骨质疏松症筛查和诊断方法的研究进展
Research Progress of Screening and Diagnostic Methods for Osteoporosis
DOI: 10.12677/jcpm.2025.42173, PDF, HTML, XML,   
作者: 曾林娜:承德医学院研究生学院,河北 承德;刘博伟*:秦皇岛市第一医院内分泌科,河北 秦皇岛
关键词: 骨质疏松筛查方法骨密度骨折风险评估Osteoporosis Screening Methods Bone Density Fracture Risk Assessment
摘要: 骨质疏松是一种常见的骨骼疾病,其发病率逐年上升且危害严重,易引发脆性骨折等不良后果,极大影响患者生活质量并加重医疗负担。早期进行骨质疏松筛查,有助于及时发现病情、采取干预措施,降低骨折等不良后果的发生风险。目前骨质疏松诊断依然依靠双能X线骨密度仪(DXA),但作为筛查方式,骨密度的检查费用高,可及性差,因此在本综述中,我们总结了骨质疏松的筛查方法,以期为骨质疏松的早期发现与防治提供参考。
Abstract: Osteoporosis is a common bone disease with an increasing incidence rate and severe consequences, such as an increased risk of fragility fractures. It can significantly impair the quality of life of patients and increase the burden on the healthcare system. Early screening for osteoporosis helps to detect the condition in a timely manner and take intervention measures to reduce the risk of fractures and other adverse outcomes. Currently, dual-energy X-ray absorptiometry (DXA) remains the mainstay for diagnosing osteoporosis. However, as a screening method, bone density testing is expensive and not readily accessible. Therefore, in this review, we summarize the screening methods for osteoporosis in the hope of providing references for the early detection and prevention of osteoporosis.
文章引用:曾林娜, 刘博伟. 骨质疏松症筛查和诊断方法的研究进展[J]. 临床个性化医学, 2025, 4(2): 267-272. https://doi.org/10.12677/jcpm.2025.42173

1. 引言

骨质疏松是最常见的骨骼疾病,是一种以低骨量、骨组织微结构破坏,导致骨脆性增加,易发生骨折为特征的全身性骨病[1]。随着人类寿命的延长和人口的老龄化,骨质疏松症成为仅次于心脑血管疾病的最具危害的慢性病[2]。在美国,2010年≥50岁成人骨质疏松症的患病率为10.2%,预计到2030年将达到13.6% [3] [4]。2018年10月我国卫健委发布的骨质疏松流行病学调查结果显示,我国骨量减少及骨质疏松症患者数量已达到3亿以上[5]。我国≥50岁人群骨质疏松症患病率为19.2% [6] [7]。骨质疏松症最严重的并发症是骨质疏松性骨折,骨折直接导致患者伤残、生活质量下降甚至死亡,研究表示,髋部骨折后第一年内死亡率高达20%~30%,存活者有50%终身致残[2] [8]-[11]。早期进行骨质疏松风险筛查可降低髋部骨折的发生率,并使脆性骨折相关医疗费用下降[12]。因此本文就骨质疏松症的主要筛查和诊断方法进行综述,以期为延缓骨质疏松症发展进程、降低骨质疏松发病率提供思路。

2. 调查法

调查法是目前最常用的骨质疏松症自我评估方法,如亚洲人骨质疏松症自我筛查工具(osteoporosis self-assessment tool for Asians, OSTA)、IOF骨质疏松风险一分钟测试题、骨折风险评估工具(fracture risk assessment tool, FRAX)等,上述工具单个和合并筛查曲线下面积(area under curve, AUC)范围为0.58~0.82,被广泛应用于人群初筛中[13] [14]

