青光眼发病机制与治疗研究进展
Advances in Glaucoma Pathogenesis and Treatment
DOI: 10.12677/jcpm.2025.42175, PDF, HTML, XML,   
作者: 刘钰洁:济宁医学院临床医学院(附属医院),山东 济宁;周亚兰*:济宁医学院附属医院眼科,山东 济宁
关键词: 青光眼发病机制治疗Glaucoma Pathogenesis Treatment
摘要: 青光眼作为全球不可逆视力丧失的主要原因之一,在临床实践和研究中引起了广泛的关注,而常规的治疗方法并不能完全治愈青光眼,因此寻求新的青光眼治疗手段显得尤为重要。该综述旨在系统回顾青光眼的发病机制并对其新进展进行分析,进一步完善青光眼的发病机制,从而为青光眼的治疗提供新思路。
Abstract: Glaucoma, as one of the major causes of irreversible vision loss worldwide, has attracted widespread attention in clinical practice and research, and as conventional treatments do not completely cure glaucoma, the search for new glaucoma treatments is of particular importance. The aim of this review is to systematically review the pathogenesis of glaucoma and analyze its new developments to further improve the pathogenesis of glaucoma, thus providing new ideas for the treatment of glaucoma.
文章引用:刘钰洁, 周亚兰. 青光眼发病机制与治疗研究进展[J]. 临床个性化医学, 2025, 4(2): 279-286. https://doi.org/10.12677/jcpm.2025.42175

1. 引言

青光眼是一组进行性视神经病变,其特征是视网膜神经节细胞(retinal ganglion cell, RGC)变性并导致视神经头(optic nerve head, ONH)改变。青光眼已成为世界范围内仅次于白内障的致盲的主要病因[1]。根据统计结果,2020年全球约有7600万名青光眼患者,随着人口老龄化的发展,据估计2040年该数目将增加到1.118亿[2]。青光眼的患病率具有种族特异性,非洲血统的人青光眼患病率相对较高,其中又以原发性开角型青光眼(primary open-angle glaucoma, POAG)为多见,欧洲患病率最低,而闭角型青光眼和正常眼压青光眼在亚洲人中更常见[2]。青光眼的发病率具有年龄特异性,随年龄增长,青光眼患病率呈上升趋势,其中,男性和女性的增加趋势相似。然而,与女性相比,55岁及以上的老年男性中青光眼患病率明显增高[3]。本综述旨在通过系统回顾青光眼的发病机制与治疗方法,为进一步研究青光眼提供理论基础。

2. 青光眼发病机制

长期以来,人们对青光眼的发病机制进行了广泛的研究,但青光眼神经变性的确切病理生理机制仍不清楚[4]。目前被广泛认可的有生物力学理论和血管理论,其分别认为青光眼与眼内压(intraocular pressure, IOP)介导的机械应力和ONH血管功能不全有关。然而,即使药物和手术治疗成功降低了眼压,部分青光眼患者的RGC损失和视野缺损仍在继续发展[5],因此第三种理论则认为青光眼是一种原发性神经退行性疾病。有研究表明,神经退行性变的常见机制包括:(1) 环境因素,如饮食、年龄和运动;(2) 代谢,如线粒体功能障碍、活性氧种类(reactive oxygen species, ROS)增加等;(3) 遗传,如全基因组关联研究相关风险等位基因,性别相关遗传贡献;(4) 神经炎症,如外周免疫细胞膨胀,胶质反应性增加;(5) 神经血管耦合,如血脑屏障的破坏和功能失调的神经血管耦合[6]

2.1. 生物力学理论

IOP作为青光眼的致病因素之一,与青光眼的发病密切相关。小梁网位于Schwalbe线与巩膜突之间的巩膜内沟内,具有筛网作用,参与房水循环途径,是目前认为房水流出阻力最大的部位[7]。若小梁网因为各种原因被阻塞或者局部发生病变则会导致房水流出受阻,从而使IOP升高,最终产生视神经损伤和视野缺损。因此,小梁网是眼睛生物力学中的一个重要结构。有研究表明,当小梁网硬度增加、肌动蛋白交联增加或细胞外基质合成和沉积增加时,则会导致IOP升高[8]

