血糖相关指标与心肌梗死后不良后果关系的研究进展
Research Progress on the Relationship between Blood Glucose Related Indicators and Adverse Consequences after Myocardial Infarction
DOI: 10.12677/jcpm.2025.42155, PDF, HTML, XML,   
作者: 张子亚, 张莉然:济宁医学院临床医学院,山东 济宁;济宁市第一人民医院急诊内科,山东 济宁;韩翔宇*:济宁市第一人民医院急诊内科,山东 济宁
关键词: 心肌梗死不良心血管事件预后全因死亡率甘油三酯葡萄糖Myocardial Infarction MACE Prognosis All-Cause Mortality Rate TyG
摘要: 心肌梗死(myocardial infarction, MI)是一种威胁人们健康的严重疾病,在MI的治疗方面现已取得重大进展,但仍有部分患者存在预后不良的情况。既往多项研究表明血糖与心肌梗死及心肌梗死后不良后果相关,近来血糖相关指标如糖化血红蛋白(HbA1c)、应激性高血糖比值(SHR)、血红蛋白糖化指数(HGI)、甘油三酯葡萄糖指数(TyG)、甘油三酯葡萄糖–体质指数(TyG-BMI)也被证明与其相关。现就血糖相关指标与心肌梗死后不良后果的关系作出综述,以期预测心肌梗死患者不良后果发生率,尽早识别高危患者,制定预防措施,改善患者预后。
Abstract: Myocardial infarction (MI) is a serious disease that threatens people’s health. Significant progress has been made in the treatment of MI, but there are still some patients with poor prognosis. Previous studies have shown that blood glucose is associated with myocardial infarction and its adverse consequences. Recently, blood glucose related indicators such as glycated hemoglobin (HbA1c), stress-induced hyperglycemia ratio (SHR), hemoglobin glycation index (HGI), triglyceride glucose index (TyG), and triglyceride glucose body mass index (TyG-BMI) have also been shown to be related. This article provides a review on the relationship between blood glucose related indicators and adverse outcomes after myocardial infarction, in order to predict the incidence of adverse outcomes in myocardial infarction patients, identify high-risk patients as early as possible, develop preventive measures, and improve patient prognosis.
文章引用:张子亚, 张莉然, 韩翔宇. 血糖相关指标与心肌梗死后不良后果关系的研究进展[J]. 临床个性化医学, 2025, 4(2): 138-144. https://doi.org/10.12677/jcpm.2025.42155

1. 引言

根据世界银行的估计,至2030年,我国冠心病的患病人数将增加到2263万,心肌梗死的死亡率呈逐年上升趋势[1]。心肌梗死是指在有急性心肌缺血证据的情况下,存在由心脏生物标志物异常而检出的急性心肌损伤[2]。目前心肌梗死治疗方法(如经皮冠状动脉介入治疗)已取得显著进展,但仍有许多患者发生不良后果。心肌梗死后不良后果主要包括不良心血管事件(MACE)风险和全因死亡率。血糖相关指标在心肌梗死的发生、发展及预后中扮演着重要角色。本综述基于血糖相关指标预测MI后不良后果及临床降糖药物的应用对于MACE发生的关系进行描述。

2. 血糖对于心血管的病理生理影响

研究发现高血糖导致活性氧过量,诱导蛋白激酶C活化和机体氧化应激,导致细胞内能量代谢、基因表达及信号转导等过程异常,同时还可导致血管活性因子减少,致使血液高凝,引起血管病变,使冠心病患病风险增加[3]。Xue等人[4]研究发现2型糖尿病(T2DM)的患者,冠状动脉病变呈多发、弥漫性特点,微循环亦有不同程度的损害。当发生心肌梗死时,冠状动脉狭窄血管多,并且难以形成侧支循环,从而导致梗死面积大;长期的高血糖还会造成有效循环血容量增加,加重心脏负荷,诱发心力衰竭,导致死亡率增加,严重影响患者预后。

