胆汁酸代谢在消化系统肿瘤中的影响及作用机制研究进展
Research Progress on the Influence and Mechanism of Bile Acid Metabolism in Digestive System Tumors
DOI: 10.12677/jcpm.2025.42150, PDF, HTML, XML,    科研立项经费支持
作者: 云 洁:内蒙古医科大学内蒙古临床学院,内蒙古 呼和浩特;边 超, 李智军*:内蒙古自治区人民医院放射治疗科,内蒙古 呼和浩特
关键词: 胆汁酸消化系统肿瘤机制综述Bile Acid Digestive System Tumor Mechanism Review
摘要: 胆汁酸(BAs)对消化系统肿瘤的发生和发展具有重要影响。目前的研究已经证实,胆汁酸及其受体,如法尼醇X受体(FXR)和G蛋白偶联受体TGR5,在多种肿瘤的发生和发展中扮演着关键角色。此外,胆汁酸通过调节肿瘤微环境中的炎症反应和免疫反应,进一步影响肿瘤的进程。本文的目的是阐述胆汁酸与消化系统肿瘤发生发展的关系及其作用机制,主要通过氧化应激、DNA损伤、炎症反应、激活信号通路以及改变肿瘤微环境等途径,促进或抑制肿瘤的发展。我们总结了目前关于此领域研究的局限性,并为今后治疗肿瘤诊断标志物及治疗靶点提供新思路。
Abstract: Bile acids (BAs) have an important impact on the occurrence and development of digestive system tumors. Current studies have confirmed that bile acids and their receptors, such as farnesol X receptor (FXR) and G protein-coupled receptor TGR5, play a key role in the development and progression of different tumors. In addition, bile acids further influence tumor progression by modulating inflammatory and immune responses in the tumor microenvironment. The purpose of this paper is to elucidate the relationship between bile acids and the development and mechanism of different digestive system tumors, which can promote or inhibit the development of tumors through oxidative stress, DNA damage, inflammatory response, activation of signaling pathways, and change of tumor microenvironment. We summarize the limitations of current research in this area, and provide new ideas for the future treatment of tumor diagnostic markers and therapeutic targets.
文章引用:云洁, 边超, 李智军. 胆汁酸代谢在消化系统肿瘤中的影响及作用机制研究进展[J]. 临床个性化医学, 2025, 4(2): 85-91. https://doi.org/10.12677/jcpm.2025.42150

1. 前言

胆汁酸(BAs)是胆固醇代谢的最终产物,由一系列酶促反应产生,通过两种代谢途径从胆固醇中合成,分为经典途径和替代途径。胆汁酸具有脂肪消化吸收、胆固醇代谢以及肠道微生态平衡的作用,且经肠肝循环使胆汁酸得以在肝脏和肠道之间不断循环利用[1]

近年来,研究表明胆汁酸代谢失调与胃肠道癌症有关。胆汁酸不仅参与消化,还通过多种信号传导通路影响肿瘤微环境和进程[2]。然而,关于胆汁酸代谢与癌症之间具有相互矛盾的结果[3],但它们的确切作用和机制尚不清楚[4]。现有研究已发现,胆汁酸及其受体,如FXR和G蛋白偶联受体TGR5,在肿瘤发生和发展中发挥重要作用[5]。胆汁酸代谢在不同类型肿瘤中的具体作用机制需要进一步研究以探索新的诊断标志物和治疗靶点。

2. 背景

鉴于胆汁酸代谢在肿瘤发生和发展中扮演的关键角色,本文的目的在于全面梳理并分析胆汁酸代谢与肿瘤之间关系的最新研究进展。本文将深入探讨胆汁酸代谢在不同消化系统肿瘤中所起的具体作用机制,以及其对肿瘤进程的影响。同时,本文还将对未来的研究方向进行展望,以期为肿瘤的预防、诊断和治疗提供新的思路和参考。能够为相关领域的研究人员提供更多的信息和启示,进一步推动该领域的发展。

