[1]
|
Richardet, E., Villavicencio, R., Hernandez, P.A., Acosta, L., Molina, M., Dicalbo, L., et al. (2016) P1.09: Delays in the Diagnosis and Treatment of Lung Cancer. Journal of Thoracic Oncology, 11, S185. https://doi.org/10.1016/j.jtho.2016.08.031
|
[2]
|
Nimse, S.B., Sonawane, M.D., Song, K. and Kim, T. (2016) Biomarker Detection Technologies and Future Directions. The Analyst, 141, 740-755. https://doi.org/10.1039/c5an01790d
|
[3]
|
Nikanjam, M., Kato, S. and Kurzrock, R. (2022) Liquid Biopsy: Current Technology and Clinical Applications. Journal of Hematology & Oncology, 15, Article No. 131. https://doi.org/10.1186/s13045-022-01351-y
|
[4]
|
Ignatiadis, M., Sledge, G.W. and Jeffrey, S.S. (2021) Liquid Biopsy Enters the Clinic—Implementation Issues and Future Challenges. Nature Reviews Clinical Oncology, 18, 297-312. https://doi.org/10.1038/s41571-020-00457-x
|
[5]
|
Wang, J.Y., Pausch, P. and Doudna, J.A. (2022) Structural Biology of CRISPR-Cas Immunity and Genome Editing Enzymes. Nature Reviews Microbiology, 20, 641-656. https://doi.org/10.1038/s41579-022-00739-4
|
[6]
|
Wang, Y., Huang, C. and Zhao, W. (2022) Recent Advances of the Biological and Biomedical Applications of CRISPR/Cas Systems. Molecular Biology Reports, 49, 7087-7100. https://doi.org/10.1007/s11033-022-07519-6
|
[7]
|
Bhatia, S., Pooja and Yadav, S.K. (2023) CRISPR-Cas for Genome Editing: Classification, Mechanism, Designing and Applications. International Journal of Biological Macromolecules, 238, Article ID: 124054. https://doi.org/10.1016/j.ijbiomac.2023.124054
|
[8]
|
Weng, Z., You, Z., Yang, J., Mohammad, N., Lin, M., Wei, Q., et al. (2023) CRISPR‐Cas Biochemistry and CRISPR‐Based Molecular Diagnostics. Angewandte Chemie International Edition, 62, e202214987. https://doi.org/10.1002/anie.202214987
|
[9]
|
Zavvar, T.S., Khoshbin, Z., Ramezani, M., Alibolandi, M., Abnous, K. and Taghdisi, S.M. (2022) CRISPR/Cas-Engineered Technology: Innovative Approach for Biosensor Development. Biosensors and Bioelectronics, 214, Article ID: 114501. https://doi.org/10.1016/j.bios.2022.114501
|
[10]
|
Ghouneimy, A., Mahas, A., Marsic, T., Aman, R. and Mahfouz, M. (2022) CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications. ACS Synthetic Biology, 12, 1-16. https://doi.org/10.1021/acssynbio.2c00496
|
[11]
|
Zhou, L., Peng, R., Zhang, R. and Li, J. (2018) The Applications of CRISPR/Cas System in Molecular Detection. Journal of Cellular and Molecular Medicine, 22, 5807-5815. https://doi.org/10.1111/jcmm.13925
|
[12]
|
Tang, Y., Gao, L., Feng, W., Guo, C., Yang, Q., Li, F., et al. (2021) The CRISPR-Cas Toolbox for Analytical and Diagnostic Assay Development. Chemical Society Reviews, 50, 11844-11869. https://doi.org/10.1039/d1cs00098e
|
[13]
|
Kaminski, M.M., Abudayyeh, O.O., Gootenberg, J.S., Zhang, F. and Collins, J.J. (2021) CRISPR-Based Diagnostics. Nature Biomedical Engineering, 5, 643-656. https://doi.org/10.1038/s41551-021-00760-7
|
[14]
|
Hryhorowicz, M., Lipiński, D. and Zeyland, J. (2023) Evolution of CRISPR/Cas Systems for Precise Genome Editing. International Journal of Molecular Sciences, 24, Article No. 14233. https://doi.org/10.3390/ijms241814233
|
[15]
|