3. 血糖相关指标与MI后不良后果的关系

3.1. 糖化血红蛋白

HbA1c水平可以反映过去8~12周血糖的变化情况,是评价长期血糖控制的金标准[5]。我国尚未将单一HbA1c作为糖尿病的诊断标准,但欧洲心脏病协会认为HbA1c ≥ 6.5%即可诊断为糖尿病[6]。郭玉凡等[7]通过对1228例经皮冠状动脉介入治疗(PCI)术后的急性ST段抬高型心肌梗死(STEMI)患者随访发现,MI后不良后果的风险随HbA1c升高呈现上升趋势,并且多因素分析结果提示HbA1c升高是STEMI患者经皮冠状动脉介入治疗(PCI)后远期预后不良的独立危险因素(HR = 1.16, 95%CI: 1.03~1.34, P = 0.005)。针对急性非ST段抬高型心肌梗死(NSTEMI)患者,郝媛媛等[8]对此类人群进行多中心、观察性队列研究发现,HbA1c升高可作为NSTEMI患者PCI术后远期预后不良的独立危险因素(HR = 1.16, 95%CI: 1.03~1.34, P = 0.005)。同时Iryna Dykun等[9]发现在MI治疗期间的HbA1c水平也与MACE发生独立相关,且无论病情是否得到控制,较高的HbA1c水平与疾病进展速度和临床预后均有显著相关性。综上所述,HbA1c与心肌梗死预后明显相关,因此临床上可定期监测MI患者的HbA1c,预测患者预后情况,尽早识别高危患者。

3.2. 应激性高血糖比值

机体在应激状态下(如心肌梗死),体内会分泌增加多种激素,导致胰岛素抵抗及肝脏葡萄糖过度生成,引发短暂性血糖升高,即应激性高血糖(stress hyperglycemia, SH) [10]-[12],但目前仍缺乏对SH的明确定义。以往经常把入院后血糖当作SH的指标,但对于糖尿病人群来说不能很好地反映急性糖代谢功能障碍。2015年Gregory W Roberts等[13]提出将应激性高血糖比值(stress hyperglycemia ration, SHR)作为一种新型应激性高血糖指标,通过对应激血糖与基础血糖进行校正,体现危重症患者在应激状态下血糖的相对变化,是危重症患者不良事件发生的有效预测因子。董征等[14]通过对442例MI患者回顾性研究发现,与空腹血糖及HbA1c相比,SHR有更好的预测价值,SHR预测院内MACE发生的ROC曲线下面积为0.63 (95%CI: 0.59~0.70, P < 0.001),这证明了SHR是MI后院内并发MACE的有效预测因子。为验证SHR与MI患者短期及长期全因死亡率的关系,T Schmitz等[15]发现SHR与非糖尿病和糖尿病MI患者的短期全因死亡率显著相关,且在非糖尿病患者中更为明显。但关于长期全因死亡率,SHR仅与明确患有糖尿病的患者显著相关,对非糖尿病患者关系不大。针对以上研究,Paschalis Karakasis等[16]得出不同结论;其通过荟萃分析得出较高的SHR值与更高的MACE发生率、短期及长期全因死亡率均相关。但以上研究仍存在缺陷,后期需要对糖尿病、糖尿病前期、非糖尿病患者等进行分组,尤其应区分不同类型的心肌梗死,进行多中心前瞻性研究,观察SHR对心肌梗死后不良后果的影响,更好识别高危人群。

3.3. 血红蛋白糖化指数

HbA1c虽广泛应用于诊断糖尿病和评估血糖控制情况,但不适用于血糖波动范围大的患者。因此James M Hempe等[17]提出了糖化血红蛋白变异指数(HGI = 观测的HbA1c-预测的HbA1c),用来量化葡萄糖代谢和个体差异,已被证明是衡量个体HbA1c偏差的可靠指标[18]。该指标已被证明可用来预测MACE的发生,但尚未有确切研究表明其与心肌梗死后不良后果相关。Wang等[19]将9791名受试者按照HGI高低分成5个组,通过多中心队列研究得出HGI值与5年MACE发生风险呈U型相关,过低和过高的HGI均与MACE风险增加相关。因此,HGI可用来预测普通人群MACE发生的风险。Zhangyu Lin等[20]通过对324名合并T2DM的冠状动脉疾病(CVD)患者进行研究也证明了HGI和MACE之间U型相关,且当HGI较低时,患者的全因死亡率显著增加。以同类患者作为研究对象发现,HGI也是患有T2DM的CVD患者MACE事件发生的独立预测因素,HGI值越高,其发生MACE的风险越大[21]。当前应对患有心肌梗死患者的HGI值进行研究,明确其是否与不良后果的发生相关。

