炎症因子在绝经后T2DM骨代谢中的作用与分子机制的研究进展
Research Progress on the Role of Inflammatory Cytokines and Molecular Mechanisms in Bone Metabolism in Postmenopausal T2DM
DOI: 10.12677/jcpm.2025.42163, PDF, HTML, XML,    科研立项经费支持
作者: 张凯歌:大理大学临床医学院,云南 大理;云南省第三人民医院(大理大学第二附属医院),内分泌科,云南 昆明;李若楠*:云南省第三人民医院(大理大学第二附属医院),内分泌科,云南 昆明;陈家林:大理大学临床医学院,云南 大理
关键词: 炎症因子T2DM骨代谢绝经后女性分子机制精准治疗Inflammatory Cytokines T2DM Bone Metabolism Postmenopausal Women Molecular Mechanisms Precision Treatment
摘要: T2DM与骨代谢失衡之间的关系引起了广泛关注,尤其是在绝经后女性中,骨质疏松和骨折风险显著增加。多项研究已表明,炎症因子在T2DM患者骨代谢失衡中发挥着核心作用。炎症因子(如TNF-α、IL-1β、IL-6等)通过增强破骨细胞活性和抑制成骨细胞功能,导致骨吸收和骨生成失衡,加剧骨质丧失。此外,慢性低度炎症、胰岛素抵抗和高血糖状态共同作用,进一步扰乱骨代谢平衡。本文综述了炎症因子在T2DM骨代谢中的作用机制,重点分析了炎症因子通过Wnt/β-Catenin、RANK/RANKL/OPG、PI3K/Akt以及MAPK等信号通路在骨代谢调控中的作用。特别是在绝经后女性群体中,随着雌激素水平下降和脂肪代谢改变,炎症因子的作用显著增强,从而加剧骨代谢失衡。通过探讨这些分子机制,以期为临床个性化治疗提供理论依据,进而有效降低骨折风险,推动精准治疗策略的实施。
Abstract: The relationship between T2DM and bone metabolism imbalance has garnered considerable attention, particularly in postmenopausal women, in whom the risk of osteoporosis and fractures is significantly elevated. Numerous studies have shown that inflammatory cytokines play a pivotal role in the bone metabolic imbalance observed in T2DM patients. Inflammatory cytokines (such as TNF-α, IL-1β, IL-6, etc.) enhance osteoclast activity and inhibit osteoblast function, thereby leading to an imbalance between bone resorption and formation and accelerating bone loss. Furthermore, chronic low-grade inflammation, insulin resistance, and hyperglycemia collectively disrupt bone metabolism. This review summarizes the mechanisms through which inflammatory cytokines affect bone metabolism in T2DM, with a focus on their roles in bone metabolism regulation via signaling pathways such as Wnt/β-Catenin, RANK/RANKL/OPG, PI3K/Akt, and MAPK. Particularly in postmenopausal women, the decline in estrogen levels and changes in lipid metabolism significantly amplify the effects of inflammatory cytokines, thereby exacerbating the imbalance in bone metabolism. By exploring these molecular mechanisms, we aim to provide a theoretical foundation for clinical personalized treatments, thereby effectively reducing fracture risk and promoting the implementation of precision therapeutic strategies.
文章引用:张凯歌, 李若楠, 陈家林. 炎症因子在绝经后T2DM骨代谢中的作用与分子机制的研究进展[J]. 临床个性化医学, 2025, 4(2): 193-201. https://doi.org/10.12677/jcpm.2025.42163

1. 引言

2型糖尿病(Type 2 Diabetes Mellitus, T2DM)是一种与高血糖、胰岛素抵抗以及慢性低度炎症反应密切相关的代谢疾病[1]。研究表明,T2DM不仅影响血糖调节,还显著改变骨代谢,尤其是通过破骨细胞活性的增加和成骨细胞功能的抑制,导致骨质疏松和骨折风险增加[2] [3]。在T2DM患者中,骨代谢紊乱的机制主要与炎症因子的作用密切相关,尤其是肿瘤坏死因子α (TNF-α)、白介素-1 (IL-1)和白介素-6 (IL-6)等炎症因子,这些因子不仅促进骨吸收,还抑制骨生成,从而加剧骨代谢的紊乱[4]

绝经后女性随着年龄的增长和雌激素水平的急剧下降,骨代谢失衡逐渐加剧。尤其在T2DM的背景下,高血糖、胰岛素抵抗和慢性低度炎症等机制共同作用,导致血液中TNF-α、IL-1和IL-6等炎症因子水平增高。这些炎症因子通过激活破骨细胞(例如通过RANKL/RANK信号通路)来促进骨吸收,并抑制成骨细胞的增殖和分化,导致骨吸收和骨生成失衡,进一步加剧骨代谢紊乱,使绝经后T2DM这类人群的骨健康问题更加突出[4] [5]。一项针对中国绝经后T2DM患者的Meta分析显示,绝经后女性普遍面临骨质疏松的风险,研究指出,年龄、绝经年限、糖尿病病程和体质指数等因素是影响骨质疏松的主要风险因素[6]。骨质疏松和骨折的发生不仅显著降低生活质量,还增加了长期致残和致死的风险,严重危害健康。