3. 胆汁酸的基本概念

3.1. 胆汁酸的分类

胆汁酸可以分为初级胆汁酸和次级胆汁酸:初级胆汁酸,主要包括胆酸(CA)和鹅脱氧胆酸(CDCA),由肝脏直接从胆固醇合成;次级胆汁酸,包括脱氧胆酸(DCA)和石胆酸(LCA),初级胆汁酸在肠道细菌作用下转化而成[6]

3.2. 胆汁酸的代谢及功能

胆汁酸在肝细胞内由胆固醇通过多步酶促反应合成。这个过程主要通过两条途径进行:经典途径和替代途径。经典的胆汁酸合成途径是由胆固醇7α-羟化酶(CYP7A1)启动,此途径占人类胆汁酸合成的大部分(>90%) [7],也是新生儿的主要胆汁酸合成途径,仅合成了CDCA [8]。已经证明胆汁酸是胆固醇分解代谢的最重要途径,负责体内每日90%胆固醇的输出[9]。其通过激活核受体(如FXR)和膜受体(如TGR5)发挥信号分子作用,调节多种生理过程。胆汁酸的肠肝循环是维持全身葡萄糖、脂质和能量稳态以预防高血糖、血脂异常和肥胖的重要生理机制[10]

胆汁酸代谢是一个复杂而重要的生理过程,它不仅与胆固醇的代谢紧密相关,还涉及脂肪的消化和吸收、肠道菌群的调节以及多种信号传导途径[11]。因此胆汁酸在肿瘤的发生和发展中发挥着关键作用。

4. 胆汁酸代谢对各种肿瘤的作用及机制

胆汁酸通过氧化应激、DNA损伤、炎症、激活信号通路以及改变肿瘤微环境等促进或者抑制肿瘤发展。

4.1. 胰腺癌

在胰头癌患者中,梗阻性黄疸为最常见的表现,由此产生的胆汁淤积与多种代谢异常有关[12]。共轭胆汁酸流动阻塞导致胆汁淤积,不仅可能是晚期胰腺癌的原因,也是预后及发展因素[10]。研究发现,胆汁酸能够激活表皮生长因子受体(EGFR),进而导致环氧合酶-2 (COX-2)的表达增加[13],降低法尼醇X受体(FXR)的表达,从而促进了肝胆恶性肿瘤的发展[14]。共轭胆汁酸还通过S1PR2刺激胰腺癌的进展,而S1PR2抑制则被视为S1PR2主导胰腺癌的潜在治疗靶点[15],进一步的研究揭示了共轭胆汁酸通过细胞外调节激酶(ERK) 1/2和蛋白激酶B (AKT)信号通路激活鞘氨醇-1-磷酸受体2 (S1PR2),从而促进胆管癌的发生[16]。此外,胆汁酸通过诱导氧化应激和炎症反应,增加胰腺细胞的癌变风险。研究发现,胆汁酸水平升高可增加ROS产生、氧化应激、细胞膜损伤以及下游信号转导的激活(包括EGFR、NF-κB、PKC)和DNA突变,这些变化会促进胃、结肠等器官中侵袭性肿瘤细胞的生长[17]

关于吸烟、饮酒和高脂肪饮食等生活习惯因素导致胆结石的形成,胆结石的形成限制了胆汁的流动引起胰腺炎,是胰腺癌的一个危险因素[18]。胆汁酸水平升高可能导致胰管胆汁酸反流,并影响腺泡细胞,从而促进胰腺癌的进展[19]。研究发现,超过60%的胰腺癌中鉴定出了细菌DNA,这表明微生物菌群在胰腺癌的发生和发展中扮演着重要角色[20]

综上所述,通过对胆汁酸与胰腺癌相互作用的深入探讨,我们发现了一系列复杂的相互作用和潜在的治疗靶点。这些发现不仅丰富了我们对胰腺癌发生发展机制的理解,也为未来的治疗策略提供了新的思路。

4.2. 食管腺癌(EAC)