3.4. 甘油三酯葡萄糖指数

胰岛素抵抗(IR)是通过破坏靶组织中刺激胰岛分泌的途径从而引起胰岛素分泌紊乱的生物反应。研究发现IR与糖尿病的发生相关[22]。以往高胰岛素–正葡萄糖钳夹技术(HEC)是直接评估IR的金标准,但该技术操作难度大,不适用于常规患者检测。甘油三酯葡萄糖(TyG)指数可由甘油三酯(triglyceride, TG)和空腹血糖(fasting blood-glucose, FBG)计算得出,与通常的IR评估工具相比具有简便、高效及可靠的特点,现已被提议为IR的替代指标[23]

Jie Zhou等[24]通过对英国生物银行的370,390名受试者研究发现:TyG指数最高四分位数的MI风险比(HR)和95%置信区间(CI)为1.36 (1.28~1.44)。当结果被重新分类为STEMI或NSTEMI时,得出TyG指数与心肌梗死发生风险之间存在线性剂量反应关系。针对TyG指数与心肌梗死术后MACE发生风险的关系,白玉豪[25]行回顾性研究发现TyG指数为STEMI患者PCI术后院内发生MACE的独立影响因素(OR = 1.734, 95%CI: 1.073~2.803, P = 0.025)。与此同时,阿力米拉·居来提[26]提出当TyG指数 ≥ 6.041时,对NSTEMI患者急诊PCI术后发生院内MACE有一定预测价值。TyG指数的增加可能导致PCI术后患者更易发生MACE,与其是否患有糖尿病无关。

3.5. 甘油三酯葡萄糖–体质指数

已有证据表明肥胖与IR有确切关系[27],而且TyG指数被用作IR的替代指标,因此Er等[28]于2016年首次提出甘油三酯葡萄糖–体质指数(TyG-BMI)这一概念,其计算公式为ln [空腹甘油三酯(mg/dL) × 空腹血糖(mg/dL)/2] × BMI。经反复研究验证,TyG-BMI现已成为替代IR的有力标记,且可用来早期识别IR。Xue Xia等[29]定期监测95,342名无动脉粥样硬化性心血管疾病(ASCVD)的受试者的TyG-BMI,在随访期间新发8031例ASCVD病例,因此表明TyG-BMI数值与ASCVD发生呈显著正相关。

对于TyG-BMI对MI预后的影响,有以下研究。刘明等人[30]通过对2648名PCI术后的STEMI患者进行研究发现:在完全调整的Cox回归模型中,TyG-BMI中间和最高四分位数与最低四分位数相比,不良后果发生率的风险比分别为1.3和1.53;在六个月、一年和三年时,TyG-BMI预测不良后果的曲线下面积(AUC)分别为0.691、0.666和0.637。由此可见,TyG-BMI与该类人群不良后果的发生独立相关。此外,将TyG-BMI纳入风险预测模型中可增强对结果预测的准确性。Chaodi Luo等[31]通过对重症监护医疗信息市场IV数据库中提取出的1188名MI危重患者的TyG-BMI的数据进行分析,得出MI危重患者TyG-BMI指数与90天、180天、365天全因死亡率存在U型关系,但与30天全因死亡率不存在U型关系。TyG-BMI可作为MI危重患者早期预防的有效指标。综上,TyG-BMI可以作为评估MACE风险和预后的指标,但该指标与接受PCI的NSTEMI患者发生不良后果的关系尚不可知。TyG、TyG-BMI等指标均是基于血糖基础上,联合其它指标对不良后果的发生进行预测,以期早期识别临床高危患者。

4. 降糖药物的应用对不良心血管事件发生的影响

目前糖尿病的治疗目的不限于单纯降糖,还要兼顾心血管获益。临床常用的降糖药物共分为8类:促胰岛素分泌类、双胍类、α葡萄糖苷酶抑制剂、胰岛素增敏剂、胰高糖素样肽-1 (GLP-1)受体激动剂、二肽基肽酶-4 (DPP-4)抑制剂、钠–葡萄糖协同转运蛋白2 (SGLT-2)抑制剂、胰岛素[32]。众多学者对各类降糖药物与MI后不良心血管事件的发生进行研究,以期对合并T2DM的MI患者选择降糖药物提供治疗依据。

