CRISPR-Cas系统在医学诊断中的研究进展
Research Progress of CRISPR-Cas System in Medical Diagnosis
DOI: 10.12677/jcpm.2025.42169, PDF, HTML, XML,   
作者: 郑 霞, 薛建江*:重庆医科大学附属大学城医院检验科,重庆
关键词: CRISPR-Cas系统Cas蛋白医学诊断CRISPR-Cas System Cas Protein Medical Diagnosis
摘要: 簇状规则间隔短回文重复序列(CRISPR)和CRISPR相关蛋白(Cas)系统对核酸具有特异的识别、顺式切割和非特异性的反式切割能力,已经成为分子诊断领域的关键工具。凭借其卓越的特异性和灵敏度,CRISPR-Cas系统结合生物传感技术,能够高效检测核酸、蛋白质、小分子等多种靶标,近年来在医学诊断领域展现巨大潜力。本文首先对CRISPR-Cas系统的组成及分类进行介绍,然后简述了CRISPR/Cas系统在核酸和非核酸靶标医学诊断领域的应用,最后讨论了CRISPR/Cas系统当前的挑战及未来的发展前景。
Abstract: The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems, characterized by their specific nucleic acid recognition, cis-cleavage, and nonspecific trans-cleavage activities, have emerged as pivotal tools in molecular diagnostics. With high specificity and sensitivity, CRISPR-Cas systems integrated with biosensing technologies enable efficient detection of diverse targets, including nucleic acids, proteins, and small molecules, demonstrating significant potential in medical diagnostics in recent years. In this review, we first introduce the components and classification of CRISPR-Cas systems. Then, we briefly describe the application of the CRISPR-Cas system in the medical diagnosis of nucleic acid and non-nucleic acid targets. Finally, we discuss the current challenges and future prospects for CRISPR-Cas systems.
文章引用:郑霞, 薛建江. CRISPR-Cas系统在医学诊断中的研究进展[J]. 临床个性化医学, 2025, 4(2): 231-239. https://doi.org/10.12677/jcpm.2025.42169

1. 引言

通过对生物样本中DNA、RNA和蛋白质等生物标志物的检测在医学诊断中起着至关重要的作用,可以为疾病的预防、早期诊断、治疗提供关键信息[1] [2]。目前已开发了多种检测生物标志物的方法,包括聚合酶链反应(polymerase chain reaction, PCR)、RNA印迹法(Northern blotting)、下一代测序技术、流式细胞仪和酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA) [3]等,虽然在特异性和灵敏度上表现出色,但其检测耗时长、成本高、依赖专业设备和专业人员等不足,限制了其在临床中的即时检测(point-of-care testing, POCT)的广泛应用[3] [4]。因此,开发亟需一种新的便捷、快速、低成本且高效的一种分子诊断技术。

CRISPR-Cas系统最初是从细菌和古菌中发现的一种适应性免疫机制,依靠CRISPR RNA (crRNA)对靶区域的引导以及Cas蛋白酶的核酸切割能力来抵御外源基因(如噬菌体)入侵[5]-[7]。成簇规律间隔短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR)/CRISPR相关蛋白(CRISPR-associated protein, Cas)系统一般由Cas蛋白和CRISPRRNA (crRNA)组成,其中CRISPR序列包含重复序列和间隔序列,间隔序列与目标序列配对,形成核糖核蛋白(ribonucleoprotein, RNP)复合体,Cas蛋白识别和切割外源核酸。近年来,基于CRISPR/Cas系统的特异性识别和高效切割能力,将其与电化学、电化学发光、荧光等生物传感技术相结合,已经成功实现了核酸和蛋白质、金属离子等多种非核酸靶标的高特异、高灵敏检测[8] [9]。与传统技术相比,CRISPR-Cas系统不仅表现出了更加出色的高灵敏度和高特异度,而且具有反应条件温和、操作简单、无需复杂的设备、成本低的特点,尤其适用于快速的即时检测(point-of-care testing, POCT) [10] [11],在病原体检测、遗传疾病诊断和癌症标志物检测等医学诊断领域展现出广阔的应用前景[12]。本文介绍了不同类型的CRISPR-Cas系统,重点介绍了近年来基于CRISPR-Cas系统在核酸和非核酸靶标检测上的研究及应用,并讨论了其目前面临的挑战和未来的发展方向,以期为该技术的推广应用提供参考。