EAC通常被认为是从Barrett (BE)发展而来的,BE是一种由慢性胃食管反流病(GERD)引起的食管肠上皮化生[21]。EAC发生发展与胆汁酸密切相关。首先,慢性胃食管反流病(GERD)中,长期的胆汁酸刺激可能导致食管黏膜发生病理性改变,即Barrett食管(BE),这是EAC发展的一个重要阶段[22]。体外研究表明,在含胆盐的培养基中培养正常食管上皮细胞会导致肠道标志基因的表达增加,这是化生的迹象[23]。此外,N-亚硝基胆汁酸可以通过EGFR或NF-κB途径驱动促炎细胞因子的表达,可能进一步促进食管黏膜的炎症反应和损伤[24]。上述因素表明胆汁酸通过刺激食管黏膜导致炎症和损伤。然而,Molendijk等人通过集成多组学研究揭示了EAC发展过程中鞘脂和磷脂代谢的重新分布,发现FADS2抑制和减少高多不饱和脂质可能通过降低脂质过氧化,在体外有效保护EAC细胞免受胆汁酸诱导的DNA损伤[25]。进一步研究表明,胆汁酸暴露会下调诱饵受体的表达,促进TRAIL信号传导,并抑制蛋白激酶C的活性,加速c-FLIP的降解,从而导致细胞凋亡[26],进而抑制肿瘤生长。

4.3. 胃癌(GC)与结直肠癌(CRC)

肠型胃癌是GC最常见的组织学亚型,肠上皮化生(IM)被认为是GC发生不可逆的过程[27]。高脂饮食和胆囊疾病会增加肠腔内次级胆汁酸的含量,这一现象与CRC的高发病率有关。几项临床研究发现,高浓度的胆汁酸与GC和CRC的风险升高有关[28] [29]。在这些研究中,脱氧胆酸(DCA)被确认为导致发病风险升高的主要胆汁酸成分[30]。DCA通过激活TGR5、STAT3、KLF5信号轴来促进IM,这一过程包括促进细胞增殖、抑制细胞凋亡、上调促炎细胞因子和IM标志物。此外,长期暴露于DCA会破坏胃内的胆汁酸代谢,导致微生物群失调,上述通路以及胆汁酸与胃微生物群之间的相互作用在胃IM的发病机制和癌症进展中的关键作用[31]。此外,DCA还能诱导氧化应激,导致DNA损伤和线粒体功能障碍,并激活促炎和促癌信号通路,如EGFR、PI3K/Akt和Wnt/β-catenin,这些途径通过引起染色体非整倍体和突变,促进了基因组不稳定[32],这强调了在CRC的发病机制和癌症进展中的关键作用。

4.4. 胆管癌

胆汁酸在胆管癌发生中的作用尚未完全明确,长期暴露于高水平的胆汁酸可能是导致胆管癌的重要风险因素。这一过程涉及几个关键途径:首先,持续的胆汁酸刺激会引发胆管细胞的炎症反应,可以刺激胆管细胞产生炎症因子,如IL-6、TNF、IRF3磷酸化增加,从而激活炎症信号通路,促进胆管细胞的增殖和分化[33];其次,胆汁酸可以抑制FXR信号通路,降低FXR依赖的化学保护机制,从而增加患胆管癌的风险,FXR的激活能强烈抑制NF-κB的活性,减少细胞增殖和炎症反应[34]。此外,S1P途径在胆管癌细胞的抗凋亡中起作用。胆汁酸通过激活S1PR2,调节细胞生长和炎症基因的转录[35],促进胆管细胞增殖和胆管癌细胞的迁移与侵袭。最后,TGR5是胆汁酸反应性受体,能够保护胆管细胞免受胆汁酸毒性的影响,防止死亡受体介导的凋亡[36]