小梁网中有许多机械敏感离子通道,从而对机械刺激作出反应。而Piezo1则在机械拉伸诱导的细胞内信号传导[9]和调节小梁网收缩[10]中发挥着至关重要的作用。Morozumi等人[11]通过实验证明Piezo 1通道可以降低小鼠的IOP并且长期维持,此外,Piezo1激活抑制了人类小梁网细胞的迁移或增殖,并降低了纤连蛋白的表达水平。我们已知纤连蛋白表达水平的波动参与IOP控制[12],但纤连蛋白减少和眼压降低之间的具体机制目前尚不明确。但总而言之,上述研究表明离子通道减少了小梁网组织中细胞外基质的形成,这或许是Piezo1可以调节IOP的原因之一。

同时,IOP升高引起的机械压力作用于ONH,导致视杯底部的筛板变形,并抑制通过该区域的轴突[13]。由于筛板周围轴突运输障碍或半胱天冬氨酸酶激活细胞凋亡,进一步导致了RGC死亡[14]

2.2. 血管理论

在血管理论中,ONH的血供不足被认为在RGC死亡的发病机制中起主要作用。目前认为血管解剖异常、全身性低血压、血管自我调节异常、神经血管功能障碍或继发于IOP升高导致的血管受压对青光眼神经变性具有重要影响[15]。由于RGC具有极高的新陈代谢[16],需要精确调节血液供应以满足其氧气和营养需求。而血管异常会导致血流不稳定,进而导致缺血、缺氧或者眼灌注压降低,因此会对RGC产生损伤。

虽然青光眼与视网膜血管异常之间关系密切,但两者的先后关系目前仍有待发掘。在青光眼患者中,大部分患有血管缺损,表现为血管口径减小、视网膜和 ONH 血流减少以及毛细血管缺损[17],同时其视网膜中央静脉压可能高于眼压[18] [19],导致血管自动调节功能障碍,从而使眼部组织在眼灌注压发生变化的情况下维持稳定血液供应的能力减弱。上述情况可能导致视网膜和ONH的灌注压降低,最终导致疾病恶化。

2.3. 原发性神经退行性疾病

目前虽然没有明显的证据证明青光眼的发病与神经退行性疾病有关,但其与阿尔茨海默症在流行病学、遗传以及RGC和神经纤维层病变上的相似之处[20]或许可以为后续的研究提供基础。本文中我们主要介绍遗传、神经炎症、线粒体功能障碍与青光眼发病之间的关系。

2.3.1. 遗传因素

近来有研究人员提出,POAG可能有潜在的遗传因素[21]。有几个基因被认为具有导致眼压(LMX1B、MADD、NR1H3和SEPT9)和垂直杯盘比(vertical cup-to-disc ratio, VCDR) (ABCA1、ELN、ASAP1和ATOH7)等关键内显型改变的分子机制。它们可以通过改变房水动力学和抑制炎症反应来降低眼内压,例如MADD在肿瘤坏死因子α (TNF-α)通路发挥作用,可以使TNF-α和TNF-α受体表达增加,但其与眼内压的关系目前尚不清楚[22]

除经典遗传机制外,表观遗传学在青光眼的发病中亦起到了公认的作用[23]。其主要因素,如衰老、炎症、氧化应激、药物和饮食,在基因的表达中起到了调节作用[24]。例如缺氧会刺激缺氧诱导因子(hypoxia inducible factor, HIF)反应元件(HRE)的DNA甲基化,从而增强其与HIF1-α的结合,并最终刺激小梁网中的细胞从上皮细胞过渡为间充质细胞,从而导致纤维化[25]。因此我们必须了解不同患者的表观遗传因素的不同影响,从而解释疾病的高度异质性。