2. 基于CRISPR-Cas系统的检测原理和方法

根据其进化关系,CRISPR系统被分为两大类六个亚型,I类不太常用,II类是目前研究最多、应用最广泛的系统[13]。I类CRISPR/Cas系统由多个Cas蛋白组成的效应模块,I、III和IV型属于经典的一类CRISPR-Cas系统;II类CRISPR/Cas系统是由RNA介导的单一多结构域的Cas蛋白系统,主要包括Cas9 (II型)、Cas13 (VI型)、Cas12 (V型)和Cas14 (V型) [14]。Cas蛋白被激活后具有顺式切割与反式切割两种能力。顺式切割是指Cas蛋白特异性识别并切割目标核酸序列的过程,通常依赖于目标序列与引导RNA的互补配对,以及某些Cas蛋白所需的原间隔邻近基序(protospacer-adjacent motif, PAM)。反式切割是指Cas蛋白在激活后,非特异性地无差别切割任意单链DNA或RNA的过程。在诊断应用领域,常常通过设计一系列反应使靶标去激活Cas蛋白,从而反向切割荧光猝灭报告探针,最后释放荧光信号与靶标的浓度产生联系[15]。本文重点介绍CRISPR/Cas9、CRISPR/Cas12、CRISPR/Cas13和CRISPR/Cas14系统。

2.1. CRISPR-Cas系统分类和检测原理

2.1.1. CRISPR-Cas9系统

Cas9是II型CRISPR系统的核心蛋白,是第一个用于基因编辑的CRISPR/Cas系统,Cas9蛋白包含识别结构域和两个酶切割结构域(HNH和RuvC) [16]。Cas9核酸酶在反式激活CRISPR RNA (tracrRNA)和CRISPR RNA (crRNA)的帮助下切割靶 DNA。Cas9蛋白酶切割活性是由sgRNA调控的,通过与sgRNA结合,Cas9能够特异性识别并切割目标双链DNA (double-stranded DNA, dsDNA),其切割活性依赖于PAM序列[17] [18]。此外,失活形式的死亡Cas9 (dead Cas9, dCas9)保留了结合能力但失去切割活性[19],可用于开发多种生物传感器。Cas9系统的优势在于其对dsDNA的精准切割能力,使其在基因检测和基因编辑领域得到广泛应用,尤其适合检测基因型等应用场景。

2.1.2. CRISPR-Cas12系统

Cas12是V型CRISPR系统的效应蛋白,具有独特的反式切割活性。不同于Cas9,Cas12a (也称为Cpf1)和Cas12b (也称为C2c1)蛋白通常更小[20],Cas12仅包含识别双链DNA (dsDNA)或单链DNA (ssDNA)的RuvC结构域[20] [21],Cas12a的各种亚型也拓宽了其使用前景[21]。在crRNA (CRISPR RNA)引导下,Cas12靶向PAM附近的DNA序列进行识别,并在特定位置切割目标链,同时激活其对非特异性单链DNA的无差别切割能力[20]-[22]。这种反式切割特性使其可通过荧光报告分子输出检测信号,极大地简化了检测流程。在低浓度核酸诊断和现场快速检测等医学诊断中非常重要[22]

2.1.3. CRISPR-Cas13系统

Cas13是VI型CRISPR系统的代表蛋白,是一种RNA引导的RNA靶向蛋白,即Cas13对单链RNA表现出特异性,能够特异性识别并切割RNA靶标[23]。与Cas9和Cas12不同,Cas13不依赖PAM序列,大多数报道的Cas13家族的变体依赖原间隔子侧翼序列(protospacer flanking sequence, PFS),且切割目标RNA链的同时具有非特异性反式切割单链RNA (single-stranded RNA, ssRNA)的能力[24] [25]。这种特性使其在低浓度RNA检测和多路检测中表现出色。Cas13系统的优势在于其对RNA的高效切割能力和灵活的应用设计,为基础研究与临床应用提供了强大的工具与平台[26] [27],比如乙型肝炎病毒、埃博拉病毒和甲型流感病毒等检测[28]-[30]

2.1.4. CRISPR-Cas14系统

作为一种紧凑型V型核酸酶,Cas14与Cas12类似,Cas14既能特异性识别和切割双链DNA,也能特异性识别并切割单链DNA (ssDNA),也具有高效切割ssDNA报告分子的反式切割活性[31] [32],但对靶标分子的识别并不受限于双链DNA靶点的特定序列(即原间隔区邻近基序,PAM) [31]-[33],使其在核酸适配子传感器的研发中更具潜力。因此,Cas14的优势在于对ssDNA的高特异性和高灵敏性,尤其适用于单核苷酸多态性(SNP)检测[34] [35]。Zhao等[36]使用CRISPR/Cas14a系统、G-四链体DNA酶和基于微流体的分析设备的组合开发了一种级联比色检测,可以检测低至5拷贝/μL的ASFV (African swine fever virus,非洲猪瘟病毒),并以2-nt的差异区分野生型和突变型ASFV DNA。上述几种CRISPR/Cas系统的主要特征见表1

Table 1. Main features of class II CRISPR/Cas systems

1. II类CRISPR/Cas系统的主要特征

Cas9

Cas12

Cas13

Cas14

靶标类型

dsDNA

dsDNA/ssDNA

ssRNA

dsDNA/ssDNA

向导RNA

sgRNA

crRNA/sgRNA

crRNA

sgRNA

PAM

5'-NGG-3'

