心率变异性在心血管疾病中的应用进展
Application Progress of Heart Rate Variability in Cardiovascular Diseases
DOI: 10.12677/jcpm.2025.42162, PDF, HTML, XML,   
作者: 戴伟龙, 易岂建*:重庆医科大学附属儿童医院心血管科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,国家临床心血管内科重点专科,重庆市卫生健康委儿童重要器官发育与疾病重点实验室,重庆
关键词: 心率变异性心力衰竭心律失常心源性猝死冠心病高血压Heart Rate Variability Heart Failure Arrhythmia Sudden Cardiac Death Coronary Heart Disease Hypertension
摘要: 心率变异性(heart rate variability, HRV)是临床常用于评价心脏自主神经活性的无创性检测指标之一,在多种心血管疾病的筛查、危险分层、治疗调整及预后判断等均有重要价值。本文着重于HRV的研究背景、分析方法、临床应用等进行综述。
Abstract: Heart rate variability (HRV) is one of the non-invasive detection indicators commonly used in the clinical evaluation of cardiac autonomic nerve activity. It plays an important role in screening, risk stratification, treatment adjustment and prognosis judgment of various cardiovascular diseases. This article focuses on the research background, analysis methods and clinical application of HRV.
文章引用:戴伟龙, 易岂建. 心率变异性在心血管疾病中的应用进展[J]. 临床个性化医学, 2025, 4(2): 186-192. https://doi.org/10.12677/jcpm.2025.42162

1. 引言

心率变异性(heart rate variability, HRV)是指每搏心动周期之间差异的变化情况,由机器对动态心电图的计算分析得出,临床上多用于反映自主神经张力的变化趋势,具有无创性、简便性及良好的应用潜力等诸多优点。目前,HRV已成为评价自主神经功能的最常用检测方法之一,在涉及自主神经功能的多种疾病中均有较广泛的应用,尤其在心血管等疾病的疾病诊断、预后评估、危险分层等多方面均有重要价值。

2. 心率变异性的分析方法及常用指标

2.1. 时域分析

时域分析为利用统计学上的离散趋势法,对心率或RR间期的变化进行分析。临床上常用的24小时长时程分析指标有:(1) SDNN:全部正常窦性心搏间期的标准差,成人正常参考值为141 ± 39 ms,儿童正常参考值为145 ± 35 ms,适用于HRV的总体分析,是反映心脏自主神经系统平衡的重要指标,其降低反映交感神经活性的增强;(2) SDANN:每5 min正常窦性心搏间期平均值的标准差,成人正常参考值为127 ± 35 ms,儿童正常参考值为132 ± 48 ms,用于交感神经系统的评价,数值降低反映交感神经的活性增强;(3) rMSSD:全程相邻正常窦性心搏间期之差的均方根,成人正常参考值为27 ± 12 ms,儿童正常参考值为49 ± 20 ms,其数值与迷走神经活性成正相关;(4) pNN50:相邻RR间期差值超过50 ms的个数占总窦性心搏个数的百分比,与rMSSD均反映迷走神经的活跃程度,数值降低均反映迷走神经活性减弱。

2.2. 频域分析

频域分析常用快速傅里叶变换和自动回归参数模型法等计算方法,将心率信号转换为频域上的频谱图以得到各频率的功率密度分布及变化情况。根据所用时程分短时程分析(<5 min)和长时程分析(24 h),短时程分析因能通过避免生理因素、病理状态及外界环境等因素对自主神经活动的干扰,使结果相对于长时程分析更能反映出被检者自身的自主神经活动情况[1]。常用的频域分析指标有总功率(TP)、超低频功率(ULF)、极低频功率(VLF)、低频功率(LF)和高频功率(HF)。TP (0~0.4 Hz)反映整体的自主神经调节能力;HF (0.15~0.4 Hz)反映迷走神经的调节作用,且受呼吸深度的调控;LF (0.04~0.15 Hz)通常认为受到迷走神经和交感神经的共同调节影响,但也有学者认为其主要受到交感神经的调控[1];LF/HF比值在临床上可用于定量反映心脏自主神经活性中迷走神经和交感神经的平衡变化[2];ULF (0~0.003 Hz)和VLF (0.003~0.04 Hz)两指标占总功率的极小部分,应用相对较少。

