动脉硬化在慢性肾脏疾病中的研究进展
Research Progress of Arteriosclerosis in Chronic Kidney Disease
DOI: 10.12677/jcpm.2025.42160, PDF, HTML, XML,   
作者: 程雨欣*:西安医学院研究生部,陕西 西安;中国人民解放军空军军医大学唐都医院超声医学科,陕西 西安;杨 勇#:中国人民解放军空军军医大学唐都医院超声医学科,陕西 西安
关键词: 慢性肾疾病动脉僵硬度脉搏波传播速度动脉硬化心血管疾病Chronic Kidney Disease Arterial Stiffness Pulse Wave Velocity Arteriosclerosis Cardiovascular Disease
摘要: 动脉硬化是导致慢性肾脏疾病(Chronic Kidney Disease, CKD)进展的重要因素之一。当肾动脉发生硬化时,会导致肾脏供血不足,进而影响肾脏的正常功能。动脉硬化还可能促进肾脏内微小血管的病变,进一步加速肾脏功能的损害。慢性肾脏疾病本身也可能导致或加重动脉硬化。当肾脏功能受损时,体内异常代谢物质的堆积和水电解质平衡的紊乱会引发心血管问题,包括高血压、高脂血症等,这些危险因素都会促进动脉硬化的发生。动脉硬化和慢性肾脏疾病之间存在着密切的联系和相互影响。本文旨在明确慢性肾疾病以及终末期肾疾病相关的心血管疾病治疗靶点,为临床降低慢性肾疾病相关心血管疾病提供观点。
Abstract: Arteriosclerosis is one of the important factors leading to the progression of chronic kidney disease (CKD). When the renal arteries are hardened, the blood supply to the kidneys is insufficient, which in turn affects the normal function of the kidneys. Arteriosclerosis may also promote the lesion of tiny blood vessels in the kidneys, further accelerating the damage to kidney function. Chronic kidney disease itself can also cause or worsen arteriosclerosis. When kidney function is impaired, the accumulation of abnormal metabolites in the body and the disturbance of water and electrolyte balance can lead to cardiovascular problems, including hypertension, hyperlipidemia, etc., and these risk factors will promote the occurrence of arteriosclerosis. There is a strong link and interaction between arteriosclerosis and chronic kidney disease. The purpose of this article is to clarify the therapeutic targets of chronic kidney disease and end-stage renal disease-related cardiovascular diseases, and to provide perspectives for clinical reduction of chronic kidney disease-related cardiovascular diseases.
文章引用:程雨欣, 杨勇. 动脉硬化在慢性肾脏疾病中的研究进展[J]. 临床个性化医学, 2025, 4(2): 170-174. https://doi.org/10.12677/jcpm.2025.42160

1. 引言

CKD各种原因引起的慢性肾脏结构和功能障碍(肾脏损害病史大于3个月),包括肾小球滤过率(Glomerular Filtration Rate, GFR)正常和不正常的病理损伤、血液或尿液成分异常,及影像学检查异常,或不明原因GFR下降(<60 mL/min∙1.73m2)超过3个月。其病因主要包括原发性肾小球肾炎、高血压肾小动脉硬化、糖尿病肾病、继发性肾小球肾炎、肾小管间质病变、缺血性肾病、遗传性肾病等。

近年来,CKD患病率呈现逐年上升的趋势,全球一般人群患病率已经达到14.3%之高[1]。在我国CDK的主要病因还是以原发性肾小球肾炎为主,但高血压肾小动脉硬化、糖尿病肾病引起的CKD呈现一个上升趋势。我国横断面流行病学调查研究显示,18岁以上人群CKD患病率为10.8% [2]。随着我国人口老龄化和高血压、心脑血管等疾病的发病率逐年增高,CKD发病率也呈现不断上升之势[3]。随着患者肾功能不全的进展,动脉硬化逐步增加。在CKD患者中,有研究显示脉搏波传导速度(Pulse Wave Velocity, PWV)与GFR水平呈负相关。

