[1]
|
Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., et al. (2020) Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 66, 674-693. https://doi.org/10.1007/s10620-020-06715-3
|
[2]
|
Wang, Y., Gao, X., Zhang, X., Xiao, Y., Huang, J., Yu, D., et al. (2019) Gut Microbiota Dysbiosis Is Associated with Altered Bile Acid Metabolism in Infantile Cholestasis. mSystems, 4, e00463-19. https://doi.org/10.1128/msystems.00463-19
|
[3]
|
Kühn, T., Stepien, M., López‐Nogueroles, M., et al. (2020) Prediagnostic Plasma Bile Acid Levels and Colon Cancer Risk: A Prospective Study. Journal of the National Cancer Institute, 112, 516-524.
|
[4]
|
Yu, B., Peng, X.H., Wang, L.Y., et al. (2019) Abnormality of Intestinal Cholesterol Absorption in Apc (Min/+) Mice with Colon Cancer Cachexia. International Journal of Clinical and Experimental Pathology, 12, 759-767.
|
[5]
|
Canovai, E., Farré, R., Accarie, A., Lauriola, M., De Hertogh, G., Vanuytsel, T., et al. (2023) INT-767—A Dual Farnesoid-X Receptor (FXR) and Takeda G Protein-Coupled Receptor-5 (TGR5) Agonist Improves Survival in Rats and Attenuates Intestinal Ischemia Reperfusion Injury. International Journal of Molecular Sciences, 24, Article 14881. https://doi.org/10.3390/ijms241914881
|
[6]
|
Jiao, N., Baker, S.S., Chapa-Rodriguez, A., Liu, W., Nugent, C.A., Tsompana, M., et al. (2017) Suppressed Hepatic Bile Acid Signalling Despite Elevated Production of Primary and Secondary Bile Acids in NAFLD. Gut, 67, 1881-1891. https://doi.org/10.1136/gutjnl-2017-314307
|
[7]
|
Fleishman, J.S. and Kumar, S. (2024) Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets. Signal Transduction and Targeted Therapy, 9, Article No. 97. https://doi.org/10.1038/s41392-024-01811-6
|
[8]
|
Ferrell, J.M., Boehme, S., Li, F. and Chiang, J.Y.L. (2016) Cholesterol 7α-Hydroxylase-Deficient Mice Are Protected from High-Fat/High-Cholesterol Diet-Induced Metabolic Disorders. Journal of Lipid Research, 57, 1144-1154. https://doi.org/10.1194/jlr.m064709
|
[9]
|
Chiang, J.Y.L. (2017) Bile Acid Metabolism and Signaling in Liver Disease and Therapy. Liver Research, 1, 3-9. https://doi.org/10.1016/j.livres.2017.05.001
|
[10]
|
Chiang, J.Y.L. and Ferrell, J.M. (2019) Bile Acids as Metabolic Regulators and Nutrient Sensors. Annual Review of Nutrition, 39, 175-200. https://doi.org/10.1146/annurev-nutr-082018-124344
|
[11]
|
Sugiyama, Y., Yamamoto, K., Honda, T., Kato, A., Muto, H., Yokoyama, S., et al. (2023) Impact of Elobixibat on Liver Tumors, Microbiome, and Bile Acid Levels in a Mouse Model of Nonalcoholic Steatohepatitis. Hepatology International, 17, 1378-1392. https://doi.org/10.1007/s12072-023-10581-2
|
[12]
|
Nagahashi, M., Takabe, K., Liu, R., Peng, K., Wang, X., Wang, Y., et al. (2015) Conjugated Bile Acid-Activated S1P Receptor 2 Is a Key Regulator of Sphingosine Kinase 2 and Hepatic Gene Expression. Hepatology, 61, 1216-1226. https://doi.org/10.1002/hep.27592
|
[13]
|
Zhao, H., Shang, L., Zhang, Y., Liang, Z., Wang, N., Zhang, Q., et al. (2024) IL-17A Inhibitors Alleviate Psoriasis with Concomitant Restoration of Intestinal/Skin Microbiota Homeostasis and Altered Microbiota Function. Frontiers in Immunology, 15, Article 1344963. https://doi.org/10.3389/fimmu.2024.1344963
|
[14]
|