4.5. 原发性肝癌

肝脏是胆汁酸代谢的主要器官,胆汁酸代谢紊乱与肝癌密切相关。首先,Chima等人研究证明肠道微生物利用胆汁酸作为信号分子,调控肝脏NKT细胞的趋化因子依赖性积累,进而影响肝脏的抗肿瘤免疫反应[37],此外,初级胆汁酸与次级胆汁酸对于肝肿瘤细胞的作用恰恰相反,通过抗生素治疗将初级胆汁酸转化为次级胆汁酸,导致肝肿瘤细胞的生长状态相反。初级胆汁酸可上调肝窦内皮细胞(LSECs)上CXCL16的表达,促进肝脏中CXCR6+自然杀伤细胞(NKT)细胞的积累[38]。此外,初级胆汁酸诱导的NKT细胞增加,增强了肝脏的抗肿瘤免疫。其在激活时产生更高水平的干扰素-γ (IFN-γ),这有助于抑制肝脏肿瘤的生长[39]。然而,次级胆汁酸可降低CXCL16的表达,减少NKT细胞的积累,从而降低抗肿瘤免疫反应。研究表明,重新引入次级胆汁酸或特定胆汁酸代谢细菌(如scindens梭状芽胞杆菌)逆转了这些作用[40]

5. 局限性

胆汁酸在不同肿瘤的发生和发展中的作用具有一定的局限性。首先,胆汁酸以多种形式存在,如初级胆汁酸、次级胆汁酸、共轭的和非共轭胆汁酸,每种形式都有不同的生物活性。然而,大多数研究没有全面覆盖人体外血液样本中胆汁酸的全谱,导致对其作用的理解不完整。其次,研究通常依赖于特定的癌细胞系,这可能不能准确地代表患者肿瘤的异质性。此外,体外研究可能无法完全捕获体内发生的胆汁酸、肠道微生物群和宿主组织之间复杂的相互作用。第三,胆汁酸和肠道微生物群之间的相互作用是至关重要的,但它往往未被充分探索。最后,不同胆汁酸激活的特异性受体和信号通路尚未完全表征。因此,将基于细胞或动物的研究结果转化为人类应用仍然是一个重大挑战。人类和实验模型之间胆汁酸代谢的差异可能导致结果的差异,强调需要更多基于人类的研究和临床试验。

6. 讨论

我们深入探讨了胆汁酸代谢在多种癌症发生和发展中的作用机制。胆汁酸作为胆固醇代谢的产物,不仅在脂肪消化和吸收中发挥重要作用,还通过多种信号传导通路影响肿瘤微环境和肿瘤进程。本文总结了胆汁酸在胰腺癌、食管腺癌、胃癌、结直肠癌、胆管癌、原发性肝癌中的具体作用机制。

综上所述,不同类型和浓度的胆汁酸通过氧化应激、DNA损伤、炎症反应以及调节信号通路等方式促进或抑制肿瘤的发生和发展。例如,次级胆汁酸如脱氧胆酸(DCA)和石胆酸(LCA)常通过诱导氧化应激和DNA损伤促进肿瘤,而初级胆汁酸如胆酸(CA)和鹅去氧胆酸(CDCA)在某些情况下则表现出抗肿瘤作用。此外,胆汁酸与肠道微生物群的相互作用在调节肿瘤进程中也起着关键作用。然而,尽管已有大量研究揭示了胆汁酸与癌症之间的关系,研究中仍存在一些不足。这些局限性强调了需要进一步的深入研究,以全面理解胆汁酸在肿瘤发生和发展中的作用机制,并探索其作为潜在诊断标志物和治疗靶点的应用。由此希望为相关领域的研究人员提供更多的信息和启示,推动胆汁酸代谢在肿瘤研究中的进一步发展,最终为癌症的预防、诊断和治疗提供新的思路和方法。