5'-TTTN-3'

PFS序列A/U/C-3'

顺式切割

反式切割

ssDNA

ssRNA

ssDNA

3. 医学诊断中的CRISPR-Cas系统

由于特异性识别、顺式切割和非特异性反式切割能力,CRISPR/Cas系统已经实现了核酸靶标(DNA和RNA)和非核酸靶标(例如蛋白质、外泌体、细胞和小分子)的检测[37]。下面重点介绍了CRISPR/Cas系统在检测核酸和非核酸靶标方面的各种类型的应用。

3.1. 用于核酸靶标检测的CRISPR-Cas系统

CRISPR系统不仅能够特异性识别并结合目标核酸序列,Cas12、Cas13和Cas14等还具有反式切割活性,可以切割周围的单链核酸(ssDNA或ssRNA)报告分子从而产生并放大可检测的信号(如荧光信号),使得CRISPR技术在核酸检测中表现出极高的灵敏度和特异性。传统的核酸诊断技术与CRISPR/Cas相结合,可用于实验室检测以及现场快速诊断(POCT)等医学诊断[33]。例如在耐药基因检测中,Lai等[33]人研发了超快速PCR与CRISPR/Cas14结合的Cas14VIDet (Cas14-based Visual Instant Detection)的平台,10 min内完成检测幽门螺杆菌左氧氟沙星耐药基因(GyrA),灵敏度接近单个细菌集落的水平(100 CFU/mL)。此外,在病毒基因检测中,Cas12a-DETECTR (DNA endonuclease targeted CRISPR trans reporter,DNA核酸内切酶靶向CRISPR反式报告基因)系统结合重组酶聚合酶扩增(RPA)被用于检测HPV16、HPV18 [38]以及ASFV (African swine fever virus,非洲猪瘟病毒) [39],检测限达aM水平;在此基础上结合了逆转录(RT)检测H1N1和SARS-CoV-2的病毒核酸[40],检测限为1~2.5拷贝/μL,均可在不到1小时的时间完成检测。Cai等人[41]研究了一种基于液滴配对–合并的数字RPA-CRISPR/Cas12a (DIMERIC)检测方法,通过微流控芯片实现RPA和CRISPR/Cas12a反应的空间分离和时间优化,能够在20分钟内完成临床血清样本中乙型肝炎病毒DNA的定量检测。

此外,近年来已经提出了许多基于CRISPR的生物传感器用于RNA诊断的检测方法。MicroRNA (miRNA)和信使RNA (mRNA)因其异常表达与癌症[42]、神经系统和心血管疾病密切相关而受到广泛关注[43]。Zhang等人[44]提出了一种基于一锅法Cas13a的超灵敏微流控检测系统,用于包括miR-21、miR-141、miR-196a和miR-1246等microRNA的多重检测,实现对乳腺癌与肺癌的临床分析。Pei等人[45]设计了一种称为哑铃探针(DP)桥接Cas13a/NDCR的新方法,在靶标miRNA存在的情况下,激活的Cas13a裂解了哑铃探针(DP),导致被暴露的中间链与电极表面的亚甲基蓝标记发夹探针(MB-HP)杂交,MB-HP从电极表面分离,从而引发电化学信号的变化。通过使用机器学习(ML)分析来自四种结直肠癌相关miRNA (miRNA-17、miRNA-21、miRNA-182和miRNA-223)的电化学信号。

3.2. 用于非核酸靶标检测的CRISPR-Cas系统

基于CRISPR的诊断方法已被广泛用于检测多种分析物,包括蛋白质、抗生素、金属离子等非核酸靶标的检测[37] [46]。在许多情况下,CRISPR系统充当报告器或放大器,而不能直接识别感知非核酸靶标。因此,在非核酸靶标检测中,往往需要设计ssDNA或RNA分子探针,作为适配体与靶蛋白相互作用[47] [48],进行生物转导。例如,Yue等人[49]研发了CRISPR/Cas14a结合DNA walker的纳米生物传感器,借助核酸适体与蛋白的高亲和力,打开发夹,从而引发后面的信号扩增反应,实现对HPV16 E7蛋白的超灵敏检测,最低检测限为67.17 fg/mL。Jia等人[50]提出了一种简单、经济、便携的基于CRISPR技术的生物传感平台,通过设计AFP与AFP适配体结合后释放被适配体封闭的激活剂,从而促进下游酶促反应来实现血清样本中肿瘤标志物甲胎蛋白(AFP)的定量检测,最低检测限为10 ng/mL。此外,依赖金属离子的DNAzyme [51]-[53]、与ELISA [54]结合的各种夹心策略等也被设计参与CRISPR生物传感器的识别环节,用于检测金属离子[51] [52]、碱性磷酸酶[53]、尿趋化因子配体9 (CXCL9) [54]抗原、抗体的免疫测定也承担了生物转导功能。由于生物转导和Cas相关处理的复杂性和耗时,基于CRISPR的生物传感的非核酸靶标检测仍存在挑战,需要在分析设计和优化中进一步探索和完善。CRISPR/Cas系统在检测核酸和非核酸靶标方面的最新进展见表2