本文旨在综述炎症因子在T2DM患者骨代谢中的作用及其分子机制,特别聚焦于绝经后T2DM女性群体的独特情况。通过深入分析炎症因子如何在骨吸收和骨生成的过程中起到调控作用,希望可以为临床绝经后T2DM患者的个性化治疗提供更加坚实的理论基础,促进精准治疗策略的发展,改善患者骨健康,为未来的临床研究和实践提供新的思路,帮助人们更好地应对骨代谢失衡带来的挑战。

2. T2DM如何影响骨代谢:机制与相互关系

T2DM不仅影响糖代谢,还显著干扰骨代谢。胰岛素抵抗、长期高血糖以及慢性低度炎症等多重机制交织作用,推动了骨质疏松的发生与发展。这些因素相互作用,破坏骨代谢平衡,加剧骨质流失[4] [7]

胰岛素抵抗是T2DM骨代谢紊乱的核心机制,既调节全身代谢,也直接影响骨代谢[8]。胰岛素抵抗通过升高骨吸收标志物和降低骨生成标志物,破坏骨代谢平衡[9]。这种平衡失调加剧了糖尿病患者的骨代谢紊乱,特别是在绝经后女性中,雌激素水平的下降进一步加剧了胰岛素抵抗对骨代谢的负面影响,显著提高骨折风险[10]。另外,长期处于高血糖状态下的患者,其骨质疏松的发生率显著高于正常血糖水平的群体。慢性高血糖通过促进糖化终产物(AGEs, Advanced Glycation End-products)积累,显著增加骨吸收并抑制骨生成[11]。有研究发现T2DM患者的皮质骨孔洞率显著高于非糖尿病对照组,且孔洞增多的程度与骨强度下降密切相关。特别是在皮质骨孔洞率增加超过50%的患者中,骨强度的下降更加明显,尤其在有骨折病史的患者中尤为突出。这表明,高血糖和糖尿病引起的代谢紊乱不仅显著改变骨的微结构,还加速了骨质疏松的进程[12]。此外,也通过引发氧化应激,抑制成骨细胞分化,并诱导成骨细胞的损伤与凋亡[13]。慢性低度炎症是T2DM骨代谢紊乱的另一个关键机制。T2DM患者普遍存在慢性低度炎症,炎症因子通过RANKL/RANK信号通路激活破骨细胞,促进骨吸收。这些炎症因子还抑制成骨细胞的增殖与分化,进一步抑制骨生成,从而加剧骨代谢失衡。持续升高的炎症介质会加剧骨质疏松和骨折风险[14]

T2DM通过胰岛素抵抗、长期高血糖和慢性低度炎症等多种机制引起骨代谢失衡,进而加剧骨质疏松的发生。特别是在绝经后女性群体中,由于雌激素水平的下降与糖尿病相关的代谢紊乱共同作用,骨代谢的失衡更加显著,骨折风险随之增加。因此,针对绝经后T2DM患者的骨健康管理需要综合考虑上述因素,并制定个性化治疗方案,特别是在血糖控制、骨代谢监测及炎症管理方面,以有效降低骨折风险并改善患者的骨健康。

3. 炎症因子在骨代谢中的作用

在T2DM的背景下,炎症因子在骨代谢调控中的作用日益受到关注。T2DM患者常伴随慢性低度炎症,促炎细胞因子(如TNF-α、IL-1、IL-6)在破骨细胞与成骨细胞的活性调节中起到双重作用。它们可通过促进破骨细胞活性、抑制成骨细胞分化、破坏胰岛素信号通路等机制,导致骨代谢紊乱,显著增加骨质疏松和骨折的风险。此外,炎症因子可通过AGEs-RAGE轴和胰岛素抵抗的相互作用,加剧骨代谢失衡。

3.1. 炎症因子与破骨细胞活化及骨吸收

破骨细胞的分化和活性主要受RANKL/RANK信号通路的调控,炎症因子在这一过程中起到了重要的促进作用[15]。促炎细胞因子可以通过上调RANKL的表达,激活RANK信号通路,促使破骨细胞前体细胞(OCPs)向成熟破骨细胞分化[16]。此外,在T2DM相关的炎症环境中,研究表明NF-κB、MAPK等信号通路的过度激活通过促进破骨细胞功能的改变,包括增强细胞活性和抑制细胞凋亡,从而加速骨吸收过程[17]。同时,高血糖环境通过增加氧化应激,进一步促进炎症因子的释放,使破骨细胞活性持续增强,导致骨吸收过度[18]。这些机制共同作用,导致T2DM患者骨密度下降、骨小梁结构受损,最终增加骨折的风险。

