[1]
|
Tiwari, R., Kumar, R., Malik, S., Raj, T. and Kumar, P. (2021) Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Current Cardiology Reviews, 17, e160721189770. https://doi.org/10.2174/1573403x16999201231203854
|
[2]
|
Montano, N., Ruscone, T.G., Porta, A., Lombardi, F., Pagani, M. and Malliani, A. (1994) Power Spectrum Analysis of Heart Rate Variability to Assess the Changes in Sympathovagal Balance during Graded Orthostatic Tilt. Circulation, 90, 1826-1831. https://doi.org/10.1161/01.cir.90.4.1826
|
[3]
|
Berezin, A.E., Berezin, A.A. and Lichtenauer, M. (2021) Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. Disease Markers, 2021, Article ID: 6644631. https://doi.org/10.1155/2021/6644631
|
[4]
|
Ksela, J., Rupert, L., Djordjevic, A., Antonic, M., Avbelj, V. and Jug, B. (2022) Altered Heart Rate Turbulence and Variability Parameters Predict 1-Year Mortality in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Development and Disease, 9, Article 213. https://doi.org/10.3390/jcdd9070213
|
[5]
|
Patel, V.N., Pierce, B.R., Bodapati, R.K., Brown, D.L., Ives, D.G. and Stein, P.K. (2017) Association of Holter-Derived Heart Rate Variability Parameters with the Development of Congestive Heart Failure in the Cardiovascular Health Study. JACC: Heart Failure, 5, 423-431. https://doi.org/10.1016/j.jchf.2016.12.015
|
[6]
|
Ostrowska, B., Lind, L. and Blomström‐Lundqvist, C. (2024) An Association between Heart Rate Variability and Incident Heart Failure in an Elderly Cohort. Clinical Cardiology, 47, e24241. https://doi.org/10.1002/clc.24241
|
[7]
|
Haigney, M., Zareba, W., La Rovere, M.T., Grasso, I. and Mortara, D. (2014) Assessing the Interaction of Respiration and Heart Rate in Heart Failure and Controls Using Ambulatory Holter Recordings. Journal of Electrocardiology, 47, 831-835. https://doi.org/10.1016/j.jelectrocard.2014.08.002
|
[8]
|
Shanks, J., Abukar, Y., Lever, N.A., Pachen, M., LeGrice, I.J., Crossman, D.J., et al. (2022) Reverse Re-Modelling Chronic Heart Failure by Reinstating Heart Rate Variability. Basic Research in Cardiology, 117, Article No. 4. https://doi.org/10.1007/s00395-022-00911-0
|
[9]
|
Kornej, J., Börschel, C.S., Benjamin, E.J. and Schnabel, R.B. (2020) Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circulation Research, 127, 4-20. https://doi.org/10.1161/circresaha.120.316340
|
[10]
|
Jin, H., Ding, L., Li, B. and Zhang, J. (2024) Data Analysis of Heart Rate Variability and Arrhythmia in Patients with Paroxysmal Atrial Fibrillation. Discovery Medicine, 36, 1610-1615. https://doi.org/10.24976/discov.med.202436187.147
|
[11]
|
Wu, G., Zhang, Q., Zhang, J., Zhu, J., Zheng, D., Wang, Y., et al. (2024) Exploring the Impact of Electrocardiographic Parameters on the Risk of Common Arrhythmias: A Two-Sample Mendelian Randomization Study. Journal of Thoracic Disease, 16, 4553-4566. https://doi.org/10.21037/jtd-24-814
|
[12]
|
Geurts, S., Tilly, M.J., Arshi, B., Stricker, B.H.C., Kors, J.A., Deckers, J.W., et al. (2022) Heart Rate Variability and Atrial Fibrillation in the General Population: A Longitudinal and Mendelian Randomization Study. Clinical Research in Cardiology, 112, 747-758. https://doi.org/10.1007/s00392-022-02072-5
|
[13]
|
de Luna, A.B., Coumel, P. and Leclercq, J.F. (1989) Ambulatory Sudden Cardiac Death: Mechanisms of Production of Fatal Arrhythmia on the Basis of Data from 157 Cases. American Heart Journal, 117, 151-159. https://doi.org/10.1016/0002-8703(89)90670-4
|
[14]
|
Bilgin, S., Çolak, O.H., Polat, O. and Koklukaya, E. (2009) Estimation and Evaluation of Sub-Bands on LF and HF Base-Bands in HRV for Ventricular Tachyarrhythmia Patients. Expert Systems with Applications, 36, 10078-10084. https://doi.org/10.1016/j.eswa.2009.01.014
|
[15]
|
Reed, M.J., Robertson, C.E. and Addison, P.S. (2005) Heart Rate Variability Measurements and the Prediction of Ventricular Arrhythmias. QJM, 98, 87-95. https://doi.org/10.1093/qjmed/hci018
|
[16]
|
Thong, T. and Raitt, M.H. (2007) Predicting Imminent Episodes of Ventricular Tachyarrhythmia Using Heart Rate. Pacing and Clinical Electrophysiology, 30, 874-884. https://doi.org/10.1111/j.1540-8159.2007.00775.x
|
[17]
|