基金项目

局部晚期食管鳞癌同步放化疗联合替雷利珠单抗治疗的临床疗效验证及预后指标筛查。

NOTES

*通讯作者。

参考文献

[1] Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., et al. (2020) Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 66, 674-693.
https://doi.org/10.1007/s10620-020-06715-3
[2] Wang, Y., Gao, X., Zhang, X., Xiao, Y., Huang, J., Yu, D., et al. (2019) Gut Microbiota Dysbiosis Is Associated with Altered Bile Acid Metabolism in Infantile Cholestasis. mSystems, 4, e00463-19.
https://doi.org/10.1128/msystems.00463-19
[3] Kühn, T., Stepien, M., López‐Nogueroles, M., et al. (2020) Prediagnostic Plasma Bile Acid Levels and Colon Cancer Risk: A Prospective Study. Journal of the National Cancer Institute, 112, 516-524.
[4] Yu, B., Peng, X.H., Wang, L.Y., et al. (2019) Abnormality of Intestinal Cholesterol Absorption in Apc (Min/+) Mice with Colon Cancer Cachexia. International Journal of Clinical and Experimental Pathology, 12, 759-767.
[5] Canovai, E., Farré, R., Accarie, A., Lauriola, M., De Hertogh, G., Vanuytsel, T., et al. (2023) INT-767—A Dual Farnesoid-X Receptor (FXR) and Takeda G Protein-Coupled Receptor-5 (TGR5) Agonist Improves Survival in Rats and Attenuates Intestinal Ischemia Reperfusion Injury. International Journal of Molecular Sciences, 24, Article 14881.
https://doi.org/10.3390/ijms241914881
[6] Jiao, N., Baker, S.S., Chapa-Rodriguez, A., Liu, W., Nugent, C.A., Tsompana, M., et al. (2017) Suppressed Hepatic Bile Acid Signalling Despite Elevated Production of Primary and Secondary Bile Acids in NAFLD. Gut, 67, 1881-1891.
https://doi.org/10.1136/gutjnl-2017-314307
[7] Fleishman, J.S. and Kumar, S. (2024) Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets. Signal Transduction and Targeted Therapy, 9, Article No. 97.
https://doi.org/10.1038/s41392-024-01811-6
[8] Ferrell, J.M., Boehme, S., Li, F. and Chiang, J.Y.L. (2016) Cholesterol 7α-Hydroxylase-Deficient Mice Are Protected from High-Fat/High-Cholesterol Diet-Induced Metabolic Disorders. Journal of Lipid Research, 57, 1144-1154.
https://doi.org/10.1194/jlr.m064709
[9] Chiang, J.Y.L. (2017) Bile Acid Metabolism and Signaling in Liver Disease and Therapy. Liver Research, 1, 3-9.
https://doi.org/10.1016/j.livres.2017.05.001
[10] Chiang, J.Y.L. and Ferrell, J.M. (2019) Bile Acids as Metabolic Regulators and Nutrient Sensors. Annual Review of Nutrition, 39, 175-200.
https://doi.org/10.1146/annurev-nutr-082018-124344
[11] Sugiyama, Y., Yamamoto, K., Honda, T., Kato, A., Muto, H., Yokoyama, S., et al. (2023) Impact of Elobixibat on Liver Tumors, Microbiome, and Bile Acid Levels in a Mouse Model of Nonalcoholic Steatohepatitis. Hepatology International, 17, 1378-1392.
https://doi.org/10.1007/s12072-023-10581-2
[12] Nagahashi, M., Takabe, K., Liu, R., Peng, K., Wang, X., Wang, Y., et al. (2015) Conjugated Bile Acid-Activated S1P Receptor 2 Is a Key Regulator of Sphingosine Kinase 2 and Hepatic Gene Expression. Hepatology, 61, 1216-1226.
https://doi.org/10.1002/hep.27592
[13] Zhao, H., Shang, L., Zhang, Y., Liang, Z., Wang, N., Zhang, Q., et al. (2024) IL-17A Inhibitors Alleviate Psoriasis with Concomitant Restoration of Intestinal/Skin Microbiota Homeostasis and Altered Microbiota Function. Frontiers in Immunology, 15, Article 1344963.
https://doi.org/10.3389/fimmu.2024.1344963