3.2. 炎症因子对成骨细胞的抑制作用

炎症因子通过多种机制抑制成骨细胞的功能,进而影响骨代谢。研究表明,TNF-α和IL-1β等炎症因子通过复杂的信号机制抑制成骨细胞的分化和骨基质的合成,从而加速骨质丧失[19]。这些炎症因子通过下调成骨细胞分泌关键骨基质成分如骨钙素和碱性磷酸酶(ALP)的水平,削弱了骨基质的生成和矿化过程[20]。此外,炎症因子还通过激活NF-κB和MAPK等重要信号通路,抑制成骨细胞分化过程中必需的转录因子Runx2和Osterix的表达,这些转录因子在骨形成过程中起着至关重要的作用[21] [22]。这些机制共同作用,导致成骨细胞的功能受损,进而扰乱骨的正常生成过程。

3.3. AGEs-RAGE轴与骨代谢失衡

炎症因子通过AGEs-RAGE轴的激活在糖尿病相关骨代谢失衡中发挥重要作用。AGEs是通过糖和蛋白质之间的非酶糖化反应形成的,在糖尿病患者中积累较快。这些AGEs通过与RAGE结合,激活包括MAPK和NF-κB在内的信号通路,诱导氧化应激和炎症反应[23]。这些变化不仅抑制了成骨细胞的增殖和分化,还增强了破骨细胞的活化,从而加剧了骨吸收[24]。在糖尿病患者中,AGEs对骨质量的影响尤为显著,尤其是通过改变骨胶原的结构,使骨骼更加脆弱[25]。研究表明,AGEs-RAGE信号通路的激活会影响骨骼细胞的功能,导致骨密度下降,骨脆性增加[26]

3.4. 绝经后T2DM女性患者中的炎症因子作用增强

绝经后T2DM女性患者中,炎症因子作用增强与雌激素水平下降和脂肪代谢异常密切相关。在绝经期,由于雌激素水平的急剧下降,体内脂肪的分布发生改变,特别是腹部脂肪的堆积。这种脂肪重新分布加剧了低度慢性炎症反应的发生[27]。内脏脂肪组织作为一个重要的内分泌器官,分泌大量的促炎细胞因子,如TNF-α、IL-6等,这些因子不仅通过促进胰岛素抵抗而加剧糖尿病的病程,还可能通过破坏骨代谢,促进骨质疏松[28]。腹部脂肪的积累增强了免疫系统的活性,刺激了促炎细胞因子的分泌,进而导致全身性炎症反应的增加[29]。因此,炎症因子水平升高在绝经后T2DM女性患者中不仅影响糖尿病的发展,还可能加重骨质疏松的风险。

4. 信号通路在骨代谢中的作用

在T2DM患者中,骨代谢紊乱与多条信号通路的异常激活密切相关。慢性高血糖和低度慢性炎症通过干扰关键的信号通路,如Wnt/β-Catenin、RANK/RANKL/OPG、PI3K/Akt、MAPK等,调节成骨细胞与破骨细胞的功能,破坏骨重建的平衡。此外,AGEs-RAGE、AMPK和BMP等通路的异常也在T2DM骨代谢紊乱中发挥重要作用。这些信号通路的异常调控和相互作用显著加剧了T2DM患者的骨脆性,进而增加了骨折风险。

4.1. Wnt/β-Catenin信号通路

Wnt/β-Catenin信号通路在骨代谢中的作用深远且复杂,尤其在骨生成与骨重塑过程中发挥着核心作用。该通路通过Wnt配体与Frizzled受体和低密度脂蛋白受体相关蛋白(LRP5/6)结合,激活β-Catenin的稳定性,进而促进其进入细胞核与T-cell因子(TCF)结合,驱动成骨基因的表达,如Runx2和Osterix,增强成骨细胞的分化和骨基质的矿化[30]。此外,Wnt/β-Catenin信号不仅促进骨生成,还通过抑制脂肪生成来增强骨矿化[31]。然而,T2DM患者的高血糖和AGEs的积累会破坏这一信号通路,导致骨代谢紊乱。AGEs通过增强骨吸收和抑制成骨作用,促使骨脆性增加,尤其是通过下调Wnt配体(如Wnt3a、Wnt10b)的表达[32]。研究表明,糖尿病患者的Wnt信号通路失调使其骨密度正常甚至增高,却伴随着骨质量的降低,骨折的风险的增加[33]。此外,糖尿病中的胰岛素抵抗、炎症因子等也通过改变Wnt信号路径,进一步促进骨代谢紊乱[30] [31] [33]

4.2. RANK/RANKL/OPG信号通路

RANK/RANKL/OPG信号通路在骨代谢中发挥着重要作用,主要通过调控骨吸收与骨形成之间的平衡。RANKL由成骨细胞及其他骨相关细胞分泌,并与其受体RANK结合,激活破骨前体细胞的分化及成熟,从而促进破骨细胞的形成,增加骨吸收过程。而OPG作为RANKL的天然拮抗因子,通过结合RANKL,阻止其与RANK的结合,从而抑制破骨细胞的活性,维持骨代谢的平衡[34]。这一信号通路不仅在维持正常骨代谢中具有关键作用,还参与骨折愈合等骨修复过程。T2DM患者常常伴随RANK/RANKL/OPG信号通路的失调,表现为骨吸收过度、骨密度下降及骨折风险增加[35]。AGEs及促炎因子的增加可通过促进RANKL的表达及抑制OPG的合成,导致RANKL/OPG比值的升高,进而加重骨吸收[36]。此外,脂肪因子如脂联素和瘦素也通过调节RANKL的表达,进一步影响骨代谢,增强骨脆性[37]