Zhang, Y., Wang, J. and Xu, Y. (2020) Value of Heart Rate Variability on Dynamic Electrocardiogram in Predicting Ventricular Fibrillation in Elderly Acute Myocardial Infarction Patients. Annals of Palliative Medicine, 9, 3488-3494. https://doi.org/10.21037/apm-20-1362
|
[18]
|
Lee, H., Shin, S., Seo, M., Nam, G. and Joo, S. (2016) Prediction of Ventricular Tachycardia One Hour before Occurrence Using Artificial Neural Networks. Scientific Reports, 6, Article No. 32390. https://doi.org/10.1038/srep32390
|
[19]
|
Panjaitan, F., Nurmaini, S. and Partan, R.U. (2023) Accurate Prediction of Sudden Cardiac Death Based on Heart Rate Variability Analysis Using Convolutional Neural Network. Medicina, 59, Article 1394. https://doi.org/10.3390/medicina59081394
|
[20]
|
Yan, S., Song, X., Wei, L., Gong, Y., Hu, H. and Li, Y. (2023) Performance of Heart Rate Adjusted Heart Rate Variability for Risk Stratification of Sudden Cardiac Death. BMC Cardiovascular Disorders, 23, Article No. 144. https://doi.org/10.1186/s12872-023-03184-0
|
[21]
|
Martinez-Alanis, M., Bojorges-Valdez, E., Wessel, N. and Lerma, C. (2020) Prediction of Sudden Cardiac Death Risk with a Support Vector Machine Based on Heart Rate Variability and Heartprint Indices. Sensors, 20, Article 5483. https://doi.org/10.3390/s20195483
|
[22]
|
Kleiger, R.E., Miller, J.P., Bigger, J.T. and Moss, A.J. (1987) Decreased Heart Rate Variability and Its Association with Increased Mortality after Acute Myocardial Infarction. The American Journal of Cardiology, 59, 256-262. https://doi.org/10.1016/0002-9149(87)90795-8
|
[23]
|
Rovere, M.T.L., Bigger, J.T., Marcus, F.I., Mortara, A. and Schwartz, P.J. (1998) Baroreflex Sensitivity and Heart-Rate Variability in Prediction of Total Cardiac Mortality after Myocardial Infarction. The Lancet, 351, 478-484. https://doi.org/10.1016/s0140-6736(97)11144-8
|
[24]
|
Chattipakorn, N., Incharoen, T., Kanlop, N. and Chattipakorn, S. (2007) Heart Rate Variability in Myocardial Infarction and Heart Failure. International Journal of Cardiology, 120, 289-296. https://doi.org/10.1016/j.ijcard.2006.11.221
|
[25]
|
Huikuri, H.V., Raatikainen, M.J.P., Moerch-Joergensen, R., Hartikainen, J., Virtanen, V., Boland, J., et al. (2008) Prediction of Fatal or Near-Fatal Cardiac Arrhythmia Events in Patients with Depressed Left Ventricular Function after an Acute Myocardial Infarction. European Heart Journal, 30, 689-698. https://doi.org/10.1093/eurheartj/ehn537
|
[26]
|
Munoz, M.L., van Roon, A., Riese, H., Thio, C., Oostenbroek, E., Westrik, I., et al. (2015) Validity of (Ultra-)Short Recordings for Heart Rate Variability Measurements. PLOS ONE, 10, e0138921. https://doi.org/10.1371/journal.pone.0138921
|
[27]
|
Karp, E., Shiyovich, A., Zahger, D., Gilutz, H., Grosbard, A. and Katz, A. (2009) Ultra-Short-Term Heart Rate Variability for Early Risk Stratification Following Acute ST-Elevation Myocardial Infarction. Cardiology, 114, 275-283. https://doi.org/10.1159/000235568
|
[28]
|
Reshef, M., Perek, S., Odeh, T., Hamati, K. and Raz-Pasteur, A. (2024) Prognostic Value of Ultra-Short Heart Rate Variability Measures Obtained from Electrocardiogram Recordings of Hospitalized Patients Diagnosed with Non-St-Elevation Myocardial Infarction. Journal of Clinical Medicine, 13, Article 7255. https://doi.org/10.3390/jcm13237255
|
[29]
|
Manresa-Rocamora, A., Ribeiro, F., Sarabia, J.M., Íbias, J., Oliveira, N.L., Vera-García, F.J., et al. (2020) Exercise-based Cardiac Rehabilitation and Parasympathetic Function in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis. Clinical Autonomic Research, 31, 187-203. https://doi.org/10.1007/s10286-020-00687-0
|
[30]
|
Eser, P., Jaeger, E., Marcin, T., Herzig, D., Trachsel, L.D. and Wilhelm, M. (2022) Acute and Chronic Effects of High-Intensity Interval and Moderate-Intensity Continuous Exercise on Heart Rate and Its Variability after Recent Myocardial Infarction: A Randomized Controlled Trial. Annals of Physical and Rehabilitation Medicine, 65, Article ID: 101444. https://doi.org/10.1016/j.rehab.2020.09.008
|
[31]
|
Abdelnabi, M., Zaki, M., Sadaka, M., et al. (2021) Effects of Coronary Revascularization by Elective Percutaneous Coronary Intervention on Cardiac Autonomic Modulation Assessed by Heart Rate Variability: A Single-Center Prospective Cohort Study. American Journal of Cardiovascular Disease, 11, 164-175.