Table 2. Overview of recent CRISPR-based biosensors in medical diagnosis

2. 医学诊断中基于CRISPR的最新生物传感器的概览

医学诊断

靶标

Cas蛋白

检测限

读出检测器

参考文献

幽门螺杆菌

DNA

Cas14

1 CFU/mL

荧光分光光度计

[33]

早期癌症筛查

miRNA-21

Cas13a

4.34 aM

荧光分光光度计

[44]

早期癌症筛查

miRNA-21

Cas13a

8.26 fM

电化学工作站

[45]

人乳头瘤病毒

E7蛋白

Cas14a

67.17 fg/mL

电化学工作站

[49]

早期癌症筛查

miRNA-21

Cas12a

3.43 aM

电化学工作站

[55]

人乳头瘤病毒

DNA

Cas12a

200 aM

肉眼观察

[56]

结核分枝杆菌

DNA

Cas12a

2.42 aM

场效应晶体管

[57]

病原菌

DNA

dCas9a

1 CFU/mL

拉曼光谱仪

[58]

急性心肌梗死

ATP

Cas12a

20 nM

荧光分光光度计

[59]

人腺病毒

DNA

Cas13a

2.5拷贝/μL

肉眼观察

[60]

肺炎克雷伯菌

DNA

Cas12a

10 CFU/μL

肉眼观察

[61]

金黄色葡萄球菌

DNA

Cas12a

5 CFU/mL

荧光分光光度计

[62]

人乳头瘤病毒

DNA

Cas12a

1 aM

肉眼观察

[63]

汞中毒

汞离子

Cas12a

0.44 nM

荧光分光光度计

[64]

4. 结论与展望

综上所述,CRISPR系统是医学诊断中重要的工具之一,在DNA、RNA、蛋白质、金属离子等核酸靶标与非核酸靶标检测中被广泛应用,在肿瘤早筛、病毒检测、细菌检测等医学诊断中快速发展。CRISPR系统克服了传统技术的缺点,提供了一种高度灵敏、经济高效且快速简便分子诊断方法,在临床即时检测展现出巨大潜力。

尽管CRISPR技术在生物标志物检测领域具有巨大的应用潜力,但它的广泛应用仍面临一些挑战,包括PAM序列识别的限制、对预扩增的依赖以及实现多重检测的困难。为应对这些问题,研究人员已经采取了多种策略:首先,例如分裂式CRISPR-Cas12a、crRNA的延长等工程化设计与研究使得开发不受PAM序列限制的Cas核酸酶成为可能。其次,CRISPR技术在试管平台、微流体系统和纸质平台上的进一步研究有望简化分析流程,实现无需预扩增的快速即时检测。此外,通过将CRISPR-Cas系统与微流控技术、横向流动技术、信号逻辑门、多重crRNA设计等技术结合,有望实现单次检测中的多重指标检测。因此,尽管存在挑战,CRISPR技术仍有望在即时检和多重检测等方面取得突破,从而迅速推动其在医学诊断领域的普及和发展。

