[1]
|
Shoelson, S.E., Herrero, L. and Naaz, A. (2007) Obesity, Inflammation, and Insulin Resistance. Gastroenterology, 132, 2169-2180. https://doi.org/10.1053/j.gastro.2007.03.059
|
[2]
|
Sanches, C.P., Vianna, A.G.D. and de Carvalho Barreto, F. (2017) The Impact of Type 2 Diabetes on Bone Metabolism. Diabetology & Metabolic Syndrome, 9, Article No. 85. https://doi.org/10.1186/s13098-017-0278-1
|
[3]
|
Sundararaghavan, V., Mazur, M.M., Evans, B., Liu, J. and Ebraheim, N.A. (2017) Diabetes and Bone Health: Latest Evidence and Clinical Implications. Therapeutic Advances in Musculoskeletal Disease, 9, 67-74. https://doi.org/10.1177/1759720x16687480
|
[4]
|
Shahen, V.A., Gerbaix, M., Koeppenkastrop, S., Lim, S.F., McFarlane, K.E., Nguyen, A.N.L., et al. (2020) Multifactorial Effects of Hyperglycaemia, Hyperinsulinemia and Inflammation on Bone Remodelling in Type 2 Diabetes Mellitus. Cytokine & Growth Factor Reviews, 55, 109-118. https://doi.org/10.1016/j.cytogfr.2020.04.001
|
[5]
|
Ullah, A., Chen, Y., Singla, R.K., Cao, D. and Shen, B. (2024) Exploring Cytokines Dynamics: Uncovering Therapeutic Concepts for Metabolic Disorders in Postmenopausal Women-Diabetes, Metabolic Bone Diseases, and Non-Alcohol Fatty Liver Disease. Ageing Research Reviews, 101, Article 102505. https://doi.org/10.1016/j.arr.2024.102505
|
[6]
|
嵇星辰, 王明欣, 陈少华, 等. 中国绝经后2型糖尿病患者骨质疏松影响因素的Meta分析[J]. 中国全科医学, 2023, 26(4): 504-511.
|
[7]
|
Napoli, N., Chandran, M., Pierroz, D.D., Abrahamsen, B., Schwartz, A.V. and Ferrari, S.L. (2017) Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nature Reviews Endocrinology, 13, 208-219. https://doi.org/10.1038/nrendo.2016.153
|
[8]
|
Conte, C., Epstein, S. and Napoli, N. (2018) Insulin Resistance and Bone: A Biological Partnership. Acta Diabetologica, 55, 305-314. https://doi.org/10.1007/s00592-018-1101-7
|
[9]
|
Eller-Vainicher, C., Cairoli, E., Grassi, G., Grassi, F., Catalano, A., Merlotti, D., et al. (2020) Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. Journal of Diabetes Research, 2020, Article ID: 7608964. https://doi.org/10.1155/2020/7608964
|
[10]
|
De Paoli, M., Zakharia, A. and Werstuck, G.H. (2021) The Role of Estrogen in Insulin Resistance. The American Journal of Pathology, 191, 1490-1498. https://doi.org/10.1016/j.ajpath.2021.05.011
|
[11]
|
Okazaki, R. and Inoue, D. (2016) Mechanism for the Development of Bone Disease in Diabetes: Abnormal Glucose Metabolism. In: Inaba, M., Ed., Musculoskeletal Disease Associated with Diabetes Mellitus, Springer, 43-61. https://doi.org/10.1007/978-4-431-55720-3_4
|
[12]
|
杨蕾, 付勤. 2型糖尿病性骨质疏松骨质量改变研究[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(1): 100-108.