2.1. OSTA

OSTA是由一项基于8个亚洲国家绝经后妇女的研究中得出的一个专为亚洲女性开发的筛查工具[15],纳入年龄和体重两个简单因素来筛查骨质疏松风险。计算方法为OSTA评分 = (体重 − 年龄)*0.2,OSTA评分 > −1为低风险,OSTA评分在−1~−4之间为中风险,OSTA评分 < −4为高风险。OSTA作为亚洲绝经后女性骨质疏松筛查工具,有较高的灵敏度与特异性[16]-[19]。一项基于2055例北京汉族人群中的研究发现,OSTA预测骨质疏松的曲线下面积为0.798,敏感性为69.64%,特异性为75.07%,是识别绝经后骨质疏松的可靠和有效的工具[16]。郭勇等人在一项3253例围绝经期和绝经后女性的研究中也发现OSTA指数作为预测北京地区中老年妇女骨质疏松的筛查工具是比较可靠的[17]。Khu等人也发现OSTA可作为一种可靠的筛查工具,筛查印度各地骨质疏松症高危妇女[20]。然而有研究表明OSTA在四川省绝经后妇女骨质疏松高危人群中的应用价值不高[21]。作为骨质疏松的筛查工具,OSTA评分仅纳入年龄和体重两个因素,计算简单、可及性高、应用成本低,但其未将绝经年龄、药物应用史和脆性骨折病史等其他骨质疏松性骨折风险因素考虑其中,临床应用存在一定的局限性。

2.2. IOF骨质疏松风险一分钟测试题

IOF骨质疏松风险一分钟测试题[22]是由国际骨质疏松基金会(IOF)推出的骨质疏松风险评估测试,共19问题,其中15个标准问题,3个针对女性骨质疏松的问题和1针对男性骨质疏松的问题,包含了家族史,个人临床因素和生活方式等方面。有任意1题答案是“是”即为骨质疏松高危,“是”越多骨质疏松风险越大。IOF骨质疏松风险一分钟测试题是简单、经济、容易理解的问卷调查,在社区中筛查骨质疏松有一定的应用前景,但骨质疏松症风险1分钟测试题易受个体主观判断的影响,我国骨质疏松指南仅推荐该测试题用于初步筛查骨质疏松风险而未应用于骨质疏松的诊断。Sheng等人在台湾地区人群进行了一项为期11年的研究也表明IOF骨质疏松风险一分钟测试题在预测骨质疏松及骨折方面并不令人满意[23]

2.3. FRAX

FRAX [24]是2008年世界卫生组织开发的二进制计算机算法,使用七个临床危险因素和股骨颈骨密度计算未来10年骨质疏松性骨折发生风险,现在也用于预测骨量减少和骨质疏松[25] [26]。FRAX也可以计算没有骨密度时的骨折发生概率,即使在无法完成骨密度检测的情况下,该算法依旧适用。Chen发现FRAX在有无BMD的情况下均能预测骨质疏松性骨折的风险[27]。Akram [28]的研究证明,FRAX是有效预测巴勒斯坦绝经后妇女骨质疏松症风险的工具。Hof等在挪威对不含BMD的人群进行了FRAX评估发现,髋部骨折预测效能良好(女性AUC为0.81,95%置信区间0.78~0.83,男性为0.79,95%置信区间0.76~0.83) [29],同时在加拿大[30]人群的研究中也得到了相似的结果。我国骨质疏松指南也推荐应用FRAX预测骨质疏松性骨折的发生风险[31]。在预测骨质疏松方面,Fan等人在北京汉族人群中的发现,FRAX预测骨质疏松的曲线下面积为0.796,敏感性为74.79%,特异性为70.45%,是识别绝经后女性骨质疏松的可靠的工具[16]。但由于FRAX的大多数问题只有是或否的答案,没有明确跌倒事件、既往脆性骨折的次数和部位对未来再发骨折的影响,也未纳入其他部位骨密度和患有2型糖尿病对脆性骨折风险的影响,因此具有一定的局限性[2] [26] [32]

3. 骨密度测量法

3.1. 双能X线(DXA)