4.3. PI3K/Akt信号通路

PI3K/Akt信号通路也在骨代谢中发挥着重要作用,调节骨生成、骨吸收和骨重塑等关键生物学过程。该信号通路通过激活Akt,进而调控下游多种效应分子,包括GSK3β,从而促进成骨细胞的分化与骨基质的矿化[38]。同时,PI3K/Akt信号通路通过抑制GSK3β,增强骨生成相关基因(如Runx2)的表达,进一步促进骨生成过程[39]。此外,PI3K/Akt通路还通过调节Wnt/β-连环蛋白通路,增强骨矿化和骨生成[40]。在骨髓间充质干细胞(MSCs)中,PI3K/Akt信号通路对其增殖、分化和迁移起到重要作用,尤其在高糖环境中,PI3K/Akt通路通过抗氧化应激机制保护MSCs,促进其骨生成潜力[41]。然而,在T2DM中,高血糖状态下PI3K/Akt信号通路的活性受损,导致骨代谢异常,即使骨密度正常或增高,骨折风险依然增高[9]

4.4. MAPK信号通路

在T2DM患者的骨代谢中,MAPK信号通路可以通过下调骨生成因子的表达,抑制成骨细胞的分化与矿化,从而抑制骨生成[42]。与此同时,MAPK信号通路在破骨细胞中的激活增强了破骨细胞的分化和功能,促进了骨吸收的增加,这加剧了骨质疏松的发生[43]。此外,高血糖、氧化应激和炎症因子通过持续激活MAPK信号通路,进一步加剧了骨代谢异常[44]。MAPK信号通路的异常激活还通过增加骨髓脂肪生成,改变骨髓微环境,进一步影响了骨的微结构和质量[45]

4.5. T2DM骨代谢中的其他信号通路

在T2DM中,还有多个信号通路通过调控骨代谢,影响骨的形成与重建。AGEs-RAGE信号通路通过高血糖引起的AGEs积累,激活AGE受体(RAGE),从而损害骨基质和胶原蛋白的交联,降低骨质量[33]。AMPK信号通路作为能量感应器,其激活可促进骨母细胞分化,增强骨形成标志物(如RUNX2)的表达,改善骨代谢。然而,T2DM患者中由于高血糖,AMPK活性受抑制,导致骨形成受限[36]。BMP信号通路,特别是BMP-2和BMP-7,参与骨生成,但高血糖和AGEs积累可抑制BMP的功能,进而减少骨形成[46]

4.6. T2DM骨代谢中信号通路的相互作用

在T2DM患者中,骨代谢的紊乱与多条信号通路的相互作用密切相关。Wnt/β-Catenin信号通路的激活不仅促进骨生成,还能够通过上调OPG的表达抑制RANKL-RANK信号通路,从而减少骨吸收[2]。此外,PI3K/Akt通路通过调节β-Catenin的稳定性,增强Wnt信号通路的活性,进而促进成骨细胞的增殖和分化[47]。AGEs的积累与长期高血糖密切相关,通过与RAGE受体结合,改变成骨细胞的基因表达,进而影响Wnt/β-Catenin信号通路的活性。这一机制不仅加剧了骨代谢的紊乱,还抑制了骨生成并促进了骨吸收[48]。同时,AMPK激活通过与Wnt/β-Catenin信号通路的相互作用,增强了其活性,促进了成骨细胞的分化与骨生成[49]。这一作用与PI3K/Akt通路的作用相辅相成,共同调节骨代谢的平衡。除此之外,BMP信号通路通过激活Smad家族蛋白,促进成骨细胞分化,并与Wnt/β-Catenin信号通路相互作用,共同维持骨的动态平衡[50]。这些信号通路之间的相互作用揭示了T2DM患者骨代谢紊乱的多重机制,也为骨质疏松的靶向治疗提供了潜在的研究方向。

5. 临床研究现状与挑战

近年来的研究表明,绝经后T2DM (T2DM)患者更易发生骨质疏松,原因不仅在于雌激素水平的下降,还与骨微结构的改变、骨重建过程的失衡以及慢性低度炎症密切相关。这些因素共同作用,严重影响骨代谢的正常进行。其中慢性低度炎症是T2DM的常见特征,通常伴随促炎细胞因子的上升。这些炎症因子在糖尿病的代谢紊乱中发挥关键作用,同时也直接影响骨骼健康。研究发现,慢性炎症引发的免疫反应通过改变骨细胞的功能,促进骨吸收并抑制骨生成,进而加剧骨质疏松的发生。此外,T2DM患者常伴随脂肪组织的异常分布,特别是骨髓内脂肪组织的扩展。脂肪细胞分泌的促炎因子通过与骨髓和骨组织的相互作用,进一步破坏骨代谢平衡,促进骨丧失[51]-[53]