NOTES

*通讯作者。

参考文献

[1] Richardet, E., Villavicencio, R., Hernandez, P.A., Acosta, L., Molina, M., Dicalbo, L., et al. (2016) P1.09: Delays in the Diagnosis and Treatment of Lung Cancer. Journal of Thoracic Oncology, 11, S185.
https://doi.org/10.1016/j.jtho.2016.08.031
[2] Nimse, S.B., Sonawane, M.D., Song, K. and Kim, T. (2016) Biomarker Detection Technologies and Future Directions. The Analyst, 141, 740-755.
https://doi.org/10.1039/c5an01790d
[3] Nikanjam, M., Kato, S. and Kurzrock, R. (2022) Liquid Biopsy: Current Technology and Clinical Applications. Journal of Hematology & Oncology, 15, Article No. 131.
https://doi.org/10.1186/s13045-022-01351-y
[4] Ignatiadis, M., Sledge, G.W. and Jeffrey, S.S. (2021) Liquid Biopsy Enters the Clinic—Implementation Issues and Future Challenges. Nature Reviews Clinical Oncology, 18, 297-312.
https://doi.org/10.1038/s41571-020-00457-x
[5] Wang, J.Y., Pausch, P. and Doudna, J.A. (2022) Structural Biology of CRISPR-Cas Immunity and Genome Editing Enzymes. Nature Reviews Microbiology, 20, 641-656.
https://doi.org/10.1038/s41579-022-00739-4
[6] Wang, Y., Huang, C. and Zhao, W. (2022) Recent Advances of the Biological and Biomedical Applications of CRISPR/Cas Systems. Molecular Biology Reports, 49, 7087-7100.
https://doi.org/10.1007/s11033-022-07519-6
[7] Bhatia, S., Pooja and Yadav, S.K. (2023) CRISPR-Cas for Genome Editing: Classification, Mechanism, Designing and Applications. International Journal of Biological Macromolecules, 238, Article ID: 124054.
https://doi.org/10.1016/j.ijbiomac.2023.124054
[8] Weng, Z., You, Z., Yang, J., Mohammad, N., Lin, M., Wei, Q., et al. (2023) CRISPR‐Cas Biochemistry and CRISPR‐Based Molecular Diagnostics. Angewandte Chemie International Edition, 62, e202214987.
https://doi.org/10.1002/anie.202214987
[9] Zavvar, T.S., Khoshbin, Z., Ramezani, M., Alibolandi, M., Abnous, K. and Taghdisi, S.M. (2022) CRISPR/Cas-Engineered Technology: Innovative Approach for Biosensor Development. Biosensors and Bioelectronics, 214, Article ID: 114501.
https://doi.org/10.1016/j.bios.2022.114501
[10] Ghouneimy, A., Mahas, A., Marsic, T., Aman, R. and Mahfouz, M. (2022) CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications. ACS Synthetic Biology, 12, 1-16.
https://doi.org/10.1021/acssynbio.2c00496
[11] Zhou, L., Peng, R., Zhang, R. and Li, J. (2018) The Applications of CRISPR/Cas System in Molecular Detection. Journal of Cellular and Molecular Medicine, 22, 5807-5815.
https://doi.org/10.1111/jcmm.13925
[12] Tang, Y., Gao, L., Feng, W., Guo, C., Yang, Q., Li, F., et al. (2021) The CRISPR-Cas Toolbox for Analytical and Diagnostic Assay Development. Chemical Society Reviews, 50, 11844-11869.
https://doi.org/10.1039/d1cs00098e
[13] Kaminski, M.M., Abudayyeh, O.O., Gootenberg, J.S., Zhang, F. and Collins, J.J. (2021) CRISPR-Based Diagnostics. Nature Biomedical Engineering, 5, 643-656.
https://doi.org/10.1038/s41551-021-00760-7
[14] Hryhorowicz, M., Lipiński, D. and Zeyland, J. (2023) Evolution of CRISPR/Cas Systems for Precise Genome Editing. International Journal of Molecular Sciences, 24, Article No. 14233.
https://doi.org/10.3390/ijms241814233
[15] Rossetti, M., Merlo, R., Bagheri, N., Moscone, D., Valenti, A., Saha, A., et al. (2022) Enhancement of CRISPR/Cas12a trans-Cleavage Activity Using Hairpin DNA Reporters. Nucleic Acids Research, 50, 8377-8391.
https://doi.org/10.1093/nar/gkac578
[16] Jiang, F. and Doudna, J.A. (2017) CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505-529.
https://doi.org/10.1146/annurev-biophys-062215-010822
[17] Wu, W.Y., Lebbink, J.H.G., Kanaar, R., Geijsen, N. and van der Oost, J. (2018) Genome Editing by Natural and Engineered CRISPR-Associated Nucleases. Nature Chemical Biology, 14, 642-651.
https://doi.org/10.1038/s41589-018-0080-x
[18] Kivrak, E., Pauzaite, T., Copeland, N., Hardy, J., Kara, P., Firlak, M., et al. (2021) Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors, 11, Article No. 17.
https://doi.org/10.3390/bios11010017