2.3. 非线性分析

心率的调控中存在非线性现象,对于使用时域分析及频域分析均难以描述的心率变异情况,临床上常用散点图的形态进行定性分析,并通过散点图的分布图像进行判断,正常图像多呈彗星状,而HRV异常时,可表现为鱼雷形、短棒形及其他复杂图像。此外还存在参数估算法、非线性预测、改良散点图等分析方法,但目前其他方法临床应用较少,且多局限于理论水平,仍需要进一步研究。

3. 心率变异性在心血管疾病中的临床应用

3.1. HRV与心力衰竭

心力衰竭是多种病因导致的心脏收缩或舒张功能障碍的临床综合征,是心脏疾病发展的终末阶段,其病理生理学特征是严重的血流动力学异常,同时伴有心脏自主神经系统功能的失衡,表现为交感神经活性增加和迷走神经活性减弱[3],而自主神经功能的紊乱,在疾病的发展和进展中有着重要作用。Ksela等[4]通过对射血分数保留型心力衰竭(heart failure with preserved ejection fraction, HFpEF)患者进行预后的随访及动态心电图的持续监测后发现,相较于存活者,死亡患者的SDNN显著降低,并提出HRV参数能帮助区分HFpEF患者中潜在不良结局风险较大者,有助于评估HFpEF患者的预后及危险分层。Patel等[5]对1401例无症状老年人群随访发生心力衰竭的相关性研究表明,平均心率矫正后24小时内5分钟节段N-N间期的平均方差(the average variance of N-N intervals in 5-min segments over 24 h when corrected for the average heart rate, CV%)与心力衰竭的发生显著独立相关[(95%CI (0.90~0.99), P < 0.05),提示识别HRV异常的无症状老年人,可能有助于指导心力衰竭的预防策略。Ostrowska等[6]的一项老年群体队列研究表明,较低的LF/HF比值是发生心力衰竭的强预测因子,尤其是当LF/HF比值<30时,与新发心衰相关,且在加入传统心血管疾病的危险因素后,可进一步提高心衰的预测准确性,较以往的预测模型准确性提高3.3% (P < 0.03),此外,研究还显示HF功率较高的个体,其心力衰竭的发生风险有所增加,这可能与以往迷走神经活性减少是心衰发生前自主神经功能失衡的主要原因有冲突。呼吸性窦性心律不齐(respiratory sinus arrhythmia, RSA),即正常呼吸运动所引起的心率变异,在心血管疾病患者中可以观察到RSA的降低,在心力衰竭群体这一现象则消失[7]。Shanks等[8]通过构建慢性心力衰竭动物模型,并对起搏器编程以重新恢复RSA,可显著改善心衰患者的心输出量并重塑心肌细胞的形态。因此,HRV检测对心力衰竭患者的预测、危险分层、预防等具有重要价值。