青光眼是一种复杂的疾病,其机制尚不明确,遗传模式更不明确,因此强调把其作为一个整体的多基因多因素性质的疾病是非常重要的。

2.3.2. 神经炎症

神经损伤的致病机制包括谷氨酸、氮氧化物(NO)介导的神经毒性以及神经炎症和神经保护之间的失衡[26]

越来越多的证据表明,小胶质细胞、T细胞、浆细胞、巨噬细胞和神经胶质细胞等免疫效应细胞的激活和血–视网膜屏障的破坏参与了青光眼神经炎症的整个过程,并且先于视网膜损伤的发生[27] [28]。星形胶质细胞和小胶质细胞通过分子对话(释放各种细胞因子、趋化因子或补体成分)、识别与损伤有关的分子模式以及介质作用来相互沟通,既促进神经炎症,又可保持大脑稳态。这说明星形胶质细胞和小胶质细胞既有神经保护的作用,又会产生神经损伤。因此,在持续应激的状态下,星形胶质细胞和小胶质细胞可能会通过增加吞噬活性和神经毒性介质的产生成为炎症损伤的积极参与者[29]

谷氨酸是视网膜中一种重要的兴奋性神经递质,它将视觉信息从光感受器传递到RGCs。谷氨酸激活具有Ca2+通透性的N-甲基天冬氨酸(N-methyl-DAspartate, NMDA)受体,而NMDA受体过度激活会导致RGCs死亡。NMDA受体激活触发早期胶质细胞激活和炎症细胞因子的产生,如RGC变性前的TNF-α [30],从而对RGCs造成进一步损伤。Muller细胞高表达谷氨酸/天冬氨酸转运体,并积极摄取突触释放的谷氨酸。在高眼压条件下,Muller细胞的K+通道(Kir4.1)功能明显受损[31],从而使Muller细胞对谷氨酸的摄取减少[32]。此外,细胞外K+水平的升高也会触发神经元兴奋、谷氨酸释放和兴奋性毒性[33]。这些报告表明,谷氨酸和Muller细胞功能的改变可能会触发RGC损伤,但两者与IOP之间的关系仍需进一步确认。

2.3.3. 线粒体功能障碍

青光眼RGCs线粒体功能障碍的分子机制包括线粒体融合蛋白(OPA1和MFN1/2)、线粒体裂变蛋白DRP1 (S637)去磷酸化介导的线粒体碎片、ROS产生、腺苷单磷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)磷酸化介导的能量消耗、线粒体吞噬损伤和线粒体相关凋亡信号通路[34]

线粒体对维持RGC的健康和正常视觉功能至关重要,并且线粒体的结构和功能紊乱会通过能量不足、氧化应激和钙失衡途径影响RGC的存活。线粒体对于调节免疫细胞的炎症极化也至关重要,功能失调的线粒体会刺激神经胶质的炎症反应[35],并增加 RGC对炎症损伤的易感性。反过来,促炎介质又会损害线粒体,扩大线粒体功能障碍对神经退行性病变的影响[36],从而形成恶性循环,加剧青光眼的神经退行性变。因此,线粒体功能障碍和炎症毒性是神经退行性病变的“中转站”,可在青光眼中相互影响,从而导致青光眼的神经退行性病变[37] [38]。这些发现表明,代谢应激或能量危机是线粒体功能障碍介导的青光眼RGC及其轴突变性的关键机制,RGCs中线粒体的结构和功能保存将是治疗青光眼和其他视神经病变的潜在治疗策略。

3. 治疗

青光眼的主要致病因素为病理性眼压升高,因此,目前对于大多数青光眼的治疗主要侧重于减少房水的生成,增强葡萄膜巩膜或常规流出,或通过手术降低眼压[39]。但许多眼压正常的人也会出现青光眼性视网膜神经节细胞和神经纤维损失[40],并且在某些情况下,上述治疗手段并不能保持低眼压或控制视神经的变性,因此,探寻新的治疗青光眼的方法是未来仍需解决的问题。