Rossetti, M., Merlo, R., Bagheri, N., Moscone, D., Valenti, A., Saha, A., et al. (2022) Enhancement of CRISPR/Cas12a trans-Cleavage Activity Using Hairpin DNA Reporters. Nucleic Acids Research, 50, 8377-8391. https://doi.org/10.1093/nar/gkac578
|
[16]
|
Jiang, F. and Doudna, J.A. (2017) CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505-529. https://doi.org/10.1146/annurev-biophys-062215-010822
|
[17]
|
Wu, W.Y., Lebbink, J.H.G., Kanaar, R., Geijsen, N. and van der Oost, J. (2018) Genome Editing by Natural and Engineered CRISPR-Associated Nucleases. Nature Chemical Biology, 14, 642-651. https://doi.org/10.1038/s41589-018-0080-x
|
[18]
|
Kivrak, E., Pauzaite, T., Copeland, N., Hardy, J., Kara, P., Firlak, M., et al. (2021) Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors, 11, Article No. 17. https://doi.org/10.3390/bios11010017
|
[19]
|
Wang, C., Qu, Y., Cheng, J.K.W., Hughes, N.W., Zhang, Q., Wang, M., et al. (2022) dCas9-Based Gene Editing for Cleavage-Free Genomic Knock-In of Long Sequences. Nature Cell Biology, 24, 268-278. https://doi.org/10.1038/s41556-021-00836-1
|
[20]
|
Nguyen, G.T., Dhingra, Y. and Sashital, D.G. (2022) Miniature CRISPR-Cas12 Endonucleases-Programmed DNA Targeting in a Smaller Package. Current Opinion in Structural Biology, 77, Article ID: 102466. https://doi.org/10.1016/j.sbi.2022.102466
|
[21]
|
Yamano, T., Zetsche, B., Ishitani, R., Zhang, F., Nishimasu, H. and Nureki, O. (2017) Structural Basis for the Canonical and Non-Canonical PAM Recognition by CRISPR-Cpf1. Molecular Cell, 67, 633-645.e3. https://doi.org/10.1016/j.molcel.2017.06.035
|
[22]
|
Yang, Y., Wang, D., Lü, P., Ma, S. and Chen, K. (2023) Research Progress on Nucleic Acid Detection and Genome Editing of CRISPR/Cas12 System. Molecular Biology Reports, 50, 3723-3738. https://doi.org/10.1007/s11033-023-08240-8
|
[23]
|
Leung, R.K., Cheng, Q., Wu, Z., Khan, G., Liu, Y., Xia, H., et al. (2022) CRISPR-Cas12-Based Nucleic Acids Detection Systems. Methods, 203, 276-281. https://doi.org/10.1016/j.ymeth.2021.02.018
|
[24]
|
Wu, H., Chen, X., Zhang, M., Wang, X., Chen, Y., Qian, C., et al. (2021) Versatile Detection with CRISPR/Cas System from Applications to Challenges. TrAC Trends in Analytical Chemistry, 135, Article ID: 116150. https://doi.org/10.1016/j.trac.2020.116150
|
[25]
|
Gleditzsch, D., Pausch, P., Müller-Esparza, H., Özcan, A., Guo, X., Bange, G., et al. (2018) PAM Identification by CRISPR-Cas Effector Complexes: Diversified Mechanisms and Structures. RNA Biology, 16, 504-517. https://doi.org/10.1080/15476286.2018.1504546
|
[26]
|
Liu, L. and Pei, D. (2022) Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. International Journal of Molecular Sciences, 23, Article ID: 11400. https://doi.org/10.3390/ijms231911400
|
[27]
|
Deng, X., Osikpa, E., Yang, J., Oladeji, S.J., Smith, J., Gao, X., et al. (2023) Structural Basis for the Activation of a Compact CRISPR-Cas13 Nuclease. Nature Communications, 14, Article No. 5845. https://doi.org/10.1038/s41467-023-41501-5
|
[28]
|
Ding, R., Shen, Y., Yuan, M., Zheng, X., Chen, S. and Duan, G. (2022) Rapid and Facile Detection of HBV with CRISPR/Cas13a. New Journal of Chemistry, 46, 19997-20004. https://doi.org/10.1039/d2nj02674k
|
[29]
|
