[1]
|
张婧, 魏志梁, 王云立, 等. 心肌纤维化发病机制研究进展[J]. 中国循证心血管医学杂志, 2024, 16(2): 253-256.
|
[2]
|
Ravassa, S., López, B., Treibel, T.A., San José, G., Losada-Fuentenebro, B., Tapia, L., et al. (2023) Cardiac Fibrosis in Heart Failure: Focus on Non-Invasive Diagnosis and Emerging Therapeutic Strategies. Molecular Aspects of Medicine, 93, Article 101194. https://doi.org/10.1016/j.mam.2023.101194
|
[3]
|
López, B., Ravassa, S., Moreno, M.U., José, G.S., Beaumont, J., González, A., et al. (2021) Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nature Reviews Cardiology, 18, 479-498. https://doi.org/10.1038/s41569-020-00504-1
|
[4]
|
Hu, S., Gao, Y., Gao, R., Wang, Y., Qu, Y., Yang, J., et al. (2022) The Selective STING Inhibitor H-151 Preserves Myocardial Function and Ameliorates Cardiac Fibrosis in Murine Myocardial Infarction. International Immunopharmacology, 107, Article 108658. https://doi.org/10.1016/j.intimp.2022.108658
|
[5]
|
González, A., López, B., Ravassa, S., San José, G., Latasa, I., Butler, J., et al. (2024) Myocardial Interstitial Fibrosis in Hypertensive Heart Disease: From Mechanisms to Clinical Management. Hypertension, 81, 218-228. https://doi.org/10.1161/hypertensionaha.123.21708
|
[6]
|
Salvador, D.B., Gamba, M.R., Gonzalez-Jaramillo, N., Gonzalez-Jaramillo, V., Raguindin, P.F.N., Minder, B., et al. (2022) Diabetes and Myocardial Fibrosis. JACC: Cardiovascular Imaging, 15, 796-808. https://doi.org/10.1016/j.jcmg.2021.12.008
|
[7]
|
Schlittler, M., Pramstaller, P.P., Rossini, A. and De Bortoli, M. (2023) Myocardial Fibrosis in Hypertrophic Cardiomyopathy: A Perspective from Fibroblasts. International Journal of Molecular Sciences, 24, Article 14845. https://doi.org/10.3390/ijms241914845
|
[8]
|
Xu, P., Lin, X. and Feng, X. (2016) Posttranslational Regulation of Smads. Cold Spring Harbor Perspectives in Biology, 8, a022087. https://doi.org/10.1101/cshperspect.a022087
|
[9]
|
Maruyama, K. and Imanaka-Yoshida, K. (2022) The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. International Journal of Molecular Sciences, 23, Article 2617. https://doi.org/10.3390/ijms23052617
|
[10]
|
Moreau, J.M., Velegraki, M., Bolyard, C., Rosenblum, M.D. and Li, Z. (2022) Transforming Growth Factor-β1 in Regulatory T Cell Biology. Science Immunology, 7, eabi4613. https://doi.org/10.1126/sciimmunol.abi4613
|
[11]
|
Tan, Z., Jiang, X., Zhou, W., Deng, B., Cai, M., Deng, S., et al. (2021) Taohong Siwu Decoction Attenuates Myocardial Fibrosis by Inhibiting Fibrosis Proliferation and Collagen Deposition via TGFBR1 Signaling Pathway. Journal of Ethnopharmacology, 270, Article 113838. https://doi.org/10.1016/j.jep.2021.113838
|
[12]
|
Gao, X., Ni, C., Song, Y., Xie, X., Zhang, S., Chen, Y., et al. (2025) Dan-Shen Yin Attenuates Myocardial Fibrosis after Myocardial Infarction in Rats: Molecular Mechanism Insights by Integrated Transcriptomics and Network Pharmacology Analysis and Experimental Validation. Journal of Ethnopharmacology, 338, Article 119070. https://doi.org/10.1016/j.jep.2024.119070
|
[13]
|
Su, C., Wang, Q., Luo, H., Jiao, W., Tang, J., Li, L., et al. (2020) Si-Miao-Yong-An Decoction Attenuates Cardiac Fibrosis via Suppressing TGF-β1 Pathway and Interfering with MMP-TIMPs Expression. Biomedicine & Pharmacotherapy, 127, Article 110132. https://doi.org/10.1016/j.biopha.2020.110132
|
[14]
|
赵鹏, 王洲力, 熊鹏, 等. 基于TGF-β1/Smad3信号通路探究真武汤对风湿性心脏病大鼠心肌纤维化和免疫紊乱的影响[J]. 中医药导报, 2025, 31(1): 20-26.
|
[15]
|
Shi, Y., Liu, C., Xiong, S., Yang, L., Yang, C., Qiao, W., et al. (2023) Ling-Gui-Qi-Hua Formula Alleviates Left Ventricular Myocardial Fibrosis in Rats with Heart Failure with Preserved Ejection Fraction by Blocking the Transforming Growth Factor-β1/Smads Signaling Pathway. Journal of Ethnopharmacology, 317, Article 116849. https://doi.org/10.1016/j.jep.2023.116849
|
[16]
|
郭昊铭, 黄宇涵, 王帅哲, 等. 枳实薤白桂枝汤加味调控TGF-β1/smads信号通路对心肌纤维化模型大鼠的防治作用[J]. 时珍国医国药, 2024, 35(15): 3322-3326.