3.1. 物理疗法

有研究表明[41],各种放松技巧,如冥想,可以使IOP下降。在一组随机对照实验中,辅以冥想治疗的患者眼压降低显著高于其他患者[42]。在另一项实验中[43],约三分之二的参与者在辅以冥想治疗6周后,IOP平均降低百分比为10%~25%。综上实验均表明,冥想可以有助于青光眼患者降低眼压。但冥想与降低IOP之间的具体联系目前尚不明确,且上述实验并未记录患者视力、视野的情况。但放松治疗或许可以成为青光眼患者的一种辅助疗法。

3.2. 药物治疗

药物降压是目前治疗青光眼最常用的方法[44]。前列腺素类似物是青光眼治疗最常用的药物,其通过降低流出阻力来降低眼压,从而使通过葡萄膜巩膜通路的房水流量增加[45],其主要眼部不良反应为结膜充血、虹膜色素加深等[46]β-受体阻滞剂分为选择性与非选择性,通过阻断睫状体上皮中的交感神经末梢,从而减少房水的产生。由于非选择性β-受体阻滞剂可引起全身副作用,主要是累及心血管和呼吸系统,因此患有支气管哮喘、窦性心动过缓、二度或三度房室传导阻滞、失代偿性充血性心力衰竭、严重过敏性鼻炎、脑灌注不足和肌无力的患者禁用[47]α2-肾上腺素能激动剂通过减少房水产生和增加房水流出降低眼压。其副作用较小,最常见的是局部过敏症状[4]。碳酸酐酶抑制剂通过抑制碳酸酐酶同工酶II,从而减少房水的产生,但由于口服碳酸酐酶抑制剂会导致全身严重不良反应,因此目前主要采用局部滴药的方式来减少不良反应的发生。Rho激酶抑制剂可以直接作用于小梁网从而增加房水流出量并且减少反应性氧化应激诱导的小梁网损伤[48],但由于其眼部副作用较明显,如结膜充血,因此其临床应用仍有待试验[49]

但由于药物治疗的有效性以及患者的依从性会随着时间的增加而下降,因此我们需要研究新型给药系统,如脂质体、纳米技术、原位凝胶技术等[50],从而改善患者依从性、提高药物的功效和有效性、减少副作用并最终保护患者视力。

由于青光眼最终导致ONH损伤,因此预防和阻止RGC损伤和凋亡至关重要。目前研究发现[51],肾上腺素能受体激动剂、钙离子通道阻滞剂、N-甲基D-天冬氨酸受体拮抗剂、抗氧化剂、抗生素、神经营养因子、间充质干细胞外泌体、线粒体相关药物、他汀类药物、RNA干扰和中医药等可以减少RGC的凋亡,并对其进行保护,但作用的具体机制及临床疗效目前仍是一个未知数。

3.3. 激光与手术治疗

当局部药物治疗不能达到足够的眼压降低的效果或者存在不能耐受的副作用及禁忌症时,需要进行激光治疗。激光小梁成形术是通过改变小梁网的形态,增加小梁网处房水的流出,从而降低IOP,其安全性与便捷性较高,可作为青光眼手术的一线治疗[52],但随着时间的推移,其降低眼压的效果会逐渐减弱 [44]

对于上述方法均无法降低眼压或病情严重的患者,则需要进行切口手术。小梁切除术与安装引流管是最常见的手术方法[53],它们为房水排出眼睛创造了一条新的途径,然而,切口手术并发症的发生,如术后浅前房、低眼压、脉络膜渗漏、瘢痕组织增生、眼内炎和前房出血[54]等,对医师仍是一个挑战。

4. 结论

青光眼作为全球不可逆视力丧失的主要原因之一,其发病机制目前仍没有较为清晰的定论,通常认为,其与生物力学、血管理论与原发性神经退行性疾病有关。针对其发病机制,目前的治疗主要为降低IOP,其方法包括物理疗法、药物治疗、激光和手术治疗。然而,在某些情况下,上述治疗手段并不能保持低眼压或控制视神经的变性,因此,我们需要进一步探寻青光眼的发病机制,从而寻找新的治疗方法,以助于缓解患者病痛、延缓患者病情发展。