|
[32]
|
Simms, A.E., Paton, J.F.R., Pickering, A.E. and Allen, A.M. (2009) Amplified Respiratory-Sympathetic Coupling in the Spontaneously Hypertensive Rat: Does It Contribute to Hypertension? The Journal of Physiology, 587, 597-610. https://doi.org/10.1113/jphysiol.2008.165902
|
[33]
|
Tan, Z., Lu, Y., Whiteis, C.A., Simms, A.E., Paton, J.F.R., Chapleau, M.W., et al. (2010) Chemoreceptor Hypersensitivity, Sympathetic Excitation, and Overexpression of ASIC and TASK Channels before the Onset of Hypertension in Shr. Circulation Research, 106, 536-545. https://doi.org/10.1161/circresaha.109.206946
|
[34]
|
Passino, C., Magagna, A., Conforti, F., Buralli, S., Kozáková, M., Palombo, C., et al. (2003) Ventricular Repolarization Is Prolonged in Nondipper Hypertensive Patients: Role of Left Ventricular Hypertrophy and Autonomic Dysfunction. Journal of Hypertension, 21, 445-451. https://doi.org/10.1097/00004872-200302000-00038
|
[35]
|
Alp, Ç., Dogru, M.T. and Demir, V. (2021) Heart Rate Turbulence Measurements in Patients with Dipper and Non-Dipper Hypertension: The Effects of Autonomic Functions. Turkish Journal of Medical Sciences, 51, 3030-3037. https://doi.org/10.3906/sag-2105-177
|
[36]
|
Maciorowska, M., Krzesiński, P., Wierzbowski, R., Uziębło-Życzkowska, B. and Gielerak, G. (2022) Associations between Heart Rate Variability Parameters and Hemodynamic Profiles in Patients with Primary Arterial Hypertension, Including Antihypertensive Treatment Effects. Journal of Clinical Medicine, 11, Article 3767. https://doi.org/10.3390/jcm11133767
|
[37]
|
Philbois, S.V., Facioli, T.P., Gastaldi, A.C., Rodrigues, J.A.L., Tank, J., Fares, T.H., et al. (2021) Important Differences between Hypertensive Middle-Aged Women and Men in Cardiovascular Autonomic Control—A Critical Appraisal. Biology of Sex Differences, 12, Article No. 11. https://doi.org/10.1186/s13293-020-00355-y
|
[38]
|
Kang, J., Chang, Y., Kim, Y., Shin, H. and Ryu, S. (2022) Ten-Second Heart Rate Variability, Its Changes over Time, and the Development of Hypertension. Hypertension, 79, 1308-1318. https://doi.org/10.1161/hypertensionaha.121.18589
|
[39]
|
Tadic, M., Cuspidi, C., Pencic, B., Jozika, L. and Celic, V. (2015) Relationship between Right Ventricular Remodeling and Heart Rate Variability in Arterial Hypertension. Journal of Hypertension, 33, 1090-1097. https://doi.org/10.1097/hjh.0000000000000511
|
[40]
|
Tadic, M., Cuspidi, C., Pencic, B., Pavlovic, S.U., Ivanovic, B., Kocijancic, V., et al. (2014) Association between Left Ventricular Mechanics and Heart Rate Variability in Untreated Hypertensive Patients. The Journal of Clinical Hypertension, 17, 118-125. https://doi.org/10.1111/jch.12459
|