尽管炎症因子在骨代谢失衡中的作用已得到广泛证实,但目前临床研究仍面临若干挑战。一方面,炎症因子在不同个体中的表达差异使得其在骨代谢中的具体作用尚未完全明了。另一方面,炎症因子与骨代谢之间的复杂调控机制仍需要深入探究。现有的抗炎治疗,如抗TNF-α疗法,虽然在一些研究中显示出改善T2DM患者骨代谢的潜力,但相关临床研究结果存在不一致,且其长期疗效和安全性仍未完全得到明确[52]。IL-17A抑制剂等新型免疫调节疗法也正成为研究的热点,但在骨质疏松治疗中的具体效果还未充分评估[53]。此外,植物来源的抗炎化合物(如多酚类化合物)也逐渐成为关注的焦点,它们通过抗氧化、抗炎及促成骨作用,为T2DM患者的骨质疏松提供了潜在的辅助治疗选择[54]。随着研究的深入,这些新兴治疗手段可能成为临床治疗的新突破口。

6. 结论

炎症因子在T2DM患者骨代谢失衡中的作用至关重要,主要通过调节破骨细胞和成骨细胞的功能,打破骨吸收与骨生成的平衡,从而加剧骨代谢紊乱,显著提高骨折风险。尽管已有研究揭示了炎症因子对骨代谢的影响,但在慢性高血糖的环境下,它们如何具体影响骨代谢的机制仍未完全明确。炎症因子通过AGEs-RAGE、Wnt/β-Catenin、PI3K/Akt等信号通路影响骨细胞功能,这为临床治疗提供了新的靶点,并可能成为未来研究的重要方向。未来的研究应更加聚焦于不同炎症信号通路对骨代谢的影响,尤其是在绝经后T2DM患者群体中,深入揭示这些因子与代谢紊乱、胰岛素抵抗以及慢性低度炎症状态的交互作用,从而推动骨代谢失衡的发生。随着新型抗炎疗法的不断进步,临床应系统性地评估这些疗法在治疗骨代谢失衡中的疗效与安全性,特别是在高血糖引发的骨质疏松中,如何将抗炎治疗与骨生成促进策略有效结合,将成为未来研究的重点。个性化治疗将是未来的核心,通过精准评估患者的炎症因子水平、骨密度、糖代谢状态以及相关信号通路的激活模式,制定个性化的干预策略,既能显著改善骨代谢,降低骨折风险,又能大幅提升患者的生活质量。这些研究方向不仅为T2DM患者的骨健康提供了全新的治疗视角,也为骨质疏松的靶向治疗开辟了新的领域,推动精准医学在骨代谢领域的广泛应用。