3.2. 心率变异性与心律失常和心源性猝死

随着人类预期寿命的增长,心律失常的患病率也不断增加[9]。预测潜在心律失常的发生对于心律失常早期干预和管理的重要性不言而喻。现有研究认为,心律失常的发生及过程的维持与自主神经功能失调密切相关,心率变异性可能有助于早期预测心律失常的发生。一项针对于阵发性心房颤动的动态心电图研究[10]表明,与正常对照组相比,房性早搏(PACs)、房性心动过速以及rMSSD是阵发性心房颤动患者的独立危险因素,且列线图表明,rMSSD每增加一个单位,发生心房颤动的几率可增加约1.0357倍。一项孟德尔随机化研究[11]显示,SDNN是房颤[OR: 0.515; 95%CI: 0.278~0.954; P = 0.03]和心动过缓[OR: 0.988; 95%CI: 0.976~1.000; P = 0.0045]发生的独立预后危险因素。Geurts等[12]对一般人群的纵向和孟德尔随机化研究也显示较高的SDNN (HR: 1.24; 95%CI: 1.04~1.47; P = 0.0213)和较高的rMSSD [HR: 1.33; 95%CI: 1.13~1.54; P = 0.001]与新发房颤显著相关,尤其在女性群体中更为突出。快速性室性心律失常(ventricular tachyarrhythmias, VTAs)包括心室颤动(ventricular fibrillation, VF)和室性心动过速(ventricular tachycardia, VT),VTAs是未能及时就医的情况下导致心源性猝死(Sudden cardiac death, SCD)的主要原因之一,约占心源性猝死的80% [13],因此早期预测快速型心律失常的发生可能有助于降低心源性猝死的死亡率。以往的基于HRV分析预测VTAs的多项研究表明HRV在预测VT的发生具有潜在应用潜力[14]-[16]。Zhang等[17]发现HRV在老年心梗患者的VF具有一定预测价值,有望成为VF的辅助诊断方法。Thong等[16]通过对HRV分析建立基于神经网络的VTAs预测模型,该模型通过短程(5 min)的HRV分析在VT事件发生前10秒预测可能出现的VT事件,并表现出73.3%的敏感性,73.8%的特异性和75.6%的准确性,但10秒的预测长度在临床上缺乏实际价值,在后续研究[18]中对HRV参数进一步调整后,引入11个HRV参数的预测模型在预测1小时后可能出现的VT事件上表现出73.5%的准确性、70.6%的敏感性、76.5%的特异性、75.0%的阳性预测值和72.2%的阴性预测值,AUC为0.75。这一模型的预测性在加入呼吸频率变异性(respiratory rate variability, RRV)分析后其准确率(85.3%)、敏感性(88.2%)及特异性(82.4%)得到进一步提升。Panjaitan等[19]也基于HRV的时域分析构建SCD的卷积神经网络模型对SCD进行风险预测,模型表现出较高的预测水准,平均准确率为99.30%、敏感性为97.00%、特异性为99.60%、精准度为97.87%,表明HRV在预测SCD事件上的潜在价值,但研究只涉及到HRV的时域分析方法,且样本量较小,未来仍需要多中心大样本研究及更多分析方法的验证。Yan等[20]通过个体化的心率对HRV进行调整,调整后得到的HRV1在SCD的危险分层上展现出更高的可靠性,其曲线下面积中位数为0.72,高于长程HRV分析(0.63)及短程HRV分析(0.58)。Martinez-Alanis等[21]基于135名受试者其短期心电记录(长度为1000次心搏周期)所得到的HRV,通过支持向量机法检测其对SCD事件的预测价值,向量机性能测试显示其AUC为0.68,准确性为67%,表明以此开发的支持向量机可能有助于SCD的早期预警。这些研究均表明HRV异常与心律失常(尤其恶性心律失常)和心源性猝死密切相关。

3.3. HRV与冠心病

冠心病在成年人群体中是最常见的心脏病,且患病率逐年增长,发生心梗死后的心肌组织因缺血缺氧而导致心脏自主神经功能失衡,冠心病患者后期往往更易发生VT、VF等不良心血管事件。多项研究均显示心梗后较低的HRV与全因死亡[22]和心源性死亡[23] [24]的风险增加有关,以往的研究证明24小时动态心电图中SDNN < 70 m是急性心梗后死亡的有利预测指标和独立危险因素,且HRV能够预测心梗后患者的心室颤动和症状性持续性室性心动过速[25]。一项研究测试了基于10秒心电图所获取的超短期心率变异性(ultra-short heart rate variability, usHRV)的有效性,发现单个10秒心电记录也能产生有效的rMSSD和SDNN测量值,且与较长时间记录有中等到强的相关性[26],这意味着10秒心电图能提供更多有价值的预后信息,尤其是在门诊、重症监护室等环境下能更早期识别高危患者。一项研究表明,在ST段抬高型心肌梗死(ST-elevation Myocardial infarction, STEMI)后1个月和6个月以及1年和2年,入院心电图的usHRV减少与死亡率增加有关[27]。另一项有关非ST段抬高型心肌梗死(non-ST-elevation Myocardial infarction, USTEMI)预后的研究也表明,较低的usHRV与USTEMI患者2年后较高的全因死亡率有显著相关性,SDNN每增加1 ms,USTEMI患者2年死亡风险降低约4.4% [28]。运动心脏康复能恢复STEMI患者的HRV值,改善自主神经功能,减少心血管不良事件的发生[29],且中等强度连续运动的远期收益要优于高强度间歇运动[30]。一项单中心前瞻性队列研究[31]显示经皮冠状动脉介入(percutaneous coronary intervention, PCI)术后24小时和6个月后的HRV值较术前有明显增加,且HRV分析显示完全血运重建患者的恢复程度优于不完全血运重建,提示PCI可以改善冠心病患者的自主神经调节功能。