|
[13]
|
Hamada, Y., Fujii, H. and Fukagawa, M. (2009) Role of Oxidative Stress in Diabetic Bone Disorder. Bone, 45, S35-S38. https://doi.org/10.1016/j.bone.2009.02.004
|
[14]
|
Ono, T., Hayashi, M., Sasaki, F. and Nakashima, T. (2020) RANKL Biology: Bone Metabolism, the Immune System, and Beyond. Inflammation and Regeneration, 40, Article No. 2. https://doi.org/10.1186/s41232-019-0111-3
|
[15]
|
Di Cicco, G., Marzano, E., Mastrostefano, A., Pitocco, D., Castilho, R.S., Zambelli, R., et al. (2024) The Pathogenetic Role of RANK/RANKL/OPG Signaling in Osteoarthritis and Related Targeted Therapies. Biomedicines, 12, Article 2292. https://doi.org/10.3390/biomedicines12102292
|
[16]
|
Kim, J.H. and Kim, N. (2016) Signaling Pathways in Osteoclast Differentiation. Chonnam Medical Journal, 52, 12-17. https://doi.org/10.4068/cmj.2016.52.1.12
|
[17]
|
An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., et al. (2019) Activation of ROS/MAPKs/NF-κB/NLRP3 and Inhibition of Efferocytosis in Osteoclast‐Mediated Diabetic Osteoporosis. The FASEB Journal, 33, 12515-12527. https://doi.org/10.1096/fj.201802805rr
|
[18]
|
Chen, B., He, Q., Yang, J., Pan, Z., Xiao, J., Chen, W., et al. (2023) Metformin Suppresses Oxidative Stress Induced by High Glucose via Activation of the Nrf2/HO-1 Signaling Pathway in Type 2 Diabetic Osteoporosis. Life Sciences, 312, Article 121092. https://doi.org/10.1016/j.lfs.2022.121092
|
[19]
|
Hofbauer, L.C., Lacey, D.L., Dunstan, C.R., Spelsberg, T.C., Riggs, B.L. and Khosla, S. (1999) Interleukin-1β and Tumor Necrosis Factor-Α, but Not Interleukin-6, Stimulate Osteoprotegerin Ligand Gene Expression in Human Osteoblastic Cells. Bone, 25, 255-259. https://doi.org/10.1016/s8756-3282(99)00162-3
|
[20]
|
Taichman, R.S. and Hauschka, P.V. (1992) Effects of Interleukin-1β and Tumor Necrosis Factor-α on Osteoblastic Expression of Osteocalcin and Mineralized Extracellular Matrix in Vitro. Inflammation, 16, 587-601. https://doi.org/10.1007/bf00919342
|
[21]
|
Tanaka, Y., Nakayamada, S. and Okada, Y. (2005) Osteoblasts and Osteoclasts in Bone Remodeling and Inflammation. Current Drug Target-Inflammation & Allergy, 4, 325-328. https://doi.org/10.2174/1568010054022015
|
[22]
|
Lacey, D.C., Simmons, P.J., Graves, S.E. and Hamilton, J.A. (2009) Proinflammatory Cytokines Inhibit Osteogenic Differentiation from Stem Cells: Implications for Bone Repair during Inflammation. Osteoarthritis and Cartilage, 17, 735-742. https://doi.org/10.1016/j.joca.2008.11.011
|
[23]
|
Willett, T.L., Pasquale, J. and Grynpas, M.D. (2014) Collagen Modifications in Postmenopausal Osteoporosis: Advanced Glycation Endproducts May Affect Bone Volume, Structure and Quality. Current Osteoporosis Reports, 12, 329-337. https://doi.org/10.1007/s11914-014-0214-3
|
[24]
|
Hung, T., Broz, K.S., Walk, R., et al. (2025) The Sex-Specific Effects of RAGE Signaling and Type 2 Diabetes on Mouse Cortical Bone Mechanics, Structure, and Material Properties. BioRxiv, Cold Spring Harbor Laboratory. Preprint.