基金项目

云南省教育厅科学研究基金项目(2024Y930);云南省科技计划项目(202001BA070001-213)。

NOTES

*通讯作者。

参考文献

[1] Shoelson, S.E., Herrero, L. and Naaz, A. (2007) Obesity, Inflammation, and Insulin Resistance. Gastroenterology, 132, 2169-2180.
https://doi.org/10.1053/j.gastro.2007.03.059
[2] Sanches, C.P., Vianna, A.G.D. and de Carvalho Barreto, F. (2017) The Impact of Type 2 Diabetes on Bone Metabolism. Diabetology & Metabolic Syndrome, 9, Article No. 85.
https://doi.org/10.1186/s13098-017-0278-1
[3] Sundararaghavan, V., Mazur, M.M., Evans, B., Liu, J. and Ebraheim, N.A. (2017) Diabetes and Bone Health: Latest Evidence and Clinical Implications. Therapeutic Advances in Musculoskeletal Disease, 9, 67-74.
https://doi.org/10.1177/1759720x16687480
[4] Shahen, V.A., Gerbaix, M., Koeppenkastrop, S., Lim, S.F., McFarlane, K.E., Nguyen, A.N.L., et al. (2020) Multifactorial Effects of Hyperglycaemia, Hyperinsulinemia and Inflammation on Bone Remodelling in Type 2 Diabetes Mellitus. Cytokine & Growth Factor Reviews, 55, 109-118.
https://doi.org/10.1016/j.cytogfr.2020.04.001
[5] Ullah, A., Chen, Y., Singla, R.K., Cao, D. and Shen, B. (2024) Exploring Cytokines Dynamics: Uncovering Therapeutic Concepts for Metabolic Disorders in Postmenopausal Women-Diabetes, Metabolic Bone Diseases, and Non-Alcohol Fatty Liver Disease. Ageing Research Reviews, 101, Article 102505.
https://doi.org/10.1016/j.arr.2024.102505
[6] 嵇星辰, 王明欣, 陈少华, 等. 中国绝经后2型糖尿病患者骨质疏松影响因素的Meta分析[J]. 中国全科医学, 2023, 26(4): 504-511.
[7] Napoli, N., Chandran, M., Pierroz, D.D., Abrahamsen, B., Schwartz, A.V. and Ferrari, S.L. (2017) Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nature Reviews Endocrinology, 13, 208-219.
https://doi.org/10.1038/nrendo.2016.153
[8] Conte, C., Epstein, S. and Napoli, N. (2018) Insulin Resistance and Bone: A Biological Partnership. Acta Diabetologica, 55, 305-314.
https://doi.org/10.1007/s00592-018-1101-7
[9] Eller-Vainicher, C., Cairoli, E., Grassi, G., Grassi, F., Catalano, A., Merlotti, D., et al. (2020) Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. Journal of Diabetes Research, 2020, Article ID: 7608964.
https://doi.org/10.1155/2020/7608964
[10] De Paoli, M., Zakharia, A. and Werstuck, G.H. (2021) The Role of Estrogen in Insulin Resistance. The American Journal of Pathology, 191, 1490-1498.
https://doi.org/10.1016/j.ajpath.2021.05.011
[11] Okazaki, R. and Inoue, D. (2016) Mechanism for the Development of Bone Disease in Diabetes: Abnormal Glucose Metabolism. In: Inaba, M., Ed., Musculoskeletal Disease Associated with Diabetes Mellitus, Springer, 43-61.
https://doi.org/10.1007/978-4-431-55720-3_4
[12] 杨蕾, 付勤. 2型糖尿病性骨质疏松骨质量改变研究[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(1): 100-108.
[13] Hamada, Y., Fujii, H. and Fukagawa, M. (2009) Role of Oxidative Stress in Diabetic Bone Disorder. Bone, 45, S35-S38.
https://doi.org/10.1016/j.bone.2009.02.004
[14] Ono, T., Hayashi, M., Sasaki, F. and Nakashima, T. (2020) RANKL Biology: Bone Metabolism, the Immune System, and Beyond. Inflammation and Regeneration, 40, Article No. 2.
https://doi.org/10.1186/s41232-019-0111-3
[15] Di Cicco, G., Marzano, E., Mastrostefano, A., Pitocco, D., Castilho, R.S., Zambelli, R., et al. (2024) The Pathogenetic Role of RANK/RANKL/OPG Signaling in Osteoarthritis and Related Targeted Therapies. Biomedicines, 12, Article 2292.
https://doi.org/10.3390/biomedicines12102292
[16] Kim, J.H. and Kim, N. (2016) Signaling Pathways in Osteoclast Differentiation. Chonnam Medical Journal, 52, 12-17.
https://doi.org/10.4068/cmj.2016.52.1.12
[17] An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., et al. (2019) Activation of ROS/MAPKs/NF-κB/NLRP3 and Inhibition of Efferocytosis in Osteoclast‐Mediated Diabetic Osteoporosis. The FASEB Journal, 33, 12515-12527.
https://doi.org/10.1096/fj.201802805rr
[18] Chen, B., He, Q., Yang, J., Pan, Z., Xiao, J., Chen, W., et al. (2023) Metformin Suppresses Oxidative Stress Induced by High Glucose via Activation of the Nrf2/HO-1 Signaling Pathway in Type 2 Diabetic Osteoporosis. Life Sciences, 312, Article 121092.
https://doi.org/10.1016/j.lfs.2022.121092
[19] Hofbauer, L.C., Lacey, D.L., Dunstan, C.R., Spelsberg, T.C., Riggs, B.L. and Khosla, S. (1999) Interleukin-1β and Tumor Necrosis Factor-Α, but Not Interleukin-6, Stimulate Osteoprotegerin Ligand Gene Expression in Human Osteoblastic Cells. Bone, 25, 255-259.