二甲双胍作为糖尿病患者的一线用药,其单药治疗糖尿病,对MI患者不良心血管事件的发生尚无研究。但Celestino Sardu [33]等人将116名糖尿病前期合并MI患者根据是否使用过二甲双胍分为二甲双胍组和非二甲双胍组,得出二甲双胍可改善患有MI的糖尿病前期患者的预后。徐志成等[34]对T2DM患者进行meta分析得出以下结论:与非二甲双胍治疗组相比,二甲双胍不能显著降低T2DM患者发生不良心血管事件的风险,但此研究证明磺脲类药物与较高的不良心血管事件发生风险相关,临床应尽量减少该类药物的使用。

针对α葡萄糖苷酶抑制剂对于MACE发生的影响,Edoardo Mannucci等[35]通过对1124名接受α-葡萄糖苷酶抑制剂治疗的患者和908名接受对照药治疗的患者进行meta分析得出α-葡萄糖苷酶抑制剂与不良心血管事件的发生无关。Sattar等[36]认为GLP-1受体激动剂可使MACE发生降低14%,且在结构同源性的GLP-1受体激动剂之间没有明显差异。一项meta分析认为大多数DPP4i与不良心血管事件发生无关[37],但DPP4i其中一种药物沙格列汀似乎与心力衰竭住院风险增加有关,临床是否要减少沙格列汀的使用,仍需要多样本、多中心的随机对照试验来证明。SGLT-2抑制剂已被多项研究发现与不良心血管事件发生减少相关[38] [39],目前已在临床广泛应用。

胰岛素种类繁多,针对胰岛素对于MACE的发生,Edoardo Mannucci等[40]认为胰岛素治疗与MACE发生的风险无关,但Lidia Staszewsky等人[41]认为与胰岛素相比,SGLT-2i和GLP-1RA可显著降低MACE的发生,且二者具有较高的安全性。但以上研究仍存在缺点,不同药物之间缺乏直接比较的随机对照试验,因此MACE风险及心血管死亡风险获益差异还有待进一步研究。研究发现合并糖尿病的MI患者发生MACE风险高,因此临床上针对心肌梗死合并糖尿病患者,应根据患者个体需求,综合考虑疗效、安全性、卫生经济学等因素,尽可能首选降低MACE风险的降糖药物。

5. 总结

综上所述,血糖相关指标与心肌梗死患者短期及长期不良后果的发生相关,但其作为预测指标在临床中尚未广泛应用,针对此问题仍需进行大量前瞻性研究,以期尽早控制相关人群MACE发生的风险。同时,当前对于合并T2DM的MI患者的血糖控制目标依旧沿用的是普通糖尿病的标准,缺乏对上述人群的特定标准。因此,应围绕此类患者制定合适的血糖控制范围,选择合理的降糖方案,以期改善心肌梗死患者的预后。