[14] Nenkov, M., Shi, Y., Ma, Y., Gaßler, N. and Chen, Y. (2023) Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. International Journal of Molecular Sciences, 25, Article 6.
https://doi.org/10.3390/ijms25010006
[15] Are, V.S., Gromski, M.A., Akisik, F., Vilar-Gomez, E., Lammert, C., Ghabril, M., et al. (2024) Primary Sclerosing Cholangitis Limited to Intrahepatic Bile Ducts Has Distinctly Better Prognosis. Digestive Diseases and Sciences, 69, 1421-1429.
https://doi.org/10.1007/s10620-023-08260-1
[16] Helal, M., Yan, C. and Gong, Z. (2021) Stimulation of Hepatocarcinogenesis by Activated Cholangiocytes via Il17a/f1 Pathway in Kras Transgenic Zebrafish Model. Scientific Reports, 11, Article No. 1372.
https://doi.org/10.1038/s41598-020-80621-6
[17] Sarkar, J., Aoki, H., Wu, R., Aoki, M., Hylemon, P., Zhou, H., et al. (2022) Conjugated Bile Acids Accelerate Progression of Pancreatic Cancer Metastasis via S1PR2 Signaling in Cholestasis. Annals of Surgical Oncology, 30, 1630-1641.
https://doi.org/10.1245/s10434-022-12806-4
[18] Feng, H. and Chen, Y. (2016) Role of Bile Acids in Carcinogenesis of Pancreatic Cancer: An Old Topic with New Perspective. World Journal of Gastroenterology, 22, 7463-7477.
https://doi.org/10.3748/wjg.v22.i33.7463
[19] Phelan, J.P., Reen, F.J., Caparros-Martin, J.A., O’Connor, R. and O’Gara, F. (2017) Rethinking the Bile Acid/Gut Microbiome Axis in Cancer. Oncotarget, 8, 115736-115747.
https://doi.org/10.18632/oncotarget.22803
[20] Thomas, R.M. and Jobin, C. (2019) Microbiota in Pancreatic Health and Disease: The Next Frontier in Microbiome Research. Nature Reviews Gastroenterology & Hepatology, 17, 53-64.
https://doi.org/10.1038/s41575-019-0242-7
[21] Winston, J.A. and Theriot, C.M. (2019) Diversification of Host Bile Acids by Members of the Gut Microbiota. Gut Microbes, 11, 158-171.
https://doi.org/10.1080/19490976.2019.1674124
[22] Chai, J., Norng, M., Modak, C., Reavis, K.M., Mouazzen, W. and Pham, J. (2010) CCN1 Induces a Reversible Epithelial-Mesenchymal Transition in Gastric Epithelial Cells. Laboratory Investigation, 90, 1140-1151.
https://doi.org/10.1038/labinvest.2010.101
[23] Dang, T., Modak, C., Meng, X., Wu, J., Narvaez, R. and Chai, J. (2017) CCN1 Sensitizes Esophageal Cancer Cells to Trail-Mediated Apoptosis. Experimental Cell Research, 361, 163-169.
https://doi.org/10.1016/j.yexcr.2017.10.015
[24] Heck, A.L., Mishra, S., Prenzel, T., Feulner, L., Achhammer, E., Särchen, V., et al. (2021) Selective HSP90β Inhibition Results in TNF and TRAIL Mediated HIF1α Degradation. Immunobiology, 226, Article ID: 152070.
https://doi.org/10.1016/j.imbio.2021.152070
[25] Mukaisho, K., Kanai, S., Kushima, R., Nakayama, T., Hattori, T. and Sugihara, H. (2019) Barretts’s Carcinogenesis. Pathology International, 69, 319-330.
https://doi.org/10.1111/pin.12804
[26] Molendijk, J., Kolka, C.M., Cairns, H., Brosda, S., Mohamed, A., Shah, A.K., et al. (2022) Elevation of Fatty Acid Desaturase 2 in Esophageal Adenocarcinoma Increases Polyunsaturated Lipids and May Exacerbate Bile Acid‐induced DNA Damage. Clinical and Translational Medicine, 12, e810.
https://doi.org/10.1002/ctm2.810
[27] Meng, X., Chang, Z., Che, N., Wu, J., Dang, T. and Chai, J. (2020) Acid/Bile Exposure Triggers Trail-Mediated Apoptosis in Esophageal Cancer Cells by Suppressing the Decoy Receptors and C-FLIPR. The International Journal of Biochemistry & Cell Biology, 122, Article ID: 105736.