3.4. HRV与原发性高血压

高血压患者在临床上常常能够观察到存在交感神经的活性增强与副交感神经的活性降低,后续对高血压患者自主神经功能的研究表明,自主神经功能的障碍在高血压发病之前就已经出现[32] [33],且非杓型高血压患者的交感神经较杓型高血压患者更加活跃[34]。Alp等[35]研究发现非杓型高血压患者的LF/HF比值较杓型高血压患者更高,而HF及rMSSD则低于杓型高血压患者,提示自主神经昼夜节律和自主神经功能恶化可能是导致这一现象出现的原因。有效的降压治疗对高血压患者的自主神经功能的平衡和血流动力学的改善有一定帮助[36],但也有观点认为即便通过药物控制血压,与正常血压人群相比,高血压患者的HRV仍可能持续降低[37]。HRV在高血压发病预测上也具有一定参考价值,Kang等[38]通过一项对未罹患高血压人群的长期随访研究发现,HRV的降低与未来发生高血压的风险增加成反比关系,提示HRV可以在预测未来高血压的发病方面发挥作用,尤其在青中年人群中影响更大。现有观点认为心室重构与心脏自主神经功能独立相关[39] [40],提示在防止心室重构的高血压治疗方案中,具有调节自主神经功能的药物有着重要地位,对高血压患者HRV的监测,也有助于了解其自主神经功能变化,帮助早期预测及减少高血压患者的靶器官损害的发生。

4. 小结

综上所述,作为临床上常用且容易获得的心电图指标,心率变异性可以反映心脏自主神经的活性及调节功能,在心血管疾病的疾病进展、疗效评估、预后判断及并发症风险评估等多个方面均有重要作用,但由于HRV受年龄、药物、生活习惯、昼夜节律等多种因素影响,且随自主神经活性的平衡变化而变化, 现有研究尚不能确定某一个具体的标准用于疾病的诊断、危险分层及预后判断,usHRV、非线性心率变异性分析以及神经网络或机器学习的HRV分析方法展现出的潜力可能有助于帮助我们寻找某个或综合疾病评估标准。