双能X线吸收法是国际公认的骨质疏松检测方法,是目前诊断骨质疏松症的金标准,以T值和Z值判断骨质疏松程度,目前WHO推荐的对于绝经后女性和50岁及以上男性的骨质疏松诊断标准为基于DXA测量的中轴骨骨密度或桡骨远端骨密度T值 ≤ −2.5 [31]。但是DXA也存在一定的局限性,首先DXA通过把骨的立体结构投影到平面上计算骨密度,结果容易受到骨周围组织影响。且由于DXA无法区分皮质骨和松质骨,降低了检查的准确性和敏感性;其次,双能X线骨密度仪成本较高,需要专业技术人员进行操作,且检测费用高,大多数基层医院和社区医院未能配备,国际骨质疏松基金会亚洲审计机构数据显示,亚洲每百万人口中的DXA诊断扫描仪数量不到0.35 [33]

3.2. 定量超声(QUS)

QUS是Langton等人[34]在1984年提出的一种简单的骨密度检测方法,通过超声波在不同介质中的声速和振幅衰减测量骨密度,通常测量部位为根骨,目前广泛用于骨质疏松症筛查和骨质疏松性骨折的风险评估[33]。QUS提供了骨皮质和骨小梁微结构信息[35],运营成本低于DXA,且机器相对便携,操作方便,并减少了辐射,是DXA设备不可用的地区的潜在替代方案,有望改善基层医院及社区医院缺乏DXA的问题。一项分析桡骨远端QUS检测在中老年骨质疏松症诊断中的价值的研究中发现[36],桡骨QUS-T值诊断骨质疏松症的曲线下面积为0.542,诊断价值较低,但敏感度和特异度分别为72.7%、38.8%,提示漏诊率为27.3%,误诊率为61.2%,这说明QUS检测结果不能作为骨质疏松症的诊断标准,但因其漏诊率较低,可以作为社区筛查工具。

3.3. 定量CT (QCT)

QCT是在常规CT的基础上,将校准体模置于受检者下方,与受检者同时接受扫描,通过专用软件和校准体模将CT值转换为腰椎或髋部体积骨密度,QCT可以分别测量皮质骨和松质骨的体积骨密度,从而相对较早地反映出骨质疏松早期阶段松质骨的丢失情况,已被普遍认为可以诊断骨质疏松[37]。但常规CT检查不必与校准体模同时扫描,单独开展QCT检查,检查费用高昂,且存在电离辐射,无法广泛应用于临床。

有研究者提出直接使用常规CT值(以HU为单位)评估BMD [38],可直接利用常规胸部、腹部或盆部CT结果来评估椎体BMD,筛查出潜在骨质疏松人群,不会增加额外的辐射和经济负担,可以改善拥有CT设备的基层和社区医院缺乏DXA的现状。从CT扫描中直接测量CT值具有用于骨质疏松症筛查的潜力[39],但是与QCT相比,直接使用椎体CT值评估BMD的准确性相对较低,其诊断骨质疏松的价值仍需进一步探讨。

4. 小结与展望

骨质疏松症是多种因素共同作用的结果,包括年龄增加、雌激素水平下降、代谢性疾病等,可导致跌倒、骨折、残疾等不良后果,严重影响老年患者生活质量及生命安全。骨质疏松症因其在第一次骨折发生之前通常没有症状,也被认为是一种无声的疾病。目前,中国已逐渐步入老龄化社会,骨质疏松的筛查和防治工作十分艰巨,早期开展骨质疏松风险筛查可以降低骨质疏松高危人群的骨折风险,提高老年人生活质量。

骨质疏松症的筛查和诊断是一个综合的过程,多种方法各有优劣。OSTA评分、IOF骨质疏松风险一分钟测试题、FRAX等工具应用简单、经济,不需要特殊的检查工具,对筛查人员技术要求较低,但准确性稍差,漏诊率高,仅适用于初步筛查骨质疏松发生风险。骨密度检测是诊断骨质疏松的核心手段,其中DXA是诊断骨质疏松症的金标准,但由于成本较高和仪器普及性差等原因,无法广泛应用于基层筛查。其他检测方法如QCT、QUS检测在特定情况下也具有重要价值。定量超声和机会性QCT检查有望改善基层医院及社区医院缺乏DXA的问题,但都缺乏公认的诊断标准,不能用于骨质疏松的诊断。