NOTES

*通讯作者。

参考文献

[1] Quigley, H.A. (2006) The Number of People with Glaucoma Worldwide in 2010 and 2020. British Journal of Ophthalmology, 90, 262-267.
https://doi.org/10.1136/bjo.2005.081224
[2] Tham, Y., Li, X., Wong, T.Y., Quigley, H.A., Aung, T. and Cheng, C. (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology, 121, 2081-2090.
https://doi.org/10.1016/j.ophtha.2014.05.013
[3] Shan, S., Wu, J., Cao, J., Feng, Y., Zhou, J., Luo, Z., et al. (2024) Global Incidence and Risk Factors for Glaucoma: A Systematic Review and Meta-Analysis of Prospective Studies. Journal of Global Health, 14, Article ID: 04252
https://doi.org/10.7189/jogh.14.04252
[4] Stein, J.D., Khawaja, A.P. and Weizer, J.S. (2021) Glaucoma in Adults—Screening, Diagnosis, and Management: A Review. JAMA, 325, 164-174.
https://doi.org/10.1001/jama.2020.21899
[5] Jindal, V. (2013) Glaucoma: An Extension of Various Chronic Neurodegenerative Disorders. Molecular Neurobiology, 48, 186-189.
https://doi.org/10.1007/s12035-013-8416-8
[6] Wareham, L.K., Liddelow, S.A., Temple, S., Benowitz, L.I., Di Polo, A., Wellington, C., et al. (2022) Solving Neurodegeneration: Common Mechanisms and Strategies for New Treatments. Molecular Neurodegeneration, 17, Article No. 23.
https://doi.org/10.1186/s13024-022-00524-0
[7] Carreon, T., van der Merwe, E., Fellman, R.L., Johnstone, M. and Bhattacharya, S.K. (2017) Aqueous Outflow—A Continuum from Trabecular Meshwork to Episcleral Veins. Progress in Retinal and Eye Research, 57, 108-133.
https://doi.org/10.1016/j.preteyeres.2016.12.004
[8] Last, J.A., Pan, T., Ding, Y., Reilly, C.M., Keller, K., Acott, T.S., et al. (2011) Elastic Modulus Determination of Normal and Glaucomatous Human Trabecular Meshwork. Investigative Opthalmology & Visual Science, 52, 2147-2152.
https://doi.org/10.1167/iovs.10-6342
[9] Munaron, L. (2011) Shuffling the Cards in Signal Transduction: Calcium, Arachidonic Acid and Mechanosensitivity. World Journal of Biological Chemistry, 2, 59-66.
https://doi.org/10.4331/wjbc.v2.i4.59
[10] Tamm, E.R. (2009) The Trabecular Meshwork Outflow Pathways: Structural and Functional Aspects. Experimental Eye Research, 88, 648-655.
https://doi.org/10.1016/j.exer.2009.02.007
[11] Morozumi, W., Aoshima, K., Inagaki, S., Iwata, Y., Nakamura, S., Hara, H., et al. (2021) Piezo 1 Is Involved in Intraocular Pressure Regulation. Journal of Pharmacological Sciences, 147, 211-221.
https://doi.org/10.1016/j.jphs.2021.06.005
[12] Faralli, J.A., Filla, M.S. and Peters, D.M. (2019) Role of Fibronectin in Primary Open Angle Glaucoma. Cells, 8, Article 1518.
https://doi.org/10.3390/cells8121518
[13] Quigley, H.A. and Cone, F.E. (2013) Development of Diagnostic and Treatment Strategies for Glaucoma through Understanding and Modification of Scleral and Lamina Cribrosa Connective Tissue. Cell and Tissue Research, 353, 231-244.
https://doi.org/10.1007/s00441-013-1603-0
[14] Nakazawa, T. and Fukuchi, T. (2020) What Is Glaucomatous Optic Neuropathy? Japanese Journal of Ophthalmology, 64, 243-249.
https://doi.org/10.1007/s10384-020-00736-1