Barnes, K.G., Lachenauer, A.E., Nitido, A., Siddiqui, S., Gross, R., Beitzel, B., et al. (2020) Deployable CRISPR-Cas13a Diagnostic Tools to Detect and Report Ebola and Lassa Virus Cases in Real-Time. Nature Communications, 11, Article No. 4131. https://doi.org/10.1038/s41467-020-17994-9
|
[30]
|
Zhou, H., Bu, S., Xu, Y., Xue, L., Li, Z., Hao, Z., et al. (2022) CRISPR/Cas13a Combined with Hybridization Chain Reaction for Visual Detection of Influenza a (H1N1) Virus. Analytical and Bioanalytical Chemistry, 414, 8437-8445. https://doi.org/10.1007/s00216-022-04380-1
|
[31]
|
Wu, P., Ye, X., Wang, D., Gong, F., Wei, X., Xiang, S., et al. (2022) A Novel CRISPR/Cas14a System Integrated with 2D Porphyrin Metal-Organic Framework for Microcystin-Lr Determination through a Homogeneous Competitive Reaction. Journal of Hazardous Materials, 424, Article ID: 127690. https://doi.org/10.1016/j.jhazmat.2021.127690
|
[32]
|
Karvelis, T., Bigelyte, G., Young, J.K., Hou, Z., Zedaveinyte, R., Budre, K., et al. (2020) PAM Recognition by Miniature CRISPR-Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Research, 48, 5016-5023. https://doi.org/10.1093/nar/gkaa208
|
[33]
|
Lai, Y., Guo, K., Zhu, C., Lv, Y., Wu, H., Zhang, L., et al. (2025) Cas14videt: A Visual Instant Method Free from PAM Restriction for Antibiotic Resistance Bacteria Detection. Biosensors and Bioelectronics, 268, Article ID: 116884. https://doi.org/10.1016/j.bios.2024.116884
|
[34]
|
Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., et al. (2018) Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science, 362, 839-842. https://doi.org/10.1126/science.aav4294
|
[35]
|
He, Y., Shao, S. and Chen, J. (2023) High-Fidelity Identification of Single Nucleotide Polymorphism by Type V CRISPR Systems. ACS Sensors, 8, 4478-4483. https://doi.org/10.1021/acssensors.3c02158
|
[36]
|
Zhao, X., He, Y., Shao, S., Ci, Q., Chen, L., Lu, X., et al. (2024) CRISPR/Cas14 and G-Quadruplex Dnazyme-Driven Biosensor for Paper-Based Colorimetric Detection of African Swine Fever Virus. ACS Sensors, 9, 2413-2420. https://doi.org/10.1021/acssensors.4c00090
|
[37]
|
Su, W., Li, J., Ji, C., Chen, C., Wang, Y., Dai, H., et al. (2023) CRISPR/Cas Systems for the Detection of Nucleic Acid and Non-Nucleic Acid Targets. Nano Research, 16, 9940-9953. https://doi.org/10.1007/s12274-023-5567-4
|
[38]
|
Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded Dnase Activity. Science, 360, 436-439. https://doi.org/10.1126/science.aar6245
|
[39]
|
Wang, X., He, S., Zhao, N., Liu, X., Cao, Y., Zhang, G., et al. (2020) Development and Clinical Application of a Novel CRISPR-Cas12a Based Assay for the Detection of African Swine Fever Virus. BMC Microbiology, 20, Article No. 282. https://doi.org/10.1186/s12866-020-01966-6
|
[40]
|
Sun, Y., Yu, L., Liu, C., Ye, S., Chen, W., Li, D., et al. (2021) One-Tube SARS-CoV-2 Detection Platform Based on RT-RPA and CRISPR/Cas12a. Journal of Translational Medicine, 19, Article No. 74. https://doi.org/10.1186/s12967-021-02741-5
|
[41]
|
Cai, D., Wang, Y., Zhang, Z., Huang, E., Yang, N., Yang, X., et al. (2025) Droplet Pairing-Merging Enabled Digital RPA-CRISPR/Cas12a (DIMERIC) Assay for Rapid and Precise Quantification of Hepatitis B Virus DNA. Biosensors and Bioelectronics, 276, Article ID: 117256. https://doi.org/10.1016/j.bios.2025.117256