寻找一种最准确可靠,简便易行的筛查方法,加强对骨质疏松症高危人群的早期识别与筛查,从而提高对骨折等不良结局的预测能力指导医疗人员早期发现病例并及早进行干预及开展个性化的健康管理推动骨质疏松症防治工作的进一步发展仍是未来重要的研究方向。

NOTES

*通讯作者。

参考文献

[1] (1993) Consensus Development Conference: Diagnosis, Prophylaxis, and Treatment of Osteoporosis. The American Journal of Medicine, 94, 646-650.
https://doi.org/10.1016/0002-9343(93)90218-e
[2] 王晓燕, 金晖, 韩晶, 邓春花, 孙美娟. 社区骨质疏松症高危人群筛查与预防的研究进展[J]. 中国骨质疏松杂志, 2019, 25(10): 1498-1501.
[3] Mabuchi, S., Ohta, R. and Sano, C. (2024) Osteoporosis Management in a Rural Community Hospital in Japan: A Cross-Sectional Retrospective Study. BMJ Open, 14, e086845.
https://doi.org/10.1136/bmjopen-2024-086845
[4] Wright, N.C., Looker, A.C., Saag, K.G., Curtis, J.R., Delzell, E.S., Randall, S., et al. (2014) The Recent Prevalence of Osteoporosis and Low Bone Mass in the United States Based on Bone Mineral Density at the Femoral Neck or Lumbar Spine. Journal of Bone and Mineral Research, 29, 2520-2526.
https://doi.org/10.1002/jbmr.2269
[5] 国家卫生健康委员会官网. 国家卫生健康委发布首个中国骨质疏松症流行病学调查结果[J]. 人口文摘, 2018(11): 55-56.
[6] Wang, Y., Tao, Y., Hyman, M.E., Li, J. and Chen, Y. (2009) Osteoporosis in China. Osteoporosis International, 20, 1651-1662.
https://doi.org/10.1007/s00198-009-0925-y
[7] 中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4): 317-318.
[8] Kanis, J.A., Oden, A., Johnell, O., De Laet, C., Jonsson, B. and Oglesby, A.K. (2003) The Components of Excess Mortality after Hip Fracture. Bone, 32, 468-473.
https://doi.org/10.1016/s8756-3282(03)00061-9
[9] 杨永碧. 绝经期女性骨质疏松及其影响因素[J]. 中国老年学杂志, 2014(11): 3176-3178.
[10] Peeters, C.M.M., Visser, E., Van de Ree, C.L.P., Gosens, T., Den Oudsten, B.L. and De Vries, J. (2016) Quality of Life after Hip Fracture in the Elderly: A Systematic Literature Review. Injury, 47, 1369-1382.
https://doi.org/10.1016/j.injury.2016.04.018
[11] Alexiou, K., Roushias, A., Varitimidis, S. and Malizos, K. (2018) Quality of Life and Psychological Consequences in Elderly Patients after a Hip Fracture: A Review. Clinical Interventions in Aging, 13, 143-150.
https://doi.org/10.2147/cia.s150067
[12] Shepstone, L., Lenaghan, E., Cooper, C., Clarke, S., Fong-Soe-Khioe, R., Fordham, R., et al. (2018) Screening in the Community to Reduce Fractures in Older Women (SCOOP): A Randomised Controlled Trial. The Lancet, 391, 741-747.
https://doi.org/10.1016/s0140-6736(17)32640-5
[13] Curry, S.J., Krist, A.H., Owens, D.K., Barry, M.J., Caughey, A.B., Davidson, K.W., et al. (2018) Screening for Osteoporosis to Prevent Fractures. Journal of the American Medical Association, 319, 2521-2531.
https://doi.org/10.1001/jama.2018.7498
[14] Viswanathan, M., Reddy, S., Berkman, N., Cullen, K., Middleton, J.C., Nicholson, W.K., et al. (2018) Screening to Prevent Osteoporotic Fractures. Journal of the American Medical Association, 319, 2532-2551.