https://doi.org/10.1016/s8756-3282(99)00162-3
[20] Taichman, R.S. and Hauschka, P.V. (1992) Effects of Interleukin-1β and Tumor Necrosis Factor-α on Osteoblastic Expression of Osteocalcin and Mineralized Extracellular Matrix in Vitro. Inflammation, 16, 587-601.
https://doi.org/10.1007/bf00919342
[21] Tanaka, Y., Nakayamada, S. and Okada, Y. (2005) Osteoblasts and Osteoclasts in Bone Remodeling and Inflammation. Current Drug Target-Inflammation & Allergy, 4, 325-328.
https://doi.org/10.2174/1568010054022015
[22] Lacey, D.C., Simmons, P.J., Graves, S.E. and Hamilton, J.A. (2009) Proinflammatory Cytokines Inhibit Osteogenic Differentiation from Stem Cells: Implications for Bone Repair during Inflammation. Osteoarthritis and Cartilage, 17, 735-742.
https://doi.org/10.1016/j.joca.2008.11.011
[23] Willett, T.L., Pasquale, J. and Grynpas, M.D. (2014) Collagen Modifications in Postmenopausal Osteoporosis: Advanced Glycation Endproducts May Affect Bone Volume, Structure and Quality. Current Osteoporosis Reports, 12, 329-337.
https://doi.org/10.1007/s11914-014-0214-3
[24] Hung, T., Broz, K.S., Walk, R., et al. (2025) The Sex-Specific Effects of RAGE Signaling and Type 2 Diabetes on Mouse Cortical Bone Mechanics, Structure, and Material Properties. BioRxiv, Cold Spring Harbor Laboratory. Preprint.
[25] Wang, B. and Vashishth, D. (2023) Advanced Glycation and Glycoxidation End Products in Bone. Bone, 176, Article 116880.
https://doi.org/10.1016/j.bone.2023.116880
[26] Yamagishi, S. (2011) Role of Advanced Glycation End Products (AGEs) in Osteoporosis in Diabetes. Current Drug Targets, 12, 2096-2102.
https://doi.org/10.2174/138945011798829456
[27] Sinatora, R.V., Chagas, E.F.B., Mattera, F.O.P., Mellem, L.J., de Oliveira dos Santos, A.R., Pereira, L.P., et al. (2022) Relationship of Inflammatory Markers and Metabolic Syndrome in Postmenopausal Women. Metabolites, 12, Article 73.
https://doi.org/10.3390/metabo12010073
[28] Giandalia, A., Alibrandi, A., Giorgianni, L., Lo Piano, F., Consolo, F., Longo Elia, G., et al. (2021) Resistin Levels and Inflammatory and Endothelial Dysfunction Markers in Obese Postmenopausal Women with Type 2 Diabetes Mellitus. Diabetology & Metabolic Syndrome, 13, Article No. 98.
https://doi.org/10.1186/s13098-021-00715-7
[29] Lopes, D.P.S., Ribeiro, I.S., Santos, D.C., Lima, F.M.S., Santos, A.A., Souza, D.S.P., et al. (2021) Regular Physical Activity Reduces the Proinflammatory Response in Older Women with Diabetes and Hypertension in the Postmenopausal Phase. Experimental Gerontology, 152, Article 111449.
https://doi.org/10.1016/j.exger.2021.111449
[30] Huang, X., Li, S., Lu, W. and Xiong, L. (2022) Metformin Activates Wnt/β-Catenin for the Treatment of Diabetic Osteoporosis. BMC Endocrine Disorders, 22, Article No. 189.
https://doi.org/10.1186/s12902-022-01103-6
[31] Nie, X., Wei, X., Ma, H., Fan, L. and Chen, W. (2021) The Complex Role of Wnt Ligands in Type 2 Diabetes Mellitus and Related Complications. Journal of Cellular and Molecular Medicine, 25, 6479-6495.
https://doi.org/10.1111/jcmm.16663
[32] Shahi, M., Peymani, A. and Sahmani, M. (2017) Regulation of Bone Metabolism. Reports of Biochemistry and Molecular Biology, 5, 73-82.
[33] Yamaguchi, T. and Sugimoto, T. (2011) Bone Metabolism and Fracture Risk in Type 2 Diabetes Mellitus [Review]. Endocrine Journal, 58, 613-624.
https://doi.org/10.1507/endocrj.ej11-0063
[34] de Amorim, F.P.L.G., Ornelas, S.S., Diniz, S.F., Batista, A.C. and da Silva, T.A. (2008) Imbalance of RANK, RANKL and OPG Expression during Tibial Fracture Repair in Diabetic Rats. Journal of Molecular Histology, 39, 401-408.
https://doi.org/10.1007/s10735-008-9178-x
[35] Picke, A., Campbell, G., Napoli, N., Hofbauer, L.C. and Rauner, M. (2019) Update on the Impact of Type 2 Diabetes Mellitus on Bone Metabolism and Material Properties. Endocrine Connections, 8, R55-R70.
https://doi.org/10.1530/ec-18-0456
[36] Palermo, A., D’Onofrio, L., Buzzetti, R., Manfrini, S. and Napoli, N. (2017) Pathophysiology of Bone Fragility in Patients with Diabetes. Calcified Tissue International, 100, 122-132.
https://doi.org/10.1007/s00223-016-0226-3
[37] Kanazawa, I. (2017) Interaction between Bone and Glucose Metabolism [Review]. Endocrine Journal, 64, 1043-1053.
https://doi.org/10.1507/endocrj.ej17-0323