|
[17]
|
Liang, B., Zhang, X., Li, R. and Gu, N. (2022) Guanxin V Protects against Ventricular Remodeling after Acute Myocardial Infarction through the Interaction of TGF-β1 and Vimentin. Phytomedicine, 95, Article 153866. https://doi.org/10.1016/j.phymed.2021.153866
|
[18]
|
Yan, T., Zhu, X., Zhang, X., Jia, X., Liu, J., Wang, X., et al. (2022) The Application of Proteomics and Metabolomics to Reveal the Molecular Mechanism of Nutmeg-5 in Ameliorating Cardiac Fibrosis Following Myocardial Infarction. Phytomedicine, 105, Article 154382. https://doi.org/10.1016/j.phymed.2022.154382
|
[19]
|
Ma, J., Ren, M., Li, J., Zheng, C., Chen, Q. and Ma, S. (2022) Danqi Soft Caspule Prevents Atrial Fibrillation by Ameliorating Left Atrial Remodeling through Inhibiting Cardiac Fibroblasts Differentiation and Function. Phytomedicine, 101, Article 154134. https://doi.org/10.1016/j.phymed.2022.154134
|
[20]
|
Zhang, M., Sun, X., Zhao, F., Chen, Z., Liu, M., Wang, P., et al. (2025) Tinglu Yixin Granule Inhibited Fibroblast-Myofibroblast Transdifferentiation to Ameliorate Myocardial Fibrosis in Diabetic Mice. Journal of Ethnopharmacology, 337, Article 118980. https://doi.org/10.1016/j.jep.2024.118980
|
[21]
|
Wang, M., Wang, M., Zhao, J., Xu, H., Xi, Y. and Yang, H. (2023) Dengzhan Shengmai Capsule Attenuates Cardiac Fibrosis in Post-Myocardial Infarction Rats by Regulating LTBP2 and TGF-β1/Smad3 Pathway. Phytomedicine, 116, Article 154849. https://doi.org/10.1016/j.phymed.2023.154849
|
[22]
|
Zeng, Z., Wang, Q., Yang, X., Ren, Y., Jiao, S., Zhu, Q., et al. (2019) Qishen Granule Attenuates Cardiac Fibrosis by Regulating TGF-β /Smad3 and GSK-3β Pathway. Phytomedicine, 62, Article 152949. https://doi.org/10.1016/j.phymed.2019.152949
|
[23]
|
Anwaier, G., Xie, T., Pan, C., Li, A., Yan, L., Wang, D., et al. (2022) Qishenyiqi Pill Ameliorates Cardiac Fibrosis after Pressure Overload-Induced Cardiac Hypertrophy by Regulating FHL2 and the Macrophage RP S19/TGF-β1 Signaling Pathway. Frontiers in Pharmacology, 13, Article 918335. https://doi.org/10.3389/fphar.2022.918335
|
[24]
|
李晓静, 王丽蓉, 蒋兵, 等. 基于TGF-β1/Smads信号通路探讨鹿红益心颗粒对心力衰竭大鼠心肌纤维化的影响[J]. 中国中药杂志, 2024, 49(13): 3583-3590.
|
[25]
|
余汇, 郭海彪, 林娟, 等. 隐丹参酮通过TGF-β1/Smad3信号改善小鼠急性心肌梗死后心室重构[J]. 药物评价研究, 2025, 48(1): 85-92.
|
[26]
|
Sun, J., Zhu, J., Chen, L., Duan, B., Wang, R., Zhang, M., et al. (2021) Forsythiaside B Inhibits Myocardial Fibrosis via down Regulating TGF-β1/Smad Signaling Pathway. European Journal of Pharmacology, 908, Article 174354. https://doi.org/10.1016/j.ejphar.2021.174354
|
[27]
|
Li, J., Ge, F., Wuken, S., Jiao, S., Chen, P., Huang, M., et al. (2022) Zerumbone, a Humulane Sesquiterpene from Syringa Pinnatifolia, Attenuates Cardiac Fibrosis by Inhibiting of the TGF-Β1/Smad Signaling Pathway after Myocardial Infarction in Mice. Phytomedicine, 100, Article 154078. https://doi.org/10.1016/j.phymed.2022.154078
|
[28]
|
Wang, Q., Fu, W., Yu, X., Xu, H., Sui, D. and Wang, Y. (2021) Ginsenoside Rg2 Alleviates Myocardial Fibrosis by Regulating TGF-β1/Smad Signalling Pathway. Pharmaceutical Biology, 59, 104-111. https://doi.org/10.1080/13880209.2020.1867197
|
[29]
|
Zhu, J., Ling, W., Xue, C., Zhou, Z., Zhang, Y., Yan, C., et al. (2021) Higenamine Attenuates Cardiac Fibroblast Abstract and Fibrosis via Inhibition of TGF-β1/Smad Signaling. European Journal of Pharmacology, 900, Article 174013. https://doi.org/10.1016/j.ejphar.2021.174013
|
[30]
|
王天光, 陈泽伦, 赵朝阳, 等. 虎杖苷抑制TGF-β/Smad/ERK信号通路挽救急性心肌梗死大鼠心肌纤维化[J]. 现代免疫学, 2024, 44(1): 39-44+50.
|