NOTES

*通讯作者。

参考文献

[1] 北京高血压防治协会, 北京糖尿病防治协会, 北京慢性病防治与健康教育研究会, 等. 基层心血管病综合管理实践指南2020 [J]. 中国医学前沿杂志(电子版), 2020, 12(8): 1-73.
[2] Thygesen, K., Alpert, J.S., Jaffe, A.S., Chaitman, B.R., Bax, J.J., Morrow, D.A., et al. (2018) Fourth Universal Definition of Myocardial Infarction (2018). Journal of the American College of Cardiology, 72, 2231-2264.
https://doi.org/10.1016/j.jacc.2018.08.1038
[3] 吴茂红, 吕玲. 糖耐量异常对冠心病患者氧化应激和血管内皮功能、心率变异性的影响及阿卡波糖的干预作用[J]. 中国动脉硬化杂志, 2014, 22(3): 287-292.
[4] Xue, L., Yuan, X., Zhang, S. and Zhao, X. (2021) Investigating the Effects of Dapagliflozin on Cardiac Function, Inflammatory Response, and Cardiovascular Outcome in Patients with STEMI Complicated with T2DM after PCI. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 9388562.
https://doi.org/10.1155/2021/9388562
[5] Dixit, S., Bassi-Dibai, D., Dibai-Filho, A.V., Mendes, R.G., Alqahtani, A.S., Alshehri, M.M., et al. (2024) Effect of Glycated Haemoglobin (HBA1c) on Cardiorespiratory Fitness (CRF) in a Population with Type 2 Diabetes Mellitus (T2DM): A Cross-Sectional Study. Medicina, 60, Article 1823.
https://doi.org/10.3390/medicina60111823
[6] 杨杰, 唐熠达. 2023年欧洲心脏病学会糖尿病患者心血管疾病管理指南解读[J]. 中华心血管病杂志, 2023, 51(12): 1273-1277.
[7] 郭玉凡, 王泽荣, 路超, 等. 糖化血红蛋白水平对急性ST段抬高型心肌梗死患者介入治疗远期预后的影响[J]. 中国循环杂志, 2021, 36(8): 762-768.
[8] 郝媛媛, 马锋, 李涛等. 糖化血红蛋白水平对行PCI的非ST段抬高型心肌梗死患者远期预后的影响[J]. 中国循证心血管医学杂志, 2019, 11(10): 1174-1178, 1187.
[9] Dykun, I., Bayturan, O., Carlo, J., Nissen, S.E., Kapadia, S.R., Tuzcu, E.M., et al. (2022) HbA1c, Coronary Atheroma Progression and Cardiovascular Outcomes. American Journal of Preventive Cardiology, 9, Article ID: 100317.
https://doi.org/10.1016/j.ajpc.2022.100317
[10] Cheung, N.W., Wong, K.Y.C., Kovoor, P. and McLean, M. (2019) Stress Hyperglycemia: A Prospective Study Examining the Relationship between Glucose, Cortisol and Diabetes in Myocardial Infarction. Journal of Diabetes and Its Complications, 33, 329-334.
https://doi.org/10.1016/j.jdiacomp.2018.12.015
[11] Koracevic, G., Vasiljevic, S., Velickovic-Radovanovic, R., Sakac, D., Obradovic, S., Damjanovic, M., et al. (2014) Stress Hyperglycemia in Acute Myocardial Infarction. Vojnosanitetski Pregled, 71, 858-869.
https://doi.org/10.2298/vsp121103017k
[12] Swieszkowski, S.P., Costa, D., Aladio, J.M., Matsudo, M., Pérez de la Hoz, A., Castro, M., et al. (2022) Neurohumoral Response and Stress Hyperglycemia in Myocardial Infarction. Journal of Diabetes and Its Complications, 36, Article ID: 108339.
https://doi.org/10.1016/j.jdiacomp.2022.108339
[13] Roberts, G.W., Quinn, S.J., Valentine, N., Alhawassi, T., O'Dea, H., Stranks, S.N., et al. (2015) Relative Hyperglycemia, a Marker of Critical Illness: Introducing the Stress Hyperglycemia Ratio. The Journal of Clinical Endocrinology & Metabolism, 100, 4490-4497.
https://doi.org/10.1210/jc.2015-2660
[14] 董征, 杨青苗, 郭彩霞. 应激性高血糖比值对急性心肌梗死患者院内不良预后的影响[J]. 首都医科大学学报, 2024, 45(3): 494-500.
[15] Schmitz, T., Freuer, D., Harmel, E., Heier, M., Peters, A., Linseisen, J., et al. (2022) Prognostic Value of Stress Hyperglycemia Ratio on Short-and Long-Term Mortality after Acute Myocardial Infarction. Acta Diabetologica, 59, 1019-1029.
https://doi.org/10.1007/s00592-022-01893-0
[16] Karakasis, P., Stalikas, N., Patoulias, D., Pamporis, K., Karagiannidis, E., Sagris, M., et al. (2024) Prognostic Value of Stress Hyperglycemia Ratio in Patients with Acute Myocardial Infarction: A Systematic Review with Bayesian and Frequentist Meta-Analysis. Trends in Cardiovascular Medicine, 34, 453-465.