[15] Alarcon-Martinez, L., Shiga, Y., Villafranca-Baughman, D., Cueva Vargas, J.L., Vidal Paredes, I.A., Quintero, H., et al. (2023) Neurovascular Dysfunction in Glaucoma. Progress in Retinal and Eye Research, 97, Article ID: 101217.
https://doi.org/10.1016/j.preteyeres.2023.101217
[16] Casson, R.J., Chidlow, G., Crowston, J.G., Williams, P.A. and Wood, J.P.M. (2021) Retinal Energy Metabolism in Health and Glaucoma. Progress in Retinal and Eye Research, 81, Article ID: 100881.
https://doi.org/10.1016/j.preteyeres.2020.100881
[17] Wareham, L.K. and Calkins, D.J. (2020) The Neurovascular Unit in Glaucomatous Neurodegeneration. Frontiers in Cell and Developmental Biology, 8, Article 452.
https://doi.org/10.3389/fcell.2020.00452
[18] Pillunat, K.R., Ventzke, S., Spoerl, E., Furashova, O., Stodtmeister, R. and Pillunat, L.E. (2014) Central Retinal Venous Pulsation Pressure in Different Stages of Primary Open-Angle Glaucoma. British Journal of Ophthalmology, 98, 1374-1378.
https://doi.org/10.1136/bjophthalmol-2014-305126
[19] Leeman, M. and Kestelyn, P. (2019) Glaucoma and Blood Pressure. Hypertension, 73, 944-950.
https://doi.org/10.1161/hypertensionaha.118.11507
[20] Sen, S., Saxena, R., Tripathi, M., Vibha, D. and Dhiman, R. (2020) Neurodegeneration in Alzheimer’s Disease and Glaucoma: Overlaps and Missing Links. Eye, 34, 1546-1553.
https://doi.org/10.1038/s41433-020-0836-x
[21] Asefa, N.G., Neustaeter, A., Jansonius, N.M. and Snieder, H. (2019) Heritability of Glaucoma and Glaucoma-Related Endophenotypes: Systematic Review and Meta-Analysis. Survey of Ophthalmology, 64, 835-851.
https://doi.org/10.1016/j.survophthal.2019.06.002
[22] Zukerman, R., Harris, A., Oddone, F., Siesky, B., Verticchio Vercellin, A. and Ciulla, T.A. (2021) Glaucoma Heritability: Molecular Mechanisms of Disease. Genes, 12, Article 1135.
https://doi.org/10.3390/genes12081135
[23] D’Esposito, F., Gagliano, C., Bloom, P., Cordeiro, M., Avitabile, A., Gagliano, G., et al. (2024) Epigenetics in Glaucoma. Medicina, 60, Article 905.
https://doi.org/10.3390/medicina60060905
[24] Alkozi, H.A., Franco, R. and Pintor, J.J. (2017) Epigenetics in the Eye: An Overview of the Most Relevant Ocular Diseases. Frontiers in Genetics, 8, Article 144.
https://doi.org/10.3389/fgene.2017.00144
[25] McDonnell, F., O’Brien, C. and Wallace, D. (2014) The Role of Epigenetics in the Fibrotic Processes Associated with Glaucoma. Journal of Ophthalmology, 2014, Article ID: 750459.
https://doi.org/10.1155/2014/750459
[26] Geyer, O. and Levo, Y. (2020) Glaucoma Is an Autoimmune Disease. Autoimmunity Reviews, 19, Article ID: 102535.
https://doi.org/10.1016/j.autrev.2020.102535
[27] Wang, L. and Wei, X. (2021) T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration. Frontiers in Immunology, 12, Article 803485.
https://doi.org/10.3389/fimmu.2021.803485
[28] Wei, X., Cho, K., Thee, E.F., Jager, M.J. and Chen, D.F. (2018) Neuroinflammation and Microglia in Glaucoma: Time for a Paradigm Shift. Journal of Neuroscience Research, 97, 70-76.
https://doi.org/10.1002/jnr.24256