|
[42]
|
Hu, J., Sheng, Y., Kwak, K.J., Shi, J., Yu, B. and Lee, L.J. (2017) A Signal-Amplifiable Biochip Quantifies Extracellular Vesicle-Associated RNAs for Early Cancer Detection. Nature Communications, 8, Article No. 1683. https://doi.org/10.1038/s41467-017-01942-1
|
[43]
|
Vanlandewijck, M., He, L., Mäe, M.A., Andrae, J., Ando, K., Del Gaudio, F., et al. (2018) A Molecular Atlas of Cell Types and Zonation in the Brain Vasculature. Nature, 554, 475-480. https://doi.org/10.1038/nature25739
|
[44]
|
Zhang, Y., Su, R., Zhang, Z., Jiang, Y., Miao, Y., Zhou, S., et al. (2025) An Ultrasensitive One-Pot Cas13a-Based Microfluidic Assay for Rapid Multiplexed Detection of MicroRNAs. Biosensors and Bioelectronics, 274, Article ID: 117212. https://doi.org/10.1016/j.bios.2025.117212
|
[45]
|
Pei, J., Li, L., Li, C., Li, Z., Wu, Y., Kuang, H., et al. (2025) Dumbbell Probe-Bridged CRISPR/Cas13a and Nicking-Mediated DNA Cascade Reaction for Highly Sensitive Detection of Colorectal Cancer-Related MicroRNAs. Biosensors and Bioelectronics, 273, Article ID: 117190. https://doi.org/10.1016/j.bios.2025.117190
|
[46]
|
Peng, L., Zhou, J., Liu, G., Yin, L., Ren, S., Man, S., et al. (2020) CRISPR-Cas12a Based Aptasensor for Sensitive and Selective ATP Detection. Sensors and Actuators B: Chemical, 320, Article ID: 128164. https://doi.org/10.1016/j.snb.2020.128164
|
[47]
|
Cheng, X., Li, Y., Kou, J., Liao, D., Zhang, W., Yin, L., et al. (2022) Novel Non-Nucleic Acid Targets Detection Strategies Based on CRISPR/Cas Toolboxes: A Review. Biosensors and Bioelectronics, 215, Article ID: 114559. https://doi.org/10.1016/j.bios.2022.114559
|
[48]
|
Han, C., Li, W., Li, Q., Xing, W., Luo, H., Ji, H., et al. (2022) CRISPR/Cas12a-Derived Electrochemical Aptasensor for Ultrasensitive Detection of COVID-19 Nucleocapsid Protein. Biosensors and Bioelectronics, 200, Article ID: 113922. https://doi.org/10.1016/j.bios.2021.113922
|
[49]
|
Yue, Y., Liu, M., Ma, M., Xu, Z., Zhang, H., Wang, Q., et al. (2025) CRISPR/Cas14a Integrated with DNA Walker Based on Magnetic Self-Assembly for Human Papillomavirus Type 16 Oncoprotein E7 Ultrasensitive Detection. Biosensors and Bioelectronics, 272, Article ID: 117135. https://doi.org/10.1016/j.bios.2025.117135
|
[50]
|
Jia, Z., Li, Z. and Liu, C. (2023) CRISPR-Powered Biosensing Platform for Quantitative Detection of Alpha-Fetoprotein by a Personal Glucose Meter. Sensors and Actuators B: Chemical, 390, Article ID: 133994. https://doi.org/10.1016/j.snb.2023.133994
|
[51]
|
Chen, Y., Wu, H., Qian, S., Yu, X., Chen, H. and Wu, J. (2022) Applying CRISPR/Cas System as a Signal Enhancer for Dnazyme-Based Lead Ion Detection. Analytica Chimica Acta, 1192, Article ID: 339356. https://doi.org/10.1016/j.aca.2021.339356
|
[52]
|
Yang, H., Li, F., Xue, T., Khan, M.R., Xia, X., Busquets, R., et al. (2022) Csm6-Dnazyme Tandem Assay for One-Pot and Sensitive Analysis of Lead Pollution and Bioaccumulation in Mice. Analytical Chemistry, 94, 16953-16959. https://doi.org/10.1021/acs.analchem.2c04589
|
[53]
|