[19] Wang, C., Qu, Y., Cheng, J.K.W., Hughes, N.W., Zhang, Q., Wang, M., et al. (2022) dCas9-Based Gene Editing for Cleavage-Free Genomic Knock-In of Long Sequences. Nature Cell Biology, 24, 268-278.
https://doi.org/10.1038/s41556-021-00836-1
[20] Nguyen, G.T., Dhingra, Y. and Sashital, D.G. (2022) Miniature CRISPR-Cas12 Endonucleases-Programmed DNA Targeting in a Smaller Package. Current Opinion in Structural Biology, 77, Article ID: 102466.
https://doi.org/10.1016/j.sbi.2022.102466
[21] Yamano, T., Zetsche, B., Ishitani, R., Zhang, F., Nishimasu, H. and Nureki, O. (2017) Structural Basis for the Canonical and Non-Canonical PAM Recognition by CRISPR-Cpf1. Molecular Cell, 67, 633-645.e3.
https://doi.org/10.1016/j.molcel.2017.06.035
[22] Yang, Y., Wang, D., Lü, P., Ma, S. and Chen, K. (2023) Research Progress on Nucleic Acid Detection and Genome Editing of CRISPR/Cas12 System. Molecular Biology Reports, 50, 3723-3738.
https://doi.org/10.1007/s11033-023-08240-8
[23] Leung, R.K., Cheng, Q., Wu, Z., Khan, G., Liu, Y., Xia, H., et al. (2022) CRISPR-Cas12-Based Nucleic Acids Detection Systems. Methods, 203, 276-281.
https://doi.org/10.1016/j.ymeth.2021.02.018
[24] Wu, H., Chen, X., Zhang, M., Wang, X., Chen, Y., Qian, C., et al. (2021) Versatile Detection with CRISPR/Cas System from Applications to Challenges. TrAC Trends in Analytical Chemistry, 135, Article ID: 116150.
https://doi.org/10.1016/j.trac.2020.116150
[25] Gleditzsch, D., Pausch, P., Müller-Esparza, H., Özcan, A., Guo, X., Bange, G., et al. (2018) PAM Identification by CRISPR-Cas Effector Complexes: Diversified Mechanisms and Structures. RNA Biology, 16, 504-517.
https://doi.org/10.1080/15476286.2018.1504546
[26] Liu, L. and Pei, D. (2022) Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. International Journal of Molecular Sciences, 23, Article ID: 11400.
https://doi.org/10.3390/ijms231911400
[27] Deng, X., Osikpa, E., Yang, J., Oladeji, S.J., Smith, J., Gao, X., et al. (2023) Structural Basis for the Activation of a Compact CRISPR-Cas13 Nuclease. Nature Communications, 14, Article No. 5845.
https://doi.org/10.1038/s41467-023-41501-5
[28] Ding, R., Shen, Y., Yuan, M., Zheng, X., Chen, S. and Duan, G. (2022) Rapid and Facile Detection of HBV with CRISPR/Cas13a. New Journal of Chemistry, 46, 19997-20004.
https://doi.org/10.1039/d2nj02674k
[29] Barnes, K.G., Lachenauer, A.E., Nitido, A., Siddiqui, S., Gross, R., Beitzel, B., et al. (2020) Deployable CRISPR-Cas13a Diagnostic Tools to Detect and Report Ebola and Lassa Virus Cases in Real-Time. Nature Communications, 11, Article No. 4131.
https://doi.org/10.1038/s41467-020-17994-9
[30] Zhou, H., Bu, S., Xu, Y., Xue, L., Li, Z., Hao, Z., et al. (2022) CRISPR/Cas13a Combined with Hybridization Chain Reaction for Visual Detection of Influenza a (H1N1) Virus. Analytical and Bioanalytical Chemistry, 414, 8437-8445.
https://doi.org/10.1007/s00216-022-04380-1
[31] Wu, P., Ye, X., Wang, D., Gong, F., Wei, X., Xiang, S., et al. (2022) A Novel CRISPR/Cas14a System Integrated with 2D Porphyrin Metal-Organic Framework for Microcystin-Lr Determination through a Homogeneous Competitive Reaction. Journal of Hazardous Materials, 424, Article ID: 127690.
https://doi.org/10.1016/j.jhazmat.2021.127690
[32] Karvelis, T., Bigelyte, G., Young, J.K., Hou, Z., Zedaveinyte, R., Budre, K., et al. (2020) PAM Recognition by Miniature CRISPR-Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Research, 48, 5016-5023.
https://doi.org/10.1093/nar/gkaa208
[33] Lai, Y., Guo, K., Zhu, C., Lv, Y., Wu, H., Zhang, L., et al. (2025) Cas14videt: A Visual Instant Method Free from PAM Restriction for Antibiotic Resistance Bacteria Detection. Biosensors and Bioelectronics, 268, Article ID: 116884.
https://doi.org/10.1016/j.bios.2024.116884
[34] Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., et al. (2018) Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science, 362, 839-842.
https://doi.org/10.1126/science.aav4294