NOTES

*通讯作者。

参考文献

[1] Tiwari, R., Kumar, R., Malik, S., Raj, T. and Kumar, P. (2021) Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Current Cardiology Reviews, 17, e160721189770.
https://doi.org/10.2174/1573403x16999201231203854
[2] Montano, N., Ruscone, T.G., Porta, A., Lombardi, F., Pagani, M. and Malliani, A. (1994) Power Spectrum Analysis of Heart Rate Variability to Assess the Changes in Sympathovagal Balance during Graded Orthostatic Tilt. Circulation, 90, 1826-1831.
https://doi.org/10.1161/01.cir.90.4.1826
[3] Berezin, A.E., Berezin, A.A. and Lichtenauer, M. (2021) Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. Disease Markers, 2021, Article ID: 6644631.
https://doi.org/10.1155/2021/6644631
[4] Ksela, J., Rupert, L., Djordjevic, A., Antonic, M., Avbelj, V. and Jug, B. (2022) Altered Heart Rate Turbulence and Variability Parameters Predict 1-Year Mortality in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Development and Disease, 9, Article 213.
https://doi.org/10.3390/jcdd9070213
[5] Patel, V.N., Pierce, B.R., Bodapati, R.K., Brown, D.L., Ives, D.G. and Stein, P.K. (2017) Association of Holter-Derived Heart Rate Variability Parameters with the Development of Congestive Heart Failure in the Cardiovascular Health Study. JACC: Heart Failure, 5, 423-431.
https://doi.org/10.1016/j.jchf.2016.12.015
[6] Ostrowska, B., Lind, L. and Blomström‐Lundqvist, C. (2024) An Association between Heart Rate Variability and Incident Heart Failure in an Elderly Cohort. Clinical Cardiology, 47, e24241.
https://doi.org/10.1002/clc.24241
[7] Haigney, M., Zareba, W., La Rovere, M.T., Grasso, I. and Mortara, D. (2014) Assessing the Interaction of Respiration and Heart Rate in Heart Failure and Controls Using Ambulatory Holter Recordings. Journal of Electrocardiology, 47, 831-835.
https://doi.org/10.1016/j.jelectrocard.2014.08.002
[8] Shanks, J., Abukar, Y., Lever, N.A., Pachen, M., LeGrice, I.J., Crossman, D.J., et al. (2022) Reverse Re-Modelling Chronic Heart Failure by Reinstating Heart Rate Variability. Basic Research in Cardiology, 117, Article No. 4.
https://doi.org/10.1007/s00395-022-00911-0
[9] Kornej, J., Börschel, C.S., Benjamin, E.J. and Schnabel, R.B. (2020) Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circulation Research, 127, 4-20.
https://doi.org/10.1161/circresaha.120.316340
[10] Jin, H., Ding, L., Li, B. and Zhang, J. (2024) Data Analysis of Heart Rate Variability and Arrhythmia in Patients with Paroxysmal Atrial Fibrillation. Discovery Medicine, 36, 1610-1615.
https://doi.org/10.24976/discov.med.202436187.147
[11] Wu, G., Zhang, Q., Zhang, J., Zhu, J., Zheng, D., Wang, Y., et al. (2024) Exploring the Impact of Electrocardiographic Parameters on the Risk of Common Arrhythmias: A Two-Sample Mendelian Randomization Study. Journal of Thoracic Disease, 16, 4553-4566.
https://doi.org/10.21037/jtd-24-814
[12] Geurts, S., Tilly, M.J., Arshi, B., Stricker, B.H.C., Kors, J.A., Deckers, J.W., et al. (2022) Heart Rate Variability and Atrial Fibrillation in the General Population: A Longitudinal and Mendelian Randomization Study. Clinical Research in Cardiology, 112, 747-758.
https://doi.org/10.1007/s00392-022-02072-5
[13] de Luna, A.B., Coumel, P. and Leclercq, J.F. (1989) Ambulatory Sudden Cardiac Death: Mechanisms of Production of Fatal Arrhythmia on the Basis of Data from 157 Cases. American Heart Journal, 117, 151-159.
https://doi.org/10.1016/0002-8703(89)90670-4
[14] Bilgin, S., Çolak, O.H., Polat, O. and Koklukaya, E. (2009) Estimation and Evaluation of Sub-Bands on LF and HF Base-Bands in HRV for Ventricular Tachyarrhythmia Patients. Expert Systems with Applications, 36, 10078-10084.
https://doi.org/10.1016/j.eswa.2009.01.014