2. 动脉硬化的定义及无创检查

2.1. 动脉硬化

动脉硬化是指动脉内层弹力纤维发生退变、断裂、胶原纤维含量增加、内膜变厚、变硬引起动脉硬度增加,管壁顺应性下降,它可以累及大、中、小三类动脉,从形态特征上分为动脉粥样硬化、动脉中层钙化、小动脉硬化三种类别。反映动脉硬化的(定量)指标称为动脉僵硬度(Arterial Stiffness, AS),AS本质上反映的是动脉血管壁在血液运行过程中的弹性或顺应性。

2.2. 动脉硬化的无创检查

目前,无创测量动脉硬化主要是动脉功能和结构检测两方面。动脉功能检测的主要方法有PWV、脉搏波波形分析和超声成像手段检测动脉管壁的顺应性;动脉结构检测主要包括血管超声、EBCT、螺旋CT和MRI等影像学方法和臂踝压力指数(Ankle Brachial Index, ABI)。目前在临床研究中,常用的功能检测手段–区域性的PWV和常用的结构检测手段–血管超声。

3. 动脉硬化对肾脏的影响

动脉硬化是全身性疾病,可累及肾脏各级动脉而引起缺血性肾损害。动脉硬化可引起动脉系统动脉血压升高,导致肾小动脉硬化;其次,肾动脉及其分支动脉管壁形成粥样硬化斑块可能会导致肾动脉狭窄。动脉粥样硬化性肾动脉狭窄(Atherosclerotic Renal Artery Stenosis, ARAS),指因动脉粥样斑块引起肾动脉狭窄和肾血流量减少而引起的肾损害。作为全身性动脉粥样硬化的局部表现与脑卒中、周围血管病等有明显的相关性。动脉粥样硬化斑块的特征是高度钙化,这种钙化包括两种不同的形式:新生内膜斑块内的动脉粥样硬化钙化和平滑肌层内的中膜钙化,这可能在没有动脉粥样硬化的情况下发生。动脉血管生理状态下通过缓冲机制在收缩期降低压力、舒张期保持压力[4]。然而在动脉硬化增加的其情况下,这种缓冲能力下降导致机体收缩压和脉压增高,会对动脉供应直接来自于主动脉的脏器如心脏、肾脏和大脑产生有害的影响[5]。增加的静水压维持了高肾小球滤过率,但因此将肾小球毛细血管暴露在潜在的破坏性脉压之下,搏动可将更多血液泵入肾脏小血管,从而导致微血管损伤。

3.1. 动脉硬化与慢性肾脏疾病

CKD患者机体有潜在的血管损伤,除了传统的心血管危险因素,CKD的特异性风险因素如矿物质骨病(CKD-MBD)、容量超负荷、炎症和氧化应激,可诱导血管结构和功能的显著改变。动脉硬化斑块的特征是高度钙化,研究表明血管钙化预测终末期的CKD患者结局较差[6]。由钙、磷酸盐和甲状旁腺激素代谢改变、炎症和凝血途径改变、氧化应激或高同型半胱氨酸血症引起的血管钙化被认为是尿毒症患者AS的原因。几项研究评估了透析方式对AS的影响[7] [8]。其他因素,如液体超负荷、RAS和内皮素系统的改变、营养不良、感染、尿毒症毒素和胰岛素抵抗,可能导致晚期肾衰竭患者的动脉粥样硬化[9]

终末期肾疾病(End-Stage Renal Disease, ESRD)患者的主动脉PWV水平显著高于年龄、性别和血压匹配的肾功能正常的高血压对照[10]。PWV在老年、糖尿病和高血压患者以及包括肾移植受者在内的CKD患者的进一步队列中具有预测价值,这个发现有望预期直接靶向动脉硬化可以改善目前几乎没有其他治疗选择的CKD患者的心血管结局[11] [12]。在心血管风险异常增加的同时,随着肾功能的下降,动脉硬化随之增加[13]。值得注意的是,在大部分研究中,动脉硬化的程度主要是由于CVD的风险因素所决定,而不是肾脏损害本身所引起的。动脉硬化是一个促成因素,独立于血压至CKD事件。在一项研究中,PWV每增加1个SD,发生CKD的可能性增加13%,肾功能丧失的进展率更高[14];同样,一项日本研究也观察到动脉硬度每增加1 m/s,发生CKD的可能性增加36% [15]。在一研究中观察到,肾小球滤过率与主动脉僵硬度之间存在显著的相关性,但在调整心血管危险因素之后相关性消失,突出合并症对CKD患者AS的影响[16]