[38] Lee, H.S. and Hwang, J.S. (2020) Impact of Type 2 Diabetes Mellitus and Antidiabetic Medications on Bone Metabolism. Current Diabetes Reports, 20, Article No. 78.
https://doi.org/10.1007/s11892-020-01361-5
[39] Chen, Y., Hu, Y., Yang, L., Zhou, J., Tang, Y., Zheng, L., et al. (2017) Runx2 Alleviates High Glucose‐Suppressed Osteogenic Differentiation via PI3K/AKT/GSK3β/β‐Catenin Pathway. Cell Biology International, 41, 822-832.
https://doi.org/10.1002/cbin.10779
[40] Lu, Y., Liu, S., Yang, P., Kou, Y., Li, C., Liu, H., et al. (2022) Exendin-4 and Eldecalcitol Synergistically Promote Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells through M2 Macrophages Polarization via PI3K/AKT Pathway. Stem Cell Research & Therapy, 13, Article No. 113.
https://doi.org/10.1186/s13287-022-02800-8
[41] Li, Y. and Wang, X. (2022) Chrysin Attenuates High Glucose-Induced BMSC Dysfunction via the Activation of the PI3K/AKT/Nrf2 Signaling Pathway. Drug Design, Development and Therapy, 16, 165-182.
https://doi.org/10.2147/dddt.s335024
[42] Rathinavelu, S., Guidry-Elizondo, C. and Banu, J. (2018) Molecular Modulation of Osteoblasts and Osteoclasts in Type 2 Diabetes. Journal of Diabetes Research, 2018, Article ID: 6354787.
https://doi.org/10.1155/2018/6354787
[43] Adulyaritthikul, P., Sanit, J., Nokkaew, N., et al. (2019) The Effect of Metformin and P38 MAPK Inhibitor on Diabetic Bone Porosity in Non-Obese Type 2 Diabetic Rats. Journal of Applied Pharmaceutical Science, 9, 82-90.
[44] Liu, Y.D., Liu, J.F. and Liu, B. (2022) N-Dimethylformamide Inhibits High Glucose-Induced Osteoporosis via Attenuating MAPK and NF-κB Signalling. Bone & Joint Research, 11, 200-209.
https://doi.org/10.1302/2046-3758.114.bjr-2020-0308.r2
[45] Cipriani, C., Colangelo, L., Santori, R., Renella, M., Mastrantonio, M., Minisola, S., et al. (2020) The Interplay between Bone and Glucose Metabolism. Frontiers in Endocrinology, 11, Article 122.
https://doi.org/10.3389/fendo.2020.00122
[46] Vianna, A.G.D., Sanches, C.P. and Barreto, F.C. (2017) Review Article: Effects of Type 2 Diabetes Therapies on Bone Metabolism. Diabetology & Metabolic Syndrome, 9, Article No. 75.
https://doi.org/10.1186/s13098-017-0274-5
[47] Dong, J., Xu, X., Zhang, Q., Yuan, Z. and Tan, B. (2020) The PI3K/AKT Pathway Promotes Fracture Healing through Its Crosstalk with Wnt/β-Catenin. Experimental Cell Research, 394, Article 112137.
https://doi.org/10.1016/j.yexcr.2020.112137
[48] Miranda, C., Giner, M., Montoya, M.J., Vázquez, M.A., Miranda, M.J. and Pérez-Cano, R. (2016) Influence of High Glucose and Advanced Glycation End-Products (Ages) Levels in Human Osteoblast-Like Cells Gene Expression. BMC Musculoskeletal Disorders, 17, Article No. 377.
https://doi.org/10.1186/s12891-016-1228-z
[49] Zhou, L., Sun, S., Zhang, T., Yu, Y., Xu, L., Li, H., et al. (2020) ATP-Binding Cassette G1 Regulates Osteogenesis via Wnt/β-Catenin and AMPK Signaling Pathways. Molecular Biology Reports, 47, 7439-7449.
https://doi.org/10.1007/s11033-020-05800-0
[50] Lin, G.L. and Hankenson, K.D. (2011) Integration of BMP, Wnt, and Notch Signaling Pathways in Osteoblast Differentiation. Journal of Cellular Biochemistry, 112, 3491-3501.
https://doi.org/10.1002/jcb.23287
[51] Huang, D., He, Q., Pan, J., Zhai, Z., Sun, J., Wang, Q., et al. (2024) Systemic Immune-Inflammatory Index Predicts Fragility Fracture Risk in Postmenopausal Anemic Females with Type 2 Diabetes Mellitus: Evidence from a Longitudinal Cohort Study. BMC Endocrine Disorders, 24, Article No. 256.
https://doi.org/10.1186/s12902-024-01792-1
[52] Jiang, L., Song, X., Yan, L., Liu, Y., Qiao, X. and Zhang, W. (2025) Molecular Insights into the Interplay between Type 2 Diabetes Mellitus and Osteoporosis: Implications for Endocrine Health. Frontiers in Endocrinology, 15, Article 1483512.
https://doi.org/10.3389/fendo.2024.1483512
[53] Ali, D., Tencerova, M., Figeac, F., Kassem, M. and Jafari, A. (2022) The Pathophysiology of Osteoporosis in Obesity and Type 2 Diabetes in Aging Women and Men: The Mechanisms and Roles of Increased Bone Marrow Adiposity. Frontiers in Endocrinology, 13, Article 981487.
https://doi.org/10.3389/fendo.2022.981487
[54] Scarpa, E., Antonelli, A., Balercia, G., Sabatelli, S., Maggi, F., Caprioli, G., et al. (2024) Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules, 14, Article 836.
https://doi.org/10.3390/biom14070836