脑氧饱和度在胸外科单肺通气手术中应用的研究进展
Research Progress in the Use of Cerebral Oxygen Saturation in Thoracic Surgery with One-Lung Ventilation
摘要: 大脑具有高代谢、高氧耗、有限的能量储存能力及低缺氧耐受性的特点,维持充足的血液灌注和氧气输送对大脑代谢至关重要,脑缺血可导致脑血管系统的结构和功能损伤,从而导致增加术中术后认知功能障碍以及神经系统并发症的风险。近年胸外科治疗技术得到了快速发展,支气管麻醉也得到了广泛的应用,然而,单肺通气(one-lung ventilation, OLV)过程中导致的肺内分流及通气血流比值失调,可能引发低氧血症。脑氧饱和度(regional cerebral oxygen saturation, rScO2)的实时监测,可以有效地反映脑氧合水平,为诊断和治疗提供有价值的信息,对于维持大脑足够的血液灌注和供氧至关重要。
Abstract: The brain is characterized by high metabolism, high oxygen consumption, limited energy storage capacity and low hypoxia tolerance. Maintaining adequate blood perfusion and oxygen delivery is crucial for brain metabolism, and cerebral ischemia can lead to structural and functional damage of the cerebrovascular system, thus increasing the risk of cognitive dysfunction and neurological complications. In recent years, thoracic surgical treatment techniques have been rapidly developed and bronchial anesthesia has been widely used; however, the intrapulmonary shunt and ventilation-to-blood flow ratio imbalance caused during one-lung ventilation (OLV) may trigger hypoxemia. Real-time monitoring of cerebral oxygen saturation (rScO2) can effectively reflect the level of cerebral oxygenation and provide valuable information for diagnosis and treatment, which is essential for maintaining adequate blood perfusion and oxygenation of the brain.
文章引用:张雨欣, 陶建平. 脑氧饱和度在胸外科单肺通气手术中应用的研究进展[J]. 临床个性化医学, 2025, 4(2): 287-293. https://doi.org/10.12677/jcpm.2025.42176

1. 引言

随着胸腔镜手术的广泛开展,单肺通气在临床上得到了越来越多的运用,然而单肺通气作为一种非生理通气模式,术中很可能发生通气血流比值失调,严重者甚至出现低氧血症。而大脑对缺氧极其敏感,在此过程中可能发生氧供需失衡,导致术后神经系统并发症。本文对针对脑氧饱和度(cerebral oxygen saturation, rScO2)监测技术在胸外科领域的应用,结合国内外相关研究进展做一综述,旨在为该指标的临床应用与研究提供参考。

2. 脑氧饱和度概况

2.1. 原理

近红外光谱(near infrared spectroscopy, NIRS)是由Jobsis在1977年首创的一种光学神经成像技术[1],具有无创、操作简单、成本低、便携、灵敏、连续、可实时监测等特点。其主要原理如下:(1) 近红外光可以穿过头部组织,因为人类头骨对这个光学窗口(650~950 nm)的光是相对透明的。(2) 基于近红外光学窗口内被检测组织中氧合血红蛋白和还原血红蛋白的不同光谱吸收特征,通过计算局部组织内二者的比值,从而得出局部组织的氧饱和度,来反映局部组织的氧供需平衡。其通过加权平均测量脑内和外周组织中静脉、动脉和毛细血管中的血红蛋白变化从而反映组织氧饱和度,在实际监测中,一般将rScO2定义为目标监测部位血红蛋白携带氧气的百分比[2] [3]

2.2. 优势

其他脑血氧饱和度监测方法包括颈静脉血氧饱和度(jugular bulb venous oxygen saturation, SjvO2)监测、脑电图(electroencephalogram, EEG)、事件相关电位(event-related potentials, ERPs)、经颅多普勒超声(transcranial doppler ultrasonography, TCD)、脑组织氧分压(brain tissue partial pressure of oxygen, PbtO2)等[4]。但鉴于以上方法大多需要有创操作或属于间接测量技术,不能实时反映脑血氧供需平衡情况,而rScO2的监测因其无创、直接、实时、连续等特点,在临床上运用具有独特的优势。

2.3. 临床指导意义

监测rScO2有利于早期识别脑组织缺血缺氧的发生,早期干预治疗,避免缺氧或缺血引起的继发性脑损伤,减少因长期低脑氧合而引起的并发症的发生,以保护脑功能,改善术后认知功能。相关研究表明近红外光谱仪可以较脉搏血氧仪更早更快地检测到缺氧的影响,Cheung等[5]在诱导急性缺氧的小型猪模型中发现,缺氧开始后近红外光谱测量值在5.3 ± 0.4 s内发生变化,而脉搏血氧饱和度测量值在14.9 ± 1.0 s内才发生变化。Tobias [6]在呼吸暂停的气道激光手术也发现,当脉搏氧饱和度下降5% (从起始值100%下降至95%)时,rScO2下降16% ± 4% rScO2降低10%的时间为138 ± 29 s,而脉搏氧饱和度降低10%所需的时间为189 ± 64 s,大脑极高的耗氧量使其比脉搏血氧计更适合于低氧血症的早期检测,因此用近红外光谱仪进行rScO2监测比标准脉搏血氧测定法能更早地检测到氧合变化。