动脉僵硬度随着肾功能下降而增加,其原因有多种,包括高血压、肾素–血管紧张素系统激活、血管细胞外基质改变、晚期糖基化终末产物(AGE)、内皮功能障碍、慢性炎症、氧化应激和感染、血管钙化以及骨和矿物质代谢紊乱[17]。这些已被视为降低动脉僵硬度和改善CKD相关心血管死亡率升高的潜在治疗靶点。肾脏疾病和动脉僵硬之间的关系似乎是双向的,并且还存在潜在的恶性循环,其中主动脉或肾功能原发性异常可能导致两个器官的结构和功能的加速恶化,但年轻终末期肾病患者的僵硬度对临床事件的预测能力更好[18]

3.2. CKD与心血管疾病

CKD相关的心血管疾病(Associated Cardiovascular, CVD)的患病率较高,心力衰竭和心律失常是该人群心血管死亡的最主要原因,其发病率比非CKD患者高3~4倍[19]。ESRD患者的CVD死亡率比年龄校正后的一般人群高10~30倍。CKD的严重程度主要是由于CVD的高患病率,CKD患者死于CVD的可能性远远高于进展为需要透析或移植的ESRD [20]。几乎所有开始透析的患者都明显存在左心室结构异常,70%至80%的患者在超声心动图上发现左心室肥厚[21]。动脉硬化是ESRD心血管风险升高的另一个主要因素,通过多种途径引起血流动力学改变[10]。尽管ESRD的心血管风险也很高,但早期CKD引起的心血管疾病的公共卫生负担要大很多。

一项包括2964例CKD患者的大型队列研究(随访时间为2.76年)所示,其中CVD事件与ESRD风险和ESRD全因死亡率的显著增加相关[22]。大量研究观察结果表明,非传统风险因素包括矿物质骨骼疾病、贫血、血管紧张素系统活性增加和交感神经活动、炎症和氧化应激,被观察到可能在慢性肾脏疾病患者相应的心血管风险增加中发挥重要作用[23]。已经证实了有多种危险因素,包括高血压、抽烟、动脉粥样硬化、血管钙化以及骨和矿物质代谢紊乱[24]

CKD患者有许多和动脉硬化发生一样的危险因素。传统的危险因素如高血压、糖尿病、吸烟、高脂血症等,但是这些传统因素不能作为独立危险因素来解释CKD患者相较于普通患者心血管患病风险增加。这些传统风险因素被视为降低动脉硬化和改善与CKD相关的心血管死亡率升高的潜在治疗靶点。