https://doi.org/10.1001/jama.2018.6537
[15] Koh, L.K.H., Ben Sedrine, W., Torralba, T.P., Kung, A., Fujiwara, S., Chan, S.P., et al. (2001) A Simple Tool to Identify Asian Women at Increased Risk of Osteoporosis. Osteoporosis International, 12, 699-705.
https://doi.org/10.1007/s001980170070
[16] Fan, Z., Li, X., Zhang, X., Yang, Y., Fei, Q. and Guo, A. (2020) Comparison of OSTA, FRAX and BMI for Predicting Postmenopausal Osteoporosis in a Han Population in Beijing: A Cross Sectional Study. Clinical Interventions in Aging, 15, 1171-1180.
https://doi.org/10.2147/CIA.S257166
[17] 郭勇, 栗敏, 张颖, 贺丹丹, 张智海. 3253例围绝经及绝经后女性骨质疏松风险评估工具的应用[J]. 中国骨质疏松杂志, 2023, 29(10): 1420-1424+1436.
[18] Liu, Y., Wang, C., Wang, G., Sun, Y., Deng, Z., Chen, L., et al. (2019) Loureirin B Suppresses Rankl-Induced Osteoclastogenesis and Ovariectomized Osteoporosis via Attenuating Nfatc1 and ROS Activities. Theranostics, 9, 4648-4662.
https://doi.org/10.7150/thno.35414
[19] Iantomasi, T., Romagnoli, C., Palmini, G., Donati, S., Falsetti, I., Miglietta, F., et al. (2023) Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with Micrornas. International Journal of Molecular Sciences, 24, Article 3772.
https://doi.org/10.3390/ijms24043772
[20] Agarwal, K., Cherian, K.E., Kapoor, N. and Paul, T.V. (2022) OSTA as a Screening Tool to Predict Osteoporosis in Indian Postmenopausal Women—A Nationwide Study. Archives of Osteoporosis, 17, Article No. 121.
https://doi.org/10.1007/s11657-022-01159-w
[21] Lu, C., Chen, D., Cai, Y. and Wei, S. (2006) Concordane of OSTA and Lumbar Spine BMD by DXA in Identifying Risk of Osteoporosis. Journal of Orthopaedic Surgery and Research, 1, Article No. 14.
https://doi.org/10.1186/1749-799x-1-14
[22] IOF One-Minute OSTE Oporosis Risk Test.
https://www.iofbonehealth.org/
[23] Sheng, Y., Wu, T., Liaw, C., Hsiao, S., Kuo, K. and Tsai, C. (2024) Real World Fracture Prediction of Fracture Risk Assessment Tool (FRAX), Osteoporosis Self-Assessment Tool for Asians (OSTA) and One-Minute Osteoporosis Risk Test: An 11-Year Longitudinal Study. Bone Reports, 20, Article 101742.
https://doi.org/10.1016/j.bonr.2024.101742
[24] Kanis, J.A. (2008) Assessment of Osteoporosis at the Primary Health Care Level. Technical Report. WHO Collaborating Centre, University of Sheffield, UK.
[25] Kanis, J.A., Harvey, N.C., Johansson, H., Liu, E., Vandenput, L., Lorentzon, M., et al. (2020) A Decade of FRAX: How Has It Changed the Management of Osteoporosis? Aging Clinical and Experimental Research, 32, 187-196.
https://doi.org/10.1007/s40520-019-01432-y
[26] 郭培栋, 吴炯林, 丁悦. 骨质疏松症筛查方法的研究进展[J]. 中华内分泌代谢杂志, 2023, 39(4): 372-376.