https://doi.org/10.1016/j.tcm.2023.11.006
[17] Hempe, J.M., Gomez, R., McCarter, R.J. and Chalew, S.A. (2002) High and Low Hemoglobin Glycation Phenotypes in Type 1 Diabetes: A Challenge for Interpretation of Glycemic Control. Journal of Diabetes and Its Complications, 16, 313-320.
https://doi.org/10.1016/s1056-8727(01)00227-6
[18] Soros, A.A., Chalew, S.A., McCarter, R.J., Shepard, R. and Hempe, J.M. (2010) Hemoglobin Glycation Index: A Robust Measure of Hemoglobin A1c Bias in Pediatric Type 1 Diabetes Patients. Pediatric Diabetes, 11, 455-461.
https://doi.org/10.1111/j.1399-5448.2009.00630.x
[19] Wang, Y., Liu, H., Hu, X., Wang, A., Wang, A., Kang, S., et al. (2023) Association between Hemoglobin Glycation Index and 5-Year Major Adverse Cardiovascular Events: The REACTION Cohort Study. Chinese Medical Journal, 136, 2468-2475.
https://doi.org/10.1097/cm9.0000000000002717
[20] Lin, Z., He, J., Yuan, S., Song, C., Bian, X., Yang, M., et al. (2024) Hemoglobin Glycation Index and Cardiovascular Outcomes in Patients with Diabetes and Coronary Artery Disease: Insights from a Large Cohort Study. Nutrition & Diabetes, 14, Article No. 69.
https://doi.org/10.1038/s41387-024-00318-x
[21] Xu, S., Qin, Z., Yuan, R., Cui, X., Zhang, L., Bai, J., et al. (2022) The Hemoglobin Glycation Index Predicts the Risk of Adverse Cardiovascular Events in Coronary Heart Disease Patients with Type 2 Diabetes Mellitus. Frontiers in Cardiovascular Medicine, 9, Article 992252.
https://doi.org/10.3389/fcvm.2022.992252
[22] Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W. and Xu, H. (2022) Trends in Insulin Resistance: Insights into Mechanisms and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 7, Article No. 216.
https://doi.org/10.1038/s41392-022-01073-0
[23] 徐明成, 赵玉娟. 甘油三酯葡萄糖指数对动脉粥样硬化性心血管疾病的预测价值[J]. 心血管病学进展, 2023, 44(9): 810-813, 822.
[24] Zhou, J., Huang, H., Huang, H., Peng, J., Chen, W., Chen, F., et al. (2024) Association of Triglyceride-Glucose Index and Its Combination with Adiposity-Related Indices with the Incidence of Myocardial Infarction: A Cohort Study from the UK Biobank. International Journal of Obesity, 48, 1498-1505.
https://doi.org/10.1038/s41366-024-01612-5
[25] 白玉豪. TyG指数对ST段抬高型心肌梗死患者PCI术后院内发生主要心血管不良事件的预测价值[D]: [硕士学位论文]. 秦皇岛: 华北理工大学, 2022.
[26] 图尔荪江∙伊卜拉伊木. AMI合并T2DM患者急诊PCI术后临床结局风险预测模型的建立和验证[D]: [硕士学位论文]. 乌鲁木齐: 新疆医科大学, 2022.
[27] Ciresi, A., Amato, M.C., Pizzolanti, G. and Giordano Galluzzo, C. (2012) Visceral Adiposity Index Is Associated with Insulin Sensitivity and Adipocytokine Levels in Newly Diagnosed Acromegalic Patients. The Journal of Clinical Endocrinology & Metabolism, 97, 2907-2915.
https://doi.org/10.1210/jc.2012-1518
[28] Er, L., Wu, S., Chou, H., Hsu, L., Teng, M., Sun, Y., et al. (2016) Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLOS ONE, 11, e0149731.
https://doi.org/10.1371/journal.pone.0149731
[29] Xia, X., Chen, S., Tian, X., Xu, Q., Zhang, Y., Zhang, X., et al. (2024) Association of Triglyceride-Glucose Index and Its Related Parameters with Atherosclerotic Cardiovascular Disease: Evidence from a 15-Year Follow-Up of Kailuan Cohort. Cardiovascular Diabetology, 23, Article No. 208.
https://doi.org/10.1186/s12933-024-02290-3