4. 小结

综上所述,可以推测CKD患者的动脉硬化程度加深,影响机体心血管疾病的患病率;同时,动脉硬化已经证实是心血管疾病的独立预测因素,因此动脉硬化可以反作用于肾动脉血管,推动CKD患者疾病的进展。目前,通过对CKD患者的高血压进行健康管理,动脉硬化被认为是一种间接的可以改变CKD患者心血管风险的因素。但几乎没有研究指出某种治疗对动脉管壁具有特异性和直接的“去硬化”作用。因此,动脉硬化的临床评估可以被视为临床研究和风险分层的工具,而不是治疗疾病本身的一种手段。了解CKD中动脉硬化增加的潜在机制对于设计预防或逆转这种病理生理学的策略至关重要。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ene-Iordache, B., Perico, N., Bikbov, B., Carminati, S., Remuzzi, A., Perna, A., et al. (2016) Chronic Kidney Disease and Cardiovascular Risk in Six Regions of the World (ISN-KDDC): A Cross-Sectional Study. The Lancet Global Health, 4, e307-e319.
https://doi.org/10.1016/s2214-109x(16)00071-1
[2] Zhang, L., Wang, F., Wang, L., Wang, W., Liu, B., Liu, J., et al. (2012) Prevalence of Chronic Kidney Disease in China: A Cross-Sectional Survey. The Lancet, 379, 815-822.
https://doi.org/10.1016/s0140-6736(12)60033-6
[3] 上海慢性肾脏病早发现及规范化诊治与示范项目专家组. 慢性肾脏病筛查诊断及防治指南[J]. 中国实用内科杂志, 2017, 1(37): 28-34.
[4] Garnier, A. and Briet, M. (2015) Arterial Stiffness and Chronic Kidney Disease. Pulse, 3, 229-241.
https://doi.org/10.1159/000443616
[5] Belz, G.G. (1995) Elastic Properties and Windkessel Function of the Human Aorta. Cardiovascular Drugs and Therapy, 9, 73-83.
https://doi.org/10.1007/bf00877747
[6] Voicehovska, J.G., Bormane, E., Grigane, A., Moisejevs, G., Moreino, E., Trumpika, D., et al. (2021) Association of Arterial Stiffness with Chronic Kidney Disease Progression and Mortality. Heart, Lung and Circulation, 30, 1694-1701.
https://doi.org/10.1016/j.hlc.2021.08.011
[7] Matsumae, T., Abe, Y., Murakami, G., Ishihara, M., Ueda, K. and Saito, T. (2007) Determinants of Arterial Wall Stiffness and Peripheral Artery Occlusive Disease in Nondiabetic Hemodialysis Patients. Hypertension Research, 30, 377-385.
https://doi.org/10.1291/hypres.30.377
[8] O’Hare, A. and Johansen, K. (2001) Lower-Extremity Peripheral Arterial Disease among Patients with End-Stage Renal Disease. Journal of the American Society of Nephrology, 12, 2838-2847.
https://doi.org/10.1681/asn.v12122838
[9] Czyżewski, Ł., Wyzgał, J., Czyżewska, E., Sierdziński, J. and Szarpak, Ł. (2017) Contribution of Volume Overload to the Arterial Stiffness of Hemodialysis Patients. Renal Failure, 39, 333-339.
https://doi.org/10.1080/0886022x.2017.1279552
[10] Georgianos, P.I., Pikilidou, M.I., Liakopoulos, V., Balaskas, E.V. and Zebekakis, P.E. (2018) Arterial Stiffness in End-Stage Renal Disease—Pathogenesis, Clinical Epidemiology, and Therapeutic Potentials. Hypertension Research, 41, 309-319.
https://doi.org/10.1038/s41440-018-0025-5
[11] Ben-Shlomo, Y., Spears, M., Boustred, C., May, M., Anderson, S.G., Benjamin, E.J., et al. (2014) Aortic Pulse Wave Velocity Improves Cardiovascular Event Prediction: An Individual Participant Meta-Analysis of Prospective Observational Data From 17,635 Subjects. Journal of the American College of Cardiology, 63, 636-646.
https://doi.org/10.1016/j.jacc.2013.09.063
[12] Townsend, R.R., Anderson, A.H., Chirinos, J.A., Feldman, H.I., Grunwald, J.E., Nessel, L., et al. (2018) Association of Pulse Wave Velocity with Chronic Kidney Disease Progression and Mortality: Findings from the CRIC Study (Chronic Renal Insufficiency Cohort). Hypertension, 71, 1101-1107.
https://doi.org/10.1161/hypertensionaha.117.10648