https://doi.org/10.1016/j.biocel.2020.105736
[28] Chen, H., Hu, Y., Lu, N. and Zhu, Y. (2020) Caudal Type Homeoboxes as a Driving Force in Helicobacter pylori Infection-Induced Gastric Intestinal Metaplasia. Gut Microbes, 12, Article ID: 1809331.
https://doi.org/10.1080/19490976.2020.1809331
[29] Bhat, A.A., Lu, H., Soutto, M., Capobianco, A., Rai, P., Zaika, A., et al. (2018) Exposure of Barrett’s and Esophageal Adenocarcinoma Cells to Bile Acids Activates EGFR-STAT3 Signaling Axis via Induction of Ape1. Oncogene, 37, 6011-6024.
https://doi.org/10.1038/s41388-018-0388-8
[30] Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. and Knight, R. (2012) Diversity, Stability and Resilience of the Human Gut Microbiota. Nature, 489, 220-230.
https://doi.org/10.1038/nature11550
[31] Jin, D., Huang, K., Xu, M., Hua, H., Ye, F., Yan, J., et al. (2022) Deoxycholic Acid Induces Gastric Intestinal Metaplasia by Activating STAT3 Signaling and Disturbing Gastric Bile Acids Metabolism and Microbiota. Gut Microbes, 14, Article: 2120744.
https://doi.org/10.1080/19490976.2022.2120744
[32] Bernstein, C., Holubec, H., Bhattacharyya, A.K., Nguyen, H., Payne, C.M., Zaitlin, B., et al. (2011) Carcinogenicity of Deoxycholate, a Secondary Bile Acid. Archives of Toxicology, 85, 863-871.
https://doi.org/10.1007/s00204-011-0648-7
[33] Huang, X., Zhao, W. and Huang, W. (2014) FXR and Liver Carcinogenesis. Acta Pharmacologica Sinica, 36, 37-43.
https://doi.org/10.1038/aps.2014.117
[34] Zhuang, Y., Ortega-Ribera, M., Thevkar Nagesh, P., Joshi, R., Huang, H., Wang, Y., et al. (2023) Bile Acid-Induced IRF3 Phosphorylation Mediates Cell Death, Inflammatory Responses, and Fibrosis in Cholestasis-Induced Liver and Kidney Injury via Regulation of ZBP1. Hepatology, 79, 752-767.
https://doi.org/10.1097/hep.0000000000000611
[35] Nagahashi, M., Yuza, K., Hirose, Y., Nakajima, M., Ramanathan, R., Hait, N.C., et al. (2016) The Roles of Bile Acids and Sphingosine-1-Phosphate Signaling in the Hepatobiliary Diseases. Journal of Lipid Research, 57, 1636-1643.
https://doi.org/10.1194/jlr.r069286
[36] Reich, M., Deutschmann, K., Sommerfeld, A., Klindt, C., Kluge, S., Kubitz, R., et al. (2015) TGR5 Is Essential for Bile Acid-Dependent Cholangiocyte Proliferation in Vivo and in Vitro. Gut, 65, 487-501.
https://doi.org/10.1136/gutjnl-2015-309458
[37] Terabe, M. and Berzofsky, J.A. (2016) NKT Cells in Tumor Immunity. Encyclopedia of Immunobiology, 4, 460-469.
https://doi.org/10.1016/b978-0-12-374279-7.17010-9
[38] Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., et al. (2018) Gut Microbiome-Mediated Bile Acid Metabolism Regulates Liver Cancer via NKT Cells. Science, 360, eaan5931.
https://doi.org/10.1126/science.aan5931
[39] Olszak, T., An, D., Zeissig, S., Vera, M.P., Richter, J., Franke, A., et al. (2012) Microbial Exposure during Early Life Has Persistent Effects on Natural Killer T Cell Function. Science, 336, 489-493.
https://doi.org/10.1126/science.1219328
[40] Gándola, Y.B., Fontana, C., Bojorge, M.A., Luschnat, T.T., Moretton, M.A., et al. (2020) Concentration-Dependent Effects of Sodium Cholate and Deoxycholate Bile Salts on Breast Cancer Cells Proliferation and Survival. Molecular Biology Reports, 47, 3521-3539.
https://doi.org/10.1007/s11033-020-05442-2