Nenkov, M., Shi, Y., Ma, Y., Gaßler, N. and Chen, Y. (2023) Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. International Journal of Molecular Sciences, 25, Article 6. https://doi.org/10.3390/ijms25010006
|
[15]
|
Are, V.S., Gromski, M.A., Akisik, F., Vilar-Gomez, E., Lammert, C., Ghabril, M., et al. (2024) Primary Sclerosing Cholangitis Limited to Intrahepatic Bile Ducts Has Distinctly Better Prognosis. Digestive Diseases and Sciences, 69, 1421-1429. https://doi.org/10.1007/s10620-023-08260-1
|
[16]
|
Helal, M., Yan, C. and Gong, Z. (2021) Stimulation of Hepatocarcinogenesis by Activated Cholangiocytes via Il17a/f1 Pathway in Kras Transgenic Zebrafish Model. Scientific Reports, 11, Article No. 1372. https://doi.org/10.1038/s41598-020-80621-6
|
[17]
|
Sarkar, J., Aoki, H., Wu, R., Aoki, M., Hylemon, P., Zhou, H., et al. (2022) Conjugated Bile Acids Accelerate Progression of Pancreatic Cancer Metastasis via S1PR2 Signaling in Cholestasis. Annals of Surgical Oncology, 30, 1630-1641. https://doi.org/10.1245/s10434-022-12806-4
|
[18]
|
Feng, H. and Chen, Y. (2016) Role of Bile Acids in Carcinogenesis of Pancreatic Cancer: An Old Topic with New Perspective. World Journal of Gastroenterology, 22, 7463-7477. https://doi.org/10.3748/wjg.v22.i33.7463
|
[19]
|
Phelan, J.P., Reen, F.J., Caparros-Martin, J.A., O’Connor, R. and O’Gara, F. (2017) Rethinking the Bile Acid/Gut Microbiome Axis in Cancer. Oncotarget, 8, 115736-115747. https://doi.org/10.18632/oncotarget.22803
|
[20]
|
Thomas, R.M. and Jobin, C. (2019) Microbiota in Pancreatic Health and Disease: The Next Frontier in Microbiome Research. Nature Reviews Gastroenterology & Hepatology, 17, 53-64. https://doi.org/10.1038/s41575-019-0242-7
|
[21]
|
Winston, J.A. and Theriot, C.M. (2019) Diversification of Host Bile Acids by Members of the Gut Microbiota. Gut Microbes, 11, 158-171. https://doi.org/10.1080/19490976.2019.1674124
|
[22]
|
Chai, J., Norng, M., Modak, C., Reavis, K.M., Mouazzen, W. and Pham, J. (2010) CCN1 Induces a Reversible Epithelial-Mesenchymal Transition in Gastric Epithelial Cells. Laboratory Investigation, 90, 1140-1151. https://doi.org/10.1038/labinvest.2010.101
|
[23]
|
Dang, T., Modak, C., Meng, X., Wu, J., Narvaez, R. and Chai, J. (2017) CCN1 Sensitizes Esophageal Cancer Cells to Trail-Mediated Apoptosis. Experimental Cell Research, 361, 163-169. https://doi.org/10.1016/j.yexcr.2017.10.015
|
[24]
|
Heck, A.L., Mishra, S., Prenzel, T., Feulner, L., Achhammer, E., Särchen, V., et al. (2021) Selective HSP90β Inhibition Results in TNF and TRAIL Mediated HIF1α Degradation. Immunobiology, 226, Article ID: 152070. https://doi.org/10.1016/j.imbio.2021.152070
|
[25]
|
Mukaisho, K., Kanai, S., Kushima, R., Nakayama, T., Hattori, T. and Sugihara, H. (2019) Barretts’s Carcinogenesis. Pathology International, 69, 319-330. https://doi.org/10.1111/pin.12804
|
[26]
|
Molendijk, J., Kolka, C.M., Cairns, H., Brosda, S., Mohamed, A., Shah, A.K., et al. (2022) Elevation of Fatty Acid Desaturase 2 in Esophageal Adenocarcinoma Increases Polyunsaturated Lipids and May Exacerbate Bile Acid‐induced DNA Damage. Clinical and Translational Medicine, 12, e810. https://doi.org/10.1002/ctm2.810
|
[27]
|
Meng, X., Chang, Z., Che, N., Wu, J., Dang, T. and Chai, J. (2020) Acid/Bile Exposure Triggers Trail-Mediated Apoptosis in Esophageal Cancer Cells by Suppressing the Decoy Receptors and C-FLIPR. The International Journal of Biochemistry & Cell Biology, 122, Article ID: 105736. https://doi.org/10.1016/j.biocel.2020.105736