[27] Chen, J., Yu, S., Hsu, C., Chiu, W., Wu, C., Lai, H., et al. (2019) The Role of Bone Mineral Density in Therapeutic De-cision-Making Using the Fracture Risk Assessment Tool (FRAX). Archives of Osteoporosis, 14, Article No. 101.
https://doi.org/10.1007/s11657-019-0653-7
[28] Kharroubi, A., Saba, E., Ghannam, I. and Darwish, H. (2016) Evaluation of the Validity of Osteoporosis and Fracture Risk Assessment Tools (IOF One Minute Test, SCORE, and FRAX) in Postmenopausal Palestinian Women. Archives of Osteoporosis, 12, Article No. 6.
https://doi.org/10.1007/s11657-016-0298-8
[29] Hoff, M., Meyer, H.E., Skurtveit, S., Langhammer, A., Søgaard, A.J., Syversen, U., et al. (2017) Validation of FRAX and the Impact of Self-Reported Falls among Elderly in a General Population: The HUNT Study, Norway. Osteoporosis International, 28, 2935-2944.
https://doi.org/10.1007/s00198-017-4134-9
[30] Leslie, W.D., Lix, L.M., Johansson, H., Oden, A., McCloskey, E. and Kanis, J.A. (2017) Manitoba Bone Density Program. Independent Clinical Validation of a Canadian FRAX Tool: Fracture Prediction and Model Calibration. Journal of Bone and Mineral Research, 25, 2350-2358.
https://doi.org/10.1002/jbmr.123
[31] 中华医学会骨质疏松和骨矿盐疾病分会, 章振林. 原发性骨质疏松症诊疗指南(2022) [J]. 中国全科医学, 2023, 26(14): 1671-1691.
[32] Gregson, C.L., Armstrong, D.J., Bowden, J., Cooper, C., Edwards, J., Gittoes, N.J.L., et al. (2022) Correction: UK Clinical Guideline for the Prevention and Treatment of Osteoporosis. Archives of Osteoporosis, 17, Article No. 80.
https://doi.org/10.1007/s11657-022-01115-8
[33] Fu, Y., Li, C., Luo, W., Chen, Z., Liu, Z. and Ding, Y. (2020) Fragility Fracture Discriminative Ability of Radius Quantitative Ultrasound: A Systematic Review and Meta-Analysis. Osteoporosis International, 32, 23-38.
https://doi.org/10.1007/s00198-020-05559-x
[34] Langton, C. (1996) Prediction of Mechanical Properties of the Human Calcaneus by Broadband Ultrasonic Attenuation. Bone, 18, 495-503.
https://doi.org/10.1016/8756-3282(96)00086-5
[35] Schultz, K. and Wolf, J.M. (2019) Emerging Technologies in Osteoporosis Diagnosis. The Journal of Hand Surgery, 44, 240-243.
https://doi.org/10.1016/j.jhsa.2018.07.006
[36] 苏其昌, 梁江声. 超声骨密度检测在骨质疏松症诊断中的应用[J]. 中国骨科临床与基础研究杂志, 2024(2): 121-125.
[37] 陈明月, 张雪丽, 汤光宇. 基于CT的机会性筛查评估骨质疏松症的研究进展[J]. 国际医学放射学杂志, 2022, 45(4): 459-465.
[38] Lenchik, L., Weaver, A.A., Ward, R.J., Boone, J.M. and Boutin, R.D. (2018) Opportunistic Screening for Osteoporosis Using Computed Tomography: State of the Art and Argument for Paradigm Shift. Current Rheumatology Reports, 20, Article No. 74.
https://doi.org/10.1007/s11926-018-0784-7
[39] Gausden, E.B., Nwachukwu, B.U., Schreiber, J.J., Lorich, D.G. and Lane, J.M. (2017) Opportunistic Use of CT Imaging for Osteoporosis Screening and Bone Density Assessment. Journal of Bone and Joint Surgery, 99, 1580-1590.
https://doi.org/10.2106/jbjs.16.00749