[30] Liu, M., Pan, J., Meng, K., Wang, Y., Sun, X., Ma, L., et al. (2024) Triglyceride-Glucose Body Mass Index Predicts Prognosis in Patients with ST-Elevation Myocardial Infarction. Scientific Reports, 14, Article No. 976.
https://doi.org/10.1038/s41598-023-51136-7
[31] Luo, C., Li, Q., Wang, Z., Duan, S. and Ma, Q. (2024) Association between Triglyceride Glucose-Body Mass Index and All-Cause Mortality in Critically Ill Patients with Acute Myocardial Infarction: Retrospective Analysis of the MIMIC-IV Database. Frontiers in Nutrition, 11, Article 1399969.
https://doi.org/10.3389/fnut.2024.1399969
[32] 中华医学会糖尿病学分会, 国家基层糖尿病防治管理办公室. 国家基层糖尿病防治管理指南(2022) [J]. 中华内科杂志, 2022(3): 249-262.
[33] Sardu, C., D’Onofrio, N., Torella, M., Portoghese, M., Loreni, F., Mureddu, S., et al. (2019) Pericoronary Fat Inflammation and Major Adverse Cardiac Events (MACE) in Prediabetic Patients with Acute Myocardial Infarction: Effects of Metformin. Cardiovascular Diabetology, 18, Article No. 126.
https://doi.org/10.1186/s12933-019-0931-0
[34] Xu, Z., Zhang, H., Wu, C., Zheng, Y. and Jiang, J. (2022) Effect of Metformin on Adverse Outcomes in T2DM Patients: Systemic Review and Meta-Analysis of Observational Studies. Frontiers in Cardiovascular Medicine, 9, Article 944902.
https://doi.org/10.3389/fcvm.2022.944902
[35] Mannucci, E., Gallo, M., Pintaudi, B., Targher, G., Candido, R., Giaccari, A., et al. (2022) All-Cause Mortality and Cardiovascular Events in Patients with Type 2 Diabetes Treated with Alpha-Glucosidase Inhibitors: A Meta-Analysis of Randomized Controlled Trials. Nutrition, Metabolism and Cardiovascular Diseases, 32, 511-514.
https://doi.org/10.1016/j.numecd.2021.10.010
[36] Sattar, N., Lee, M.M.Y., Kristensen, S.L., Branch, K.R.H., Del Prato, S., Khurmi, N.S., et al. (2021) Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. The Lancet Diabetes & Endocrinology, 9, 653-662.
https://doi.org/10.1016/s2213-8587(21)00203-5
[37] Mannucci, E., Nreu, B., Montereggi, C., Ragghianti, B., Gallo, M., Giaccari, A., et al. (2021) Cardiovascular Events and All-Cause Mortality in Patients with Type 2 Diabetes Treated with Dipeptidyl Peptidase-4 Inhibitors: An Extensive Meta-Analysis of Randomized Controlled Trials. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2745-2755.
https://doi.org/10.1016/j.numecd.2021.06.002
[38] Broome, D.T. (2023) SGLT-2 Inhibitors: Discrepancy between MACE Reduction and Incident MI and Stroke. The Journal of Clinical Endocrinology & Metabolism, 108, e1450-e1451.
https://doi.org/10.1210/clinem/dgad216
[39] Lin, D.S., Lee, J., Hung, C. and Chen, W. (2021) The Efficacy and Safety of Novel Classes of Glucose-Lowering Drugs for Cardiovascular Outcomes: A Network Meta-Analysis of Randomised Clinical Trials. Diabetologia, 64, 2676-2686.
https://doi.org/10.1007/s00125-021-05529-w
[40] Mannucci, E., Targher, G., Nreu, B., Pintaudi, B., Candido, R., Giaccari, A., et al. (2022) Effects of Insulin on Cardiovascular Events and All-Cause Mortality in Patients with Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Nutrition, Metabolism and Cardiovascular Diseases, 32, 1353-1360.
https://doi.org/10.1016/j.numecd.2022.03.007
[41] Staszewsky, L., Baviera, M., Tettamanti, M., Colacioppo, P., Robusto, F., D'Ettorre, A., et al. (2022) Insulin Treatment in Patients with Diabetes Mellitus and Heart Failure in the Era of New Antidiabetic Medications. BMJ Open Diabetes Research & Care, 10, e002708.
https://doi.org/10.1136/bmjdrc-2021-002708