|
[28]
|
Chen, H., Hu, Y., Lu, N. and Zhu, Y. (2020) Caudal Type Homeoboxes as a Driving Force in Helicobacter pylori Infection-Induced Gastric Intestinal Metaplasia. Gut Microbes, 12, Article ID: 1809331. https://doi.org/10.1080/19490976.2020.1809331
|
[29]
|
Bhat, A.A., Lu, H., Soutto, M., Capobianco, A., Rai, P., Zaika, A., et al. (2018) Exposure of Barrett’s and Esophageal Adenocarcinoma Cells to Bile Acids Activates EGFR-STAT3 Signaling Axis via Induction of Ape1. Oncogene, 37, 6011-6024. https://doi.org/10.1038/s41388-018-0388-8
|
[30]
|
Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. and Knight, R. (2012) Diversity, Stability and Resilience of the Human Gut Microbiota. Nature, 489, 220-230. https://doi.org/10.1038/nature11550
|
[31]
|
Jin, D., Huang, K., Xu, M., Hua, H., Ye, F., Yan, J., et al. (2022) Deoxycholic Acid Induces Gastric Intestinal Metaplasia by Activating STAT3 Signaling and Disturbing Gastric Bile Acids Metabolism and Microbiota. Gut Microbes, 14, Article: 2120744. https://doi.org/10.1080/19490976.2022.2120744
|
[32]
|
Bernstein, C., Holubec, H., Bhattacharyya, A.K., Nguyen, H., Payne, C.M., Zaitlin, B., et al. (2011) Carcinogenicity of Deoxycholate, a Secondary Bile Acid. Archives of Toxicology, 85, 863-871. https://doi.org/10.1007/s00204-011-0648-7
|
[33]
|
Huang, X., Zhao, W. and Huang, W. (2014) FXR and Liver Carcinogenesis. Acta Pharmacologica Sinica, 36, 37-43. https://doi.org/10.1038/aps.2014.117
|
[34]
|
Zhuang, Y., Ortega-Ribera, M., Thevkar Nagesh, P., Joshi, R., Huang, H., Wang, Y., et al. (2023) Bile Acid-Induced IRF3 Phosphorylation Mediates Cell Death, Inflammatory Responses, and Fibrosis in Cholestasis-Induced Liver and Kidney Injury via Regulation of ZBP1. Hepatology, 79, 752-767. https://doi.org/10.1097/hep.0000000000000611
|
[35]
|
Nagahashi, M., Yuza, K., Hirose, Y., Nakajima, M., Ramanathan, R., Hait, N.C., et al. (2016) The Roles of Bile Acids and Sphingosine-1-Phosphate Signaling in the Hepatobiliary Diseases. Journal of Lipid Research, 57, 1636-1643. https://doi.org/10.1194/jlr.r069286
|
[36]
|
Reich, M., Deutschmann, K., Sommerfeld, A., Klindt, C., Kluge, S., Kubitz, R., et al. (2015) TGR5 Is Essential for Bile Acid-Dependent Cholangiocyte Proliferation in Vivo and in Vitro. Gut, 65, 487-501. https://doi.org/10.1136/gutjnl-2015-309458
|
[37]
|
Terabe, M. and Berzofsky, J.A. (2016) NKT Cells in Tumor Immunity. Encyclopedia of Immunobiology, 4, 460-469. https://doi.org/10.1016/b978-0-12-374279-7.17010-9
|
[38]
|
Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., et al. (2018) Gut Microbiome-Mediated Bile Acid Metabolism Regulates Liver Cancer via NKT Cells. Science, 360, eaan5931. https://doi.org/10.1126/science.aan5931
|
[39]
|
Olszak, T., An, D., Zeissig, S., Vera, M.P., Richter, J., Franke, A., et al. (2012) Microbial Exposure during Early Life Has Persistent Effects on Natural Killer T Cell Function. Science, 336, 489-493. https://doi.org/10.1126/science.1219328
|
[40]
|
Gándola, Y.B., Fontana, C., Bojorge, M.A., Luschnat, T.T., Moretton, M.A., et al. (2020) Concentration-Dependent Effects of Sodium Cholate and Deoxycholate Bile Salts on Breast Cancer Cells Proliferation and Survival. Molecular Biology Reports, 47, 3521-3539. https://doi.org/10.1007/s11033-020-05442-2
|