[15] Reed, M.J., Robertson, C.E. and Addison, P.S. (2005) Heart Rate Variability Measurements and the Prediction of Ventricular Arrhythmias. QJM, 98, 87-95.
https://doi.org/10.1093/qjmed/hci018
[16] Thong, T. and Raitt, M.H. (2007) Predicting Imminent Episodes of Ventricular Tachyarrhythmia Using Heart Rate. Pacing and Clinical Electrophysiology, 30, 874-884.
https://doi.org/10.1111/j.1540-8159.2007.00775.x
[17] Zhang, Y., Wang, J. and Xu, Y. (2020) Value of Heart Rate Variability on Dynamic Electrocardiogram in Predicting Ventricular Fibrillation in Elderly Acute Myocardial Infarction Patients. Annals of Palliative Medicine, 9, 3488-3494.
https://doi.org/10.21037/apm-20-1362
[18] Lee, H., Shin, S., Seo, M., Nam, G. and Joo, S. (2016) Prediction of Ventricular Tachycardia One Hour before Occurrence Using Artificial Neural Networks. Scientific Reports, 6, Article No. 32390.
https://doi.org/10.1038/srep32390
[19] Panjaitan, F., Nurmaini, S. and Partan, R.U. (2023) Accurate Prediction of Sudden Cardiac Death Based on Heart Rate Variability Analysis Using Convolutional Neural Network. Medicina, 59, Article 1394.
https://doi.org/10.3390/medicina59081394
[20] Yan, S., Song, X., Wei, L., Gong, Y., Hu, H. and Li, Y. (2023) Performance of Heart Rate Adjusted Heart Rate Variability for Risk Stratification of Sudden Cardiac Death. BMC Cardiovascular Disorders, 23, Article No. 144.
https://doi.org/10.1186/s12872-023-03184-0
[21] Martinez-Alanis, M., Bojorges-Valdez, E., Wessel, N. and Lerma, C. (2020) Prediction of Sudden Cardiac Death Risk with a Support Vector Machine Based on Heart Rate Variability and Heartprint Indices. Sensors, 20, Article 5483.
https://doi.org/10.3390/s20195483
[22] Kleiger, R.E., Miller, J.P., Bigger, J.T. and Moss, A.J. (1987) Decreased Heart Rate Variability and Its Association with Increased Mortality after Acute Myocardial Infarction. The American Journal of Cardiology, 59, 256-262.
https://doi.org/10.1016/0002-9149(87)90795-8
[23] Rovere, M.T.L., Bigger, J.T., Marcus, F.I., Mortara, A. and Schwartz, P.J. (1998) Baroreflex Sensitivity and Heart-Rate Variability in Prediction of Total Cardiac Mortality after Myocardial Infarction. The Lancet, 351, 478-484.
https://doi.org/10.1016/s0140-6736(97)11144-8
[24] Chattipakorn, N., Incharoen, T., Kanlop, N. and Chattipakorn, S. (2007) Heart Rate Variability in Myocardial Infarction and Heart Failure. International Journal of Cardiology, 120, 289-296.
https://doi.org/10.1016/j.ijcard.2006.11.221
[25] Huikuri, H.V., Raatikainen, M.J.P., Moerch-Joergensen, R., Hartikainen, J., Virtanen, V., Boland, J., et al. (2008) Prediction of Fatal or Near-Fatal Cardiac Arrhythmia Events in Patients with Depressed Left Ventricular Function after an Acute Myocardial Infarction. European Heart Journal, 30, 689-698.
https://doi.org/10.1093/eurheartj/ehn537
[26] Munoz, M.L., van Roon, A., Riese, H., Thio, C., Oostenbroek, E., Westrik, I., et al. (2015) Validity of (Ultra-)Short Recordings for Heart Rate Variability Measurements. PLOS ONE, 10, e0138921.
https://doi.org/10.1371/journal.pone.0138921
[27] Karp, E., Shiyovich, A., Zahger, D., Gilutz, H., Grosbard, A. and Katz, A. (2009) Ultra-Short-Term Heart Rate Variability for Early Risk Stratification Following Acute ST-Elevation Myocardial Infarction. Cardiology, 114, 275-283.
https://doi.org/10.1159/000235568
[28] Reshef, M., Perek, S., Odeh, T., Hamati, K. and Raz-Pasteur, A. (2024) Prognostic Value of Ultra-Short Heart Rate Variability Measures Obtained from Electrocardiogram Recordings of Hospitalized Patients Diagnosed with Non-St-Elevation Myocardial Infarction. Journal of Clinical Medicine, 13, Article 7255.
https://doi.org/10.3390/jcm13237255