[29] Tezel, G. (2022) Molecular Regulation of Neuroinflammation in Glaucoma: Current Knowledge and the Ongoing Search for New Treatment Targets. Progress in Retinal and Eye Research, 87, Article ID: 100998.
https://doi.org/10.1016/j.preteyeres.2021.100998
[30] Takeda, A., Shinozaki, Y., Kashiwagi, K., Ohno, N., Eto, K., Wake, H., et al. (2018) Microglia Mediate Non-Cell-Autonomous Cell Death of Retinal Ganglion Cells. Glia, 66, 2366-2384.
https://doi.org/10.1002/glia.23475
[31] Harada, T., Harada, C., Nakamura, K., Quah, H.A., Okumura, A., Namekata, K., et al. (2007) The Potential Role of Glutamate Transporters in the Pathogenesis of Normal Tension Glaucoma. Journal of Clinical Investigation, 117, 1763-1770.
https://doi.org/10.1172/jci30178
[32] Ji, M., Miao, Y., Dong, L., Chen, J., Mo, X., Jiang, S., et al. (2012) Group I mGluR-Mediated Inhibition of Kir Channels Contributes to Retinal Müller Cell Gliosis in a Rat Chronic Ocular Hypertension Model. The Journal of Neuroscience, 32, 12744-12755.
https://doi.org/10.1523/jneurosci.1291-12.2012
[33] Shinozaki, Y. and Koizumi, S. (2021) Potential Roles of Astrocytes and Müller Cells in the Pathogenesis of Glaucoma. Journal of Pharmacological Sciences, 145, 262-267.
https://doi.org/10.1016/j.jphs.2020.12.009
[34] Ju, W., Perkins, G.A., Kim, K., Bastola, T., Choi, W. and Choi, S. (2023) Glaucomatous Optic Neuropathy: Mitochondrial Dynamics, Dysfunction and Protection in Retinal Ganglion Cells. Progress in Retinal and Eye Research, 95, Article ID: 101136.
https://doi.org/10.1016/j.preteyeres.2022.101136
[35] Bader, V. and Winklhofer, K.F. (2020) Mitochondria at the Interface between Neurodegeneration and Neuroinflammation. Seminars in Cell & Developmental Biology, 99, 163-171.
https://doi.org/10.1016/j.semcdb.2019.05.028
[36] van Horssen, J., van Schaik, P. and Witte, M. (2019) Inflammation and Mitochondrial Dysfunction: A Vicious Circle in Neurodegenerative Disorders? Neuroscience Letters, 710, Article ID: 132931.
https://doi.org/10.1016/j.neulet.2017.06.050
[37] Duarte, J.N. (2021) Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. Journal of Ophthalmology, 2021, Article ID: 4581909.
https://doi.org/10.1155/2021/4581909
[38] Tezel, G. (2021) Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells, 10, Article 1372.
https://doi.org/10.3390/cells10061372
[39] He, S., Stankowska, D.L., Ellis, D.Z., Krishnamoorthy, R.R. and Yorio, T. (2018) Targets of Neuroprotection in Glaucoma. Journal of Ocular Pharmacology and Therapeutics, 34, 85-106.
https://doi.org/10.1089/jop.2017.0041
[40] Weinreb, R.N., Leung, C.K.S., Crowston, J.G., Medeiros, F.A., Friedman, D.S., Wiggs, J.L., et al. (2016) Primary Open-Angle Glaucoma. Nature Reviews Disease Primers, 2, Article No. 16067.
https://doi.org/10.1038/nrdp.2016.67
[41] Zaher, O., Kuchtaruk, A.A., McGinnis, E.S., Paunic, M. and Malvankar-Mehta, M.S. (2024) Effect of Various Relaxation Techniques on the Intraocular Pressure of Patients with Glaucoma: Systematic Review and Meta-Analysis. Canadian Journal of Ophthalmology, 59, e343-e349.
https://doi.org/10.1016/j.jcjo.2023.06.007