[35] He, Y., Shao, S. and Chen, J. (2023) High-Fidelity Identification of Single Nucleotide Polymorphism by Type V CRISPR Systems. ACS Sensors, 8, 4478-4483.
https://doi.org/10.1021/acssensors.3c02158
[36] Zhao, X., He, Y., Shao, S., Ci, Q., Chen, L., Lu, X., et al. (2024) CRISPR/Cas14 and G-Quadruplex Dnazyme-Driven Biosensor for Paper-Based Colorimetric Detection of African Swine Fever Virus. ACS Sensors, 9, 2413-2420.
https://doi.org/10.1021/acssensors.4c00090
[37] Su, W., Li, J., Ji, C., Chen, C., Wang, Y., Dai, H., et al. (2023) CRISPR/Cas Systems for the Detection of Nucleic Acid and Non-Nucleic Acid Targets. Nano Research, 16, 9940-9953.
https://doi.org/10.1007/s12274-023-5567-4
[38] Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded Dnase Activity. Science, 360, 436-439.
https://doi.org/10.1126/science.aar6245
[39] Wang, X., He, S., Zhao, N., Liu, X., Cao, Y., Zhang, G., et al. (2020) Development and Clinical Application of a Novel CRISPR-Cas12a Based Assay for the Detection of African Swine Fever Virus. BMC Microbiology, 20, Article No. 282.
https://doi.org/10.1186/s12866-020-01966-6
[40] Sun, Y., Yu, L., Liu, C., Ye, S., Chen, W., Li, D., et al. (2021) One-Tube SARS-CoV-2 Detection Platform Based on RT-RPA and CRISPR/Cas12a. Journal of Translational Medicine, 19, Article No. 74.
https://doi.org/10.1186/s12967-021-02741-5
[41] Cai, D., Wang, Y., Zhang, Z., Huang, E., Yang, N., Yang, X., et al. (2025) Droplet Pairing-Merging Enabled Digital RPA-CRISPR/Cas12a (DIMERIC) Assay for Rapid and Precise Quantification of Hepatitis B Virus DNA. Biosensors and Bioelectronics, 276, Article ID: 117256.
https://doi.org/10.1016/j.bios.2025.117256
[42] Hu, J., Sheng, Y., Kwak, K.J., Shi, J., Yu, B. and Lee, L.J. (2017) A Signal-Amplifiable Biochip Quantifies Extracellular Vesicle-Associated RNAs for Early Cancer Detection. Nature Communications, 8, Article No. 1683.
https://doi.org/10.1038/s41467-017-01942-1
[43] Vanlandewijck, M., He, L., Mäe, M.A., Andrae, J., Ando, K., Del Gaudio, F., et al. (2018) A Molecular Atlas of Cell Types and Zonation in the Brain Vasculature. Nature, 554, 475-480.
https://doi.org/10.1038/nature25739
[44] Zhang, Y., Su, R., Zhang, Z., Jiang, Y., Miao, Y., Zhou, S., et al. (2025) An Ultrasensitive One-Pot Cas13a-Based Microfluidic Assay for Rapid Multiplexed Detection of MicroRNAs. Biosensors and Bioelectronics, 274, Article ID: 117212.
https://doi.org/10.1016/j.bios.2025.117212
[45] Pei, J., Li, L., Li, C., Li, Z., Wu, Y., Kuang, H., et al. (2025) Dumbbell Probe-Bridged CRISPR/Cas13a and Nicking-Mediated DNA Cascade Reaction for Highly Sensitive Detection of Colorectal Cancer-Related MicroRNAs. Biosensors and Bioelectronics, 273, Article ID: 117190.
https://doi.org/10.1016/j.bios.2025.117190
[46] Peng, L., Zhou, J., Liu, G., Yin, L., Ren, S., Man, S., et al. (2020) CRISPR-Cas12a Based Aptasensor for Sensitive and Selective ATP Detection. Sensors and Actuators B: Chemical, 320, Article ID: 128164.
https://doi.org/10.1016/j.snb.2020.128164
[47] Cheng, X., Li, Y., Kou, J., Liao, D., Zhang, W., Yin, L., et al. (2022) Novel Non-Nucleic Acid Targets Detection Strategies Based on CRISPR/Cas Toolboxes: A Review. Biosensors and Bioelectronics, 215, Article ID: 114559.
https://doi.org/10.1016/j.bios.2022.114559
[48] Han, C., Li, W., Li, Q., Xing, W., Luo, H., Ji, H., et al. (2022) CRISPR/Cas12a-Derived Electrochemical Aptasensor for Ultrasensitive Detection of COVID-19 Nucleocapsid Protein. Biosensors and Bioelectronics, 200, Article ID: 113922.
https://doi.org/10.1016/j.bios.2021.113922
[49] Yue, Y., Liu, M., Ma, M., Xu, Z., Zhang, H., Wang, Q., et al. (2025) CRISPR/Cas14a Integrated with DNA Walker Based on Magnetic Self-Assembly for Human Papillomavirus Type 16 Oncoprotein E7 Ultrasensitive Detection. Biosensors and Bioelectronics, 272, Article ID: 117135.
https://doi.org/10.1016/j.bios.2025.117135
[50] Jia, Z., Li, Z. and Liu, C. (2023) CRISPR-Powered Biosensing Platform for Quantitative Detection of Alpha-Fetoprotein by a Personal Glucose Meter. Sensors and Actuators B: Chemical, 390, Article ID: 133994.