|
[25]
|
Wang, B. and Vashishth, D. (2023) Advanced Glycation and Glycoxidation End Products in Bone. Bone, 176, Article 116880. https://doi.org/10.1016/j.bone.2023.116880
|
[26]
|
Yamagishi, S. (2011) Role of Advanced Glycation End Products (AGEs) in Osteoporosis in Diabetes. Current Drug Targets, 12, 2096-2102. https://doi.org/10.2174/138945011798829456
|
[27]
|
Sinatora, R.V., Chagas, E.F.B., Mattera, F.O.P., Mellem, L.J., de Oliveira dos Santos, A.R., Pereira, L.P., et al. (2022) Relationship of Inflammatory Markers and Metabolic Syndrome in Postmenopausal Women. Metabolites, 12, Article 73. https://doi.org/10.3390/metabo12010073
|
[28]
|
Giandalia, A., Alibrandi, A., Giorgianni, L., Lo Piano, F., Consolo, F., Longo Elia, G., et al. (2021) Resistin Levels and Inflammatory and Endothelial Dysfunction Markers in Obese Postmenopausal Women with Type 2 Diabetes Mellitus. Diabetology & Metabolic Syndrome, 13, Article No. 98. https://doi.org/10.1186/s13098-021-00715-7
|
[29]
|
Lopes, D.P.S., Ribeiro, I.S., Santos, D.C., Lima, F.M.S., Santos, A.A., Souza, D.S.P., et al. (2021) Regular Physical Activity Reduces the Proinflammatory Response in Older Women with Diabetes and Hypertension in the Postmenopausal Phase. Experimental Gerontology, 152, Article 111449. https://doi.org/10.1016/j.exger.2021.111449
|
[30]
|
Huang, X., Li, S., Lu, W. and Xiong, L. (2022) Metformin Activates Wnt/β-Catenin for the Treatment of Diabetic Osteoporosis. BMC Endocrine Disorders, 22, Article No. 189. https://doi.org/10.1186/s12902-022-01103-6
|
[31]
|
Nie, X., Wei, X., Ma, H., Fan, L. and Chen, W. (2021) The Complex Role of Wnt Ligands in Type 2 Diabetes Mellitus and Related Complications. Journal of Cellular and Molecular Medicine, 25, 6479-6495. https://doi.org/10.1111/jcmm.16663
|
[32]
|
Shahi, M., Peymani, A. and Sahmani, M. (2017) Regulation of Bone Metabolism. Reports of Biochemistry and Molecular Biology, 5, 73-82.
|
[33]
|
Yamaguchi, T. and Sugimoto, T. (2011) Bone Metabolism and Fracture Risk in Type 2 Diabetes Mellitus [Review]. Endocrine Journal, 58, 613-624. https://doi.org/10.1507/endocrj.ej11-0063
|
[34]
|
de Amorim, F.P.L.G., Ornelas, S.S., Diniz, S.F., Batista, A.C. and da Silva, T.A. (2008) Imbalance of RANK, RANKL and OPG Expression during Tibial Fracture Repair in Diabetic Rats. Journal of Molecular Histology, 39, 401-408. https://doi.org/10.1007/s10735-008-9178-x
|
[35]
|
Picke, A., Campbell, G., Napoli, N., Hofbauer, L.C. and Rauner, M. (2019) Update on the Impact of Type 2 Diabetes Mellitus on Bone Metabolism and Material Properties. Endocrine Connections, 8, R55-R70. https://doi.org/10.1530/ec-18-0456
|
[36]
|
Palermo, A., D’Onofrio, L., Buzzetti, R., Manfrini, S. and Napoli, N. (2017) Pathophysiology of Bone Fragility in Patients with Diabetes. Calcified Tissue International, 100, 122-132. https://doi.org/10.1007/s00223-016-0226-3
|
[37]
|
Kanazawa, I. (2017) Interaction between Bone and Glucose Metabolism [Review]. Endocrine Journal, 64, 1043-1053. https://doi.org/10.1507/endocrj.ej17-0323
|
[38]
|
Lee, H.S. and Hwang, J.S. (2020) Impact of Type 2 Diabetes Mellitus and Antidiabetic Medications on Bone Metabolism. Current Diabetes Reports, 20, Article No. 78. https://doi.org/10.1007/s11892-020-01361-5
|
[39]
|
Chen, Y., Hu, Y., Yang, L., Zhou, J., Tang, Y., Zheng, L., et al. (2017) Runx2 Alleviates High Glucose‐Suppressed Osteogenic Differentiation via PI3K/AKT/GSK3β/β‐Catenin Pathway. Cell Biology International, 41, 822-832. https://doi.org/10.1002/cbin.10779
|
[40]
|
Lu, Y., Liu, S., Yang, P., Kou, Y., Li, C., Liu, H., et al. (2022) Exendin-4 and Eldecalcitol Synergistically Promote Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells through M2 Macrophages Polarization via PI3K/AKT Pathway. Stem Cell Research & Therapy, 13, Article No. 113. https://doi.org/10.1186/s13287-022-02800-8
|
[41]
|
Li, Y. and Wang, X. (2022) Chrysin Attenuates High Glucose-Induced BMSC Dysfunction via the Activation of the PI3K/AKT/Nrf2 Signaling Pathway. Drug Design, Development and Therapy, 16, 165-182. https://doi.org/10.2147/dddt.s335024
|
[42]
|
Rathinavelu, S., Guidry-Elizondo, C. and Banu, J. (2018) Molecular Modulation of Osteoblasts and Osteoclasts in Type 2 Diabetes. Journal of Diabetes Research, 2018, Article ID: 6354787. https://doi.org/10.1155/2018/6354787
|
[43]
|
Adulyaritthikul, P., Sanit, J., Nokkaew, N., et al. (2019) The Effect of Metformin and P38 MAPK Inhibitor on Diabetic Bone Porosity in Non-Obese Type 2 Diabetic Rats. Journal of Applied Pharmaceutical Science, 9, 82-90.