[42] Dada, T., Bhai, N., Midha, N., Shakrawal, J., Kumar, M., Chaurasia, P., et al. (2021) Effect of Mindfulness Meditation on Intraocular Pressure and Trabecular Meshwork Gene Expression: A Randomized Controlled Trial. American Journal of Ophthalmology, 223, 308-321.
https://doi.org/10.1016/j.ajo.2020.10.012
[43] Dada, T., Lahri, B., Mahalingam, K., Shakrawal, J., Kumar, A., Sihota, R., et al. (2021) Beneficial Effect of Mindfulness Based Stress Reduction on Optic Disc Perfusion in Primary Open Angle Glaucoma: A Randomized Controlled Trial. Journal of Traditional and Complementary Medicine, 11, 581-586.
https://doi.org/10.1016/j.jtcme.2021.06.006
[44] Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The Pathophysiology and Treatment of Glaucoma. JAMA, 311, 1901-1911.
https://doi.org/10.1001/jama.2014.3192
[45] Lindén, C. and Alm, A. (1999) Prostaglandin Analogues in the Treatment of Glaucoma. Drugs & Aging, 14, 387-398.
https://doi.org/10.2165/00002512-199914050-00006
[46] Alm, A., Grierson, I. and Shields, M.B. (2008) Side Effects Associated with Prostaglandin Analog Therapy. Survey of Ophthalmology, 53, S93-S105.
https://doi.org/10.1016/j.survophthal.2008.08.004
[47] Brooks, A.M.V. and Gillies, W.E. (1992) Ocular β-Blockers in Glaucoma Management. Clinical Pharmacological Aspects. Drugs & Aging, 2, 208-221.
https://doi.org/10.2165/00002512-199202030-00005
[48] Clement Freiberg, J., von Spreckelsen, A., Kolko, M., Azuara-Blanco, A. and Virgili, G. (2022) Rho Kinase Inhibitor for Primary Open-Angle Glaucoma and Ocular Hypertension. Cochrane Database of Systematic Reviews, 6, CD013817.
https://doi.org/10.1002/14651858.cd013817.pub2
[49] Kahook, M.Y., Serle, J.B., Mah, F.S., Kim, T., Raizman, M.B., Heah, T., et al. (2019) Long-Term Safety and Ocular Hypotensive Efficacy Evaluation of Netarsudil Ophthalmic Solution: Rho Kinase Elevated IOP Treatment Trial (Rocket-2). American Journal of Ophthalmology, 200, 130-137.
https://doi.org/10.1016/j.ajo.2019.01.003
[50] Yadav, K.S., Rajpurohit, R. and Sharma, S. (2019) Glaucoma: Current Treatment and Impact of Advanced Drug Delivery Systems. Life Sciences, 221, 362-376.
https://doi.org/10.1016/j.lfs.2019.02.029
[51] Liu, X.Y. and Sun, X.H. (2024) Research Progress of Retinal Neuroprotective Drugs for Glaucoma. Chinese Journal of Ophthalmology, 60, 860-869.
[52] Gazzard, G., Konstantakopoulou, E., Garway-Heath, D., Garg, A., Vickerstaff, V., Hunter, R., et al. (2019) Selective Laser Trabeculoplasty versus Eye Drops for First-Line Treatment of Ocular Hypertension and Glaucoma (Light): A Multicentre Randomised Controlled Trial. The Lancet, 393, 1505-1516.
https://doi.org/10.1016/s0140-6736(18)32213-x
[53] Lim, R. (2022) The Surgical Management of Glaucoma: A Review. Clinical & Experimental Ophthalmology, 50, 213-231.
https://doi.org/10.1111/ceo.14028
[54] Gedde, S.J., Herndon, L.W., Brandt, J.D., Budenz, D.L., Feuer, W.J. and Schiffman, J.C. (2012) Postoperative Complications in the Tube versus Trabeculectomy (TVT) Study during Five Years of Follow-Up. American Journal of Ophthalmology, 153, 804-814.e1.
https://doi.org/10.1016/j.ajo.2011.10.024