Lai, Y., Li, M., Liao, X. and Zou, L. (2022) Dnazyme-Regulated CRISPR/Cas12a Based Fluorescent Biosensor for Sensitive Detection of Alkaline Phosphatase Activity and Inhibition. Analytica Chimica Acta, 1233, Article ID: 340518. https://doi.org/10.1016/j.aca.2022.340518
|
[54]
|
Lee, I., Kwon, S., Sorci, M., Heeger, P.S. and Dordick, J.S. (2021) Highly Sensitive Immuno-CRISPR Assay for CXCL9 Detection. Analytical Chemistry, 93, 16528-16534. https://doi.org/10.1021/acs.analchem.1c03705
|
[55]
|
Liu, H., Lv, M., Li, X., Su, M., Nie, Y. and Ying, Z. (2025) Ligation-Recognition Triggered Rpa-Cas12a Cis-Cleavage Fluorogenic RNA Aptamer for One-Pot and Label-Free Detection of MicroRNA in Breast Cancer. Biosensors and Bioelectronics, 272, Article ID: 117106. https://doi.org/10.1016/j.bios.2024.117106
|
[56]
|
Yang, R., Guan, X., Zhang, J., Moon, J., Guo, C., Jia, Z., et al. (2025) Quencher-Free CRISPR-Based Molecular Detection Using an Amphiphilic DNA Fluorescence Probe. Biosensors and Bioelectronics, 271, Article ID: 117054. https://doi.org/10.1016/j.bios.2024.117054
|
[57]
|
Wang, W., Du, H., Dai, C., Ma, H., Luo, S., Wang, X., et al. (2025) Amplification-Free Detection of Mycobacterium tuberculosis Using CRISPR-Cas12a and Graphene Field-Effect Transistors. Nanoscale, 17, 4603-4609. https://doi.org/10.1039/d4nr03852e
|
[58]
|
Jiang, H., Zhu, X., Jiao, J., Yan, C., Liu, K., Chen, W., et al. (2025) CRISPR/dCas9-Based Hotspot Self-Assembling SERS Biosensor Integrated with a Smartphone for Simultaneous, Ultrasensitive and Robust Detection of Multiple Pathogens. Biosensors and Bioelectronics, 270, Article ID: 116974. https://doi.org/10.1016/j.bios.2024.116974
|
[59]
|
Liu, C., Liu, Q., Chen, X., Guo, M., Chen, Z., Zhao, J., et al. (2025) A Novel Label-Free Biosensor for Myocardial Ischemia Biomarker Detection via CRISPR/12a. Biosensors and Bioelectronics, 270, Article ID: 116954. https://doi.org/10.1016/j.bios.2024.116954
|
[60]
|
Zhuang, T., Gao, C., Zhao, W., Yu, H., Liu, Y., Zhang, N., et al. (2025) A Minimal Transcription Template-Based Amplification-Free CRISPR-Cas13a Strategy for DNA Detection. Biosensors and Bioelectronics, 270, Article ID: 116918. https://doi.org/10.1016/j.bios.2024.116918
|
[61]
|
Fu, J., Mo, R., Li, Z., Xu, S., Cheng, X., Lu, B., et al. (2025) An Extraction-Free One-Pot Assay for Rapid Detection of Klebsiella Pneumoniae by Combining RPA and CRISPR/Cas12a. Biosensors and Bioelectronics, 267, Article ID: 116740. https://doi.org/10.1016/j.bios.2024.116740
|
[62]
|
Shi, X., Zhang, J., Ding, Y., Li, H., Yao, S., Hu, T., et al. (2024) Ultrasensitive Detection Platform for Staphylococcus aureus Based on Dnazyme Tandem Blocking CRISPR/Cas12a System. Biosensors and Bioelectronics, 264, Article ID: 116671. https://doi.org/10.1016/j.bios.2024.116671
|
[63]
|
Pian, H., Wang, H., Wang, H., Tang, F. and Li, Z. (2024) Capillarity-Powered and CRISPR/Cas12a-Responsive DNA Hydrogel Distance Sensor for Highly Sensitive Visual Detection of HPV DNA. Biosensors and Bioelectronics, 264, Article ID: 116657. https://doi.org/10.1016/j.bios.2024.116657
|
[64]
|
Yu, Y., Zhang, Y., Zhao, Y., Lv, K., Ai, L., Wu, Z., et al. (2024) Probiotic Bacterial Adsorption Coupled with CRISPR/Cas12a System for Mercury (II) Ions Detection. Biosensors and Bioelectronics, 263, Article ID: 116627. https://doi.org/10.1016/j.bios.2024.116627
|