[29] Manresa-Rocamora, A., Ribeiro, F., Sarabia, J.M., Íbias, J., Oliveira, N.L., Vera-García, F.J., et al. (2020) Exercise-based Cardiac Rehabilitation and Parasympathetic Function in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis. Clinical Autonomic Research, 31, 187-203.
https://doi.org/10.1007/s10286-020-00687-0
[30] Eser, P., Jaeger, E., Marcin, T., Herzig, D., Trachsel, L.D. and Wilhelm, M. (2022) Acute and Chronic Effects of High-Intensity Interval and Moderate-Intensity Continuous Exercise on Heart Rate and Its Variability after Recent Myocardial Infarction: A Randomized Controlled Trial. Annals of Physical and Rehabilitation Medicine, 65, Article ID: 101444.
https://doi.org/10.1016/j.rehab.2020.09.008
[31] Abdelnabi, M., Zaki, M., Sadaka, M., et al. (2021) Effects of Coronary Revascularization by Elective Percutaneous Coronary Intervention on Cardiac Autonomic Modulation Assessed by Heart Rate Variability: A Single-Center Prospective Cohort Study. American Journal of Cardiovascular Disease, 11, 164-175.
[32] Simms, A.E., Paton, J.F.R., Pickering, A.E. and Allen, A.M. (2009) Amplified Respiratory-Sympathetic Coupling in the Spontaneously Hypertensive Rat: Does It Contribute to Hypertension? The Journal of Physiology, 587, 597-610.
https://doi.org/10.1113/jphysiol.2008.165902
[33] Tan, Z., Lu, Y., Whiteis, C.A., Simms, A.E., Paton, J.F.R., Chapleau, M.W., et al. (2010) Chemoreceptor Hypersensitivity, Sympathetic Excitation, and Overexpression of ASIC and TASK Channels before the Onset of Hypertension in Shr. Circulation Research, 106, 536-545.
https://doi.org/10.1161/circresaha.109.206946
[34] Passino, C., Magagna, A., Conforti, F., Buralli, S., Kozáková, M., Palombo, C., et al. (2003) Ventricular Repolarization Is Prolonged in Nondipper Hypertensive Patients: Role of Left Ventricular Hypertrophy and Autonomic Dysfunction. Journal of Hypertension, 21, 445-451.
https://doi.org/10.1097/00004872-200302000-00038
[35] Alp, Ç., Dogru, M.T. and Demir, V. (2021) Heart Rate Turbulence Measurements in Patients with Dipper and Non-Dipper Hypertension: The Effects of Autonomic Functions. Turkish Journal of Medical Sciences, 51, 3030-3037.
https://doi.org/10.3906/sag-2105-177
[36] Maciorowska, M., Krzesiński, P., Wierzbowski, R., Uziębło-Życzkowska, B. and Gielerak, G. (2022) Associations between Heart Rate Variability Parameters and Hemodynamic Profiles in Patients with Primary Arterial Hypertension, Including Antihypertensive Treatment Effects. Journal of Clinical Medicine, 11, Article 3767.
https://doi.org/10.3390/jcm11133767
[37] Philbois, S.V., Facioli, T.P., Gastaldi, A.C., Rodrigues, J.A.L., Tank, J., Fares, T.H., et al. (2021) Important Differences between Hypertensive Middle-Aged Women and Men in Cardiovascular Autonomic Control—A Critical Appraisal. Biology of Sex Differences, 12, Article No. 11.
https://doi.org/10.1186/s13293-020-00355-y
[38] Kang, J., Chang, Y., Kim, Y., Shin, H. and Ryu, S. (2022) Ten-Second Heart Rate Variability, Its Changes over Time, and the Development of Hypertension. Hypertension, 79, 1308-1318.
https://doi.org/10.1161/hypertensionaha.121.18589
[39] Tadic, M., Cuspidi, C., Pencic, B., Jozika, L. and Celic, V. (2015) Relationship between Right Ventricular Remodeling and Heart Rate Variability in Arterial Hypertension. Journal of Hypertension, 33, 1090-1097.
https://doi.org/10.1097/hjh.0000000000000511
[40] Tadic, M., Cuspidi, C., Pencic, B., Pavlovic, S.U., Ivanovic, B., Kocijancic, V., et al. (2014) Association between Left Ventricular Mechanics and Heart Rate Variability in Untreated Hypertensive Patients. The Journal of Clinical Hypertension, 17, 118-125.
https://doi.org/10.1111/jch.12459