[13] Edwards, N.C., Ferro, C.J., Townend, J.N. and Steeds, R.P. (2008) Aortic Distensibility and Arterial-Ventricular Coupling in Early Chronic Kidney Disease: A Pattern Resembling Heart Failure with Preserved Ejection Fraction. Heart, 94, 1038-1043.
https://doi.org/10.1136/hrt.2007.137539
[14] Sedaghat, S., Mattace-Raso, F.U.S., Hoorn, E.J., Uitterlinden, A.G., Hofman, A., Ikram, M.A., et al. (2015) Arterial Stiffness and Decline in Kidney Function. Clinical Journal of the American Society of Nephrology, 10, 2190-2197.
https://doi.org/10.2215/cjn.03000315
[15] Tomiyama, H., Tanaka, H., Hashimoto, H., Matsumoto, C., Odaira, M., Yamada, J., et al. (2010) Arterial Stiffness and Declines in Individuals with Normal Renal Function/Early Chronic Kidney Disease. Atherosclerosis, 212, 345-350.
https://doi.org/10.1016/j.atherosclerosis.2010.05.033
[16] Lilitkarntakul, P., Dhaun, N., Melville, V., Blackwell, S., Talwar, D.K., Liebman, B., et al. (2011) Blood Pressure and Not Uraemia Is the Major Determinant of Arterial Stiffness and Endothelial Dysfunction in Patients with Chronic Kidney Disease and Minimal Co-Morbidity. Atherosclerosis, 216, 217-225.
https://doi.org/10.1016/j.atherosclerosis.2011.01.045
[17] Coelho, S.C., Berillo, O., Caillon, A., Ouerd, S., Fraulob-Aquino, J.C., Barhoumi, T., et al. (2018) Three-Month Endothelial Human Endothelin-1 Overexpression Causes Blood Pressure Elevation and Vascular and Kidney Injury. Hypertension, 71, 208-216.
https://doi.org/10.1161/hypertensionaha.117.09925
[18] Pickup, L., Radhakrishnan, A., Townend, J.N. and Ferro, C.J. (2019) Arterial Stiffness in Chronic Kidney Disease: A Modifiable Cardiovascular Risk Factor? Current Opinion in Nephrology and Hypertension, 28, 527-536.
https://doi.org/10.1097/mnh.0000000000000535
[19] Foley, R.N., Murray, A.M., Li, S., Herzog, C.A., McBean, A.M., Eggers, P.W., et al. (2005) Chronic Kidney Disease and the Risk for Cardiovascular Disease, Renal Replacement, and Death in the United States Medicare Population, 1998 to 1999. Journal of the American Society of Nephrology, 16, 489-495.
https://doi.org/10.1681/asn.2004030203
[20] Keith, D.S., Nichols, G.A., Gullion, C.M., Brown, J.B. and Smith, D.H. (2004) Longitudinal Follow-Up and Outcomes among a Population with Chronic Kidney Disease in a Large Managed Care Organization. Archives of Internal Medicine, 164, 659-663.
https://doi.org/10.1001/archinte.164.6.659
[21] Foley, R.N., Parfrey, P.S., Harnett, J.D., Kent, G.M., Martin, C.J., Murray, D.C., et al. (1995) Clinical and Echocardiographic Disease in Patients Starting End-Stage Renal Disease Therapy. Kidney International, 47, 186-192.
https://doi.org/10.1038/ki.1995.22
[22] Sud, M., Tangri, N., Pintilie, M., Levey, A.S. and Naimark, D. (2014) Risk of End-Stage Renal Disease and Death after Cardiovascular Events in Chronic Kidney Disease. Circulation, 130, 458-465.
https://doi.org/10.1161/circulationaha.113.007106
[23] Schiffrin, E.L., Lipman, M.L. and Mann, J.F.E. (2007) Chronic Kidney Disease: Effects on the Cardiovascular System. Circulation, 116, 85-97.
https://doi.org/10.1161/circulationaha.106.678342
[24] Chue, C.D., Townend, J.N., Steeds, R.P. and Ferro, C.J. (2010) Republished Paper: Arterial Stiffness in Chronic Kidney Disease: Causes and Consequences. Postgraduate Medical Journal, 86, 560-566.
https://doi.org/10.1136/pgmj.2009.184879rep