https://doi.org/10.1016/j.snb.2023.133994
[51] Chen, Y., Wu, H., Qian, S., Yu, X., Chen, H. and Wu, J. (2022) Applying CRISPR/Cas System as a Signal Enhancer for Dnazyme-Based Lead Ion Detection. Analytica Chimica Acta, 1192, Article ID: 339356.
https://doi.org/10.1016/j.aca.2021.339356
[52] Yang, H., Li, F., Xue, T., Khan, M.R., Xia, X., Busquets, R., et al. (2022) Csm6-Dnazyme Tandem Assay for One-Pot and Sensitive Analysis of Lead Pollution and Bioaccumulation in Mice. Analytical Chemistry, 94, 16953-16959.
https://doi.org/10.1021/acs.analchem.2c04589
[53] Lai, Y., Li, M., Liao, X. and Zou, L. (2022) Dnazyme-Regulated CRISPR/Cas12a Based Fluorescent Biosensor for Sensitive Detection of Alkaline Phosphatase Activity and Inhibition. Analytica Chimica Acta, 1233, Article ID: 340518.
https://doi.org/10.1016/j.aca.2022.340518
[54] Lee, I., Kwon, S., Sorci, M., Heeger, P.S. and Dordick, J.S. (2021) Highly Sensitive Immuno-CRISPR Assay for CXCL9 Detection. Analytical Chemistry, 93, 16528-16534.
https://doi.org/10.1021/acs.analchem.1c03705
[55] Liu, H., Lv, M., Li, X., Su, M., Nie, Y. and Ying, Z. (2025) Ligation-Recognition Triggered Rpa-Cas12a Cis-Cleavage Fluorogenic RNA Aptamer for One-Pot and Label-Free Detection of MicroRNA in Breast Cancer. Biosensors and Bioelectronics, 272, Article ID: 117106.
https://doi.org/10.1016/j.bios.2024.117106
[56] Yang, R., Guan, X., Zhang, J., Moon, J., Guo, C., Jia, Z., et al. (2025) Quencher-Free CRISPR-Based Molecular Detection Using an Amphiphilic DNA Fluorescence Probe. Biosensors and Bioelectronics, 271, Article ID: 117054.
https://doi.org/10.1016/j.bios.2024.117054
[57] Wang, W., Du, H., Dai, C., Ma, H., Luo, S., Wang, X., et al. (2025) Amplification-Free Detection of Mycobacterium tuberculosis Using CRISPR-Cas12a and Graphene Field-Effect Transistors. Nanoscale, 17, 4603-4609.
https://doi.org/10.1039/d4nr03852e
[58] Jiang, H., Zhu, X., Jiao, J., Yan, C., Liu, K., Chen, W., et al. (2025) CRISPR/dCas9-Based Hotspot Self-Assembling SERS Biosensor Integrated with a Smartphone for Simultaneous, Ultrasensitive and Robust Detection of Multiple Pathogens. Biosensors and Bioelectronics, 270, Article ID: 116974.
https://doi.org/10.1016/j.bios.2024.116974
[59] Liu, C., Liu, Q., Chen, X., Guo, M., Chen, Z., Zhao, J., et al. (2025) A Novel Label-Free Biosensor for Myocardial Ischemia Biomarker Detection via CRISPR/12a. Biosensors and Bioelectronics, 270, Article ID: 116954.
https://doi.org/10.1016/j.bios.2024.116954
[60] Zhuang, T., Gao, C., Zhao, W., Yu, H., Liu, Y., Zhang, N., et al. (2025) A Minimal Transcription Template-Based Amplification-Free CRISPR-Cas13a Strategy for DNA Detection. Biosensors and Bioelectronics, 270, Article ID: 116918.
https://doi.org/10.1016/j.bios.2024.116918
[61] Fu, J., Mo, R., Li, Z., Xu, S., Cheng, X., Lu, B., et al. (2025) An Extraction-Free One-Pot Assay for Rapid Detection of Klebsiella Pneumoniae by Combining RPA and CRISPR/Cas12a. Biosensors and Bioelectronics, 267, Article ID: 116740.
https://doi.org/10.1016/j.bios.2024.116740
[62] Shi, X., Zhang, J., Ding, Y., Li, H., Yao, S., Hu, T., et al. (2024) Ultrasensitive Detection Platform for Staphylococcus aureus Based on Dnazyme Tandem Blocking CRISPR/Cas12a System. Biosensors and Bioelectronics, 264, Article ID: 116671.
https://doi.org/10.1016/j.bios.2024.116671
[63] Pian, H., Wang, H., Wang, H., Tang, F. and Li, Z. (2024) Capillarity-Powered and CRISPR/Cas12a-Responsive DNA Hydrogel Distance Sensor for Highly Sensitive Visual Detection of HPV DNA. Biosensors and Bioelectronics, 264, Article ID: 116657.
https://doi.org/10.1016/j.bios.2024.116657
[64] Yu, Y., Zhang, Y., Zhao, Y., Lv, K., Ai, L., Wu, Z., et al. (2024) Probiotic Bacterial Adsorption Coupled with CRISPR/Cas12a System for Mercury (II) Ions Detection. Biosensors and Bioelectronics, 263, Article ID: 116627.
https://doi.org/10.1016/j.bios.2024.116627