|
[44]
|
Liu, Y.D., Liu, J.F. and Liu, B. (2022) N-Dimethylformamide Inhibits High Glucose-Induced Osteoporosis via Attenuating MAPK and NF-κB Signalling. Bone & Joint Research, 11, 200-209. https://doi.org/10.1302/2046-3758.114.bjr-2020-0308.r2
|
[45]
|
Cipriani, C., Colangelo, L., Santori, R., Renella, M., Mastrantonio, M., Minisola, S., et al. (2020) The Interplay between Bone and Glucose Metabolism. Frontiers in Endocrinology, 11, Article 122. https://doi.org/10.3389/fendo.2020.00122
|
[46]
|
Vianna, A.G.D., Sanches, C.P. and Barreto, F.C. (2017) Review Article: Effects of Type 2 Diabetes Therapies on Bone Metabolism. Diabetology & Metabolic Syndrome, 9, Article No. 75. https://doi.org/10.1186/s13098-017-0274-5
|
[47]
|
Dong, J., Xu, X., Zhang, Q., Yuan, Z. and Tan, B. (2020) The PI3K/AKT Pathway Promotes Fracture Healing through Its Crosstalk with Wnt/β-Catenin. Experimental Cell Research, 394, Article 112137. https://doi.org/10.1016/j.yexcr.2020.112137
|
[48]
|
Miranda, C., Giner, M., Montoya, M.J., Vázquez, M.A., Miranda, M.J. and Pérez-Cano, R. (2016) Influence of High Glucose and Advanced Glycation End-Products (Ages) Levels in Human Osteoblast-Like Cells Gene Expression. BMC Musculoskeletal Disorders, 17, Article No. 377. https://doi.org/10.1186/s12891-016-1228-z
|
[49]
|
Zhou, L., Sun, S., Zhang, T., Yu, Y., Xu, L., Li, H., et al. (2020) ATP-Binding Cassette G1 Regulates Osteogenesis via Wnt/β-Catenin and AMPK Signaling Pathways. Molecular Biology Reports, 47, 7439-7449. https://doi.org/10.1007/s11033-020-05800-0
|
[50]
|
Lin, G.L. and Hankenson, K.D. (2011) Integration of BMP, Wnt, and Notch Signaling Pathways in Osteoblast Differentiation. Journal of Cellular Biochemistry, 112, 3491-3501. https://doi.org/10.1002/jcb.23287
|
[51]
|
Huang, D., He, Q., Pan, J., Zhai, Z., Sun, J., Wang, Q., et al. (2024) Systemic Immune-Inflammatory Index Predicts Fragility Fracture Risk in Postmenopausal Anemic Females with Type 2 Diabetes Mellitus: Evidence from a Longitudinal Cohort Study. BMC Endocrine Disorders, 24, Article No. 256. https://doi.org/10.1186/s12902-024-01792-1
|
[52]
|
Jiang, L., Song, X., Yan, L., Liu, Y., Qiao, X. and Zhang, W. (2025) Molecular Insights into the Interplay between Type 2 Diabetes Mellitus and Osteoporosis: Implications for Endocrine Health. Frontiers in Endocrinology, 15, Article 1483512. https://doi.org/10.3389/fendo.2024.1483512
|
[53]
|
Ali, D., Tencerova, M., Figeac, F., Kassem, M. and Jafari, A. (2022) The Pathophysiology of Osteoporosis in Obesity and Type 2 Diabetes in Aging Women and Men: The Mechanisms and Roles of Increased Bone Marrow Adiposity. Frontiers in Endocrinology, 13, Article 981487. https://doi.org/10.3389/fendo.2022.981487
|
[54]
|
Scarpa, E., Antonelli, A., Balercia, G., Sabatelli, S., Maggi, F., Caprioli, G., et al. (2024) Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules, 14, Article 836. https://doi.org/10.3390/biom14070836
|