fatigue and Sexual Dysfunction in Female Gulf War Veterans. Journal of Sex & Marital Therapy, 27, 483-487. https://doi.org/10.1080/713846825
|
[37]
|
Kissinger, P., Schmidt, N., Sanders, C. and Liddon, N. (2007) The Effect of the Hurricane Katrina Disaster on Sexual Behavior and Access to Reproductive Care for Young Women in New Orleans. Sexually Transmitted Diseases, 34, 883-886. https://doi.org/10.1097/olq.0b013e318074c5f8
|