2.4. 参考范围

目前,近红外光谱监测的正常值还没有金标准,关于rScO2值的正常范围或缺血和缺氧的临界阈值尚无共识,且测量结果与选用设备密切相关,不同设备之间在检测去饱和事件时可能存在差异,例如在三种美国食品和药物管理局(food and drug administration, FDA)批准的区域血氧监测仪中,FORE-SIGHT系统及EQUANOX系统组织的动脉和静脉贡献设置为30/70,而INVOS系统设置为25/75,光模块规格的差异(如发射器–探测器间距、光源、探测器、光波长等)也可能影响结果[7]。在几项随机对照实验中,临床医生通过监测受试者的rScO2下降的临界值,通过干预以逆转rScO2,这些研究采用的阈值为相对于基线下降20%至25%,或绝对值为50%至60%,无论使用相对阈值还是绝对阈值,设备之间在检测去饱和事件时可能存在差异[8]-[10]。因此,有些专家认为监测脑氧饱和度的动态变化及持续时间比绝对值更有临床意义[11]

2.5. 临床应用

rScO2监测被广泛应用在围手术期各种大手术中,如心脏手术、颈动脉手术、胸部手术、大规模骨科手术和腹部手术、沙滩椅位手术中。同时也可用于评估心跳骤停患者复苏期间的脑氧合,改善的rScO2预示着心跳骤停患者有更好的生存率和自发循环恢复可能[12]

2.6. 影响因素

血红蛋白浓度、探头监测部位、头围、颅骨厚度、体温、血压与心输出量、体位、年龄、二氧化碳分压、颅内压等均可影响脑氧饱和度数值。Papadopoulos等[13]指出发现年龄与rScO2值存在负相关关系。在Mutch等[14]的研究中,在氧张力不变的情况下,rScO2随二氧化碳张力变化而变化,当二氧化碳高于基线值15 mmHg时,可以观察到最大的rScO2。头低位后rScO2增加,而侧卧位不会引起左右大脑半球脑氧饱和度的差异[15]

3. 脑氧饱和度与单肺通气

3.1. 单肺通气病理生理改变

单肺通气是胸外科手术最常见的麻醉管理方式,利用双腔支气管导管或支气管封堵管将左右肺分隔开,既可以扩大术者的手术操作空间,还可以确保通气维持氧合,同时也能防止患侧肺血液分泌物等流入健侧,防止交叉感染以保护健侧肺。然而,单肺通气有别于正常生理呼吸模式,非通气侧肺完全萎陷,但仍有部分血流,这部分血液未能得到氧合而造成静脉血掺杂;通气侧肺由于重力作用虽接受大部分血流及全部的通气量,但仍存在通气/血流比值失调。术中侧卧位也会减少通气侧肺的功能残气量;剖胸侧胸腔内负压消失,腔静脉回心血量减少,心排量相应也减少。一系列的生理紊乱均可能导致术中发生低氧血症、低血压、器官灌注减少等病理改变。缺氧性肺血管收缩(hypoxic pulmonary vasoconstriction, HPV)作为一种代偿性保护机制,非通气侧肺泡由于缺氧使得肺血管阻力增加,从而减少该区域的血流量,血流转向通气侧肺,可改善通气血流比值,减少分流,维持氧合。但麻醉期间由于吸入性麻醉药、血管扩张药等的运用,均可抑制HPV,所以术中仍可能发生低氧血症。

在单肺通气期间,一系列的病理改变均可能促进氧自由基和炎性因子的产生与释放,导致发生氧化应激相关损伤和炎症反应,例如缺氧、HPV所致的低灌注、肺组织在手术过程中反复塌陷和膨胀导致的缺血再灌注损伤、呼吸机所致的气压伤、通气侧肺泡血管的过度扩张和压迫、手术操作等[16] [17]。这些反应不仅会导致肺组织的损伤,还可能加剧全身的炎症反应,增加术后并发症的风险。Verhage [18]提出在胸腔镜食管癌根治术中对塌陷侧肺行持续气道正压通气(continuous positive airway pressure, CPAP),能有效降低塌陷侧中白介素-1a、白介素-1b、白介素-8、白介素-10、肿瘤坏死因子-α、巨噬细胞炎症蛋白1a、肺部活化调节趋化因子等炎性介质。Theroux [19]在动物实验中发现:单肺通气开始前45~60 min静脉注射甲基泼尼松龙,可以观测到血浆中炎症标志物水平低于对照组。Ju [20]提出术前吸入布地奈德雾化同样有效,术中地奈德组的气道峰值压和平台压较对照组低,而动态顺应性更高,肺再扩张后30 min的支气管肺泡灌洗液样本中炎症因子水平降低。周小伟[21]提出通过远隔器官缺血预处理,可以激活机体内的保护性信号通路,减轻肺损伤及炎症反应。

3.2. 单肺通气与低脑氧饱和度及其预防

大量研究表明,在胸外科手术中使用单肺通气可降低rScO2。在Kazan等[22]的研究中,接受单肺通气56%的患者rScO2比基线值下降了20% (相当于16%的绝对下降),56%的患者rScO2绝对值低于65%,10%的患者rScO2绝对值低于55%,而SLV期间的rScO2绝对值降低,会显著增加术后并发症的发生风险(表现为Clavien和SOFA (非呼吸)评分的增高)。国内学者也得出同样结论:在胸科手术单肺通气期间,rScO2低于基线值15%、20%发生率分别为67%和60%。因此,在胸外科手术中监测rScO2并改善氧合,避免其在单肺通气期间恶化对患者是有益的[23]

保护性肺通气策略(lung protective ventilation strategy, LPVS)是一种治疗呼吸机相关肺损伤的方法,它包括低潮气量,适度的呼气末正压和复张操作策略,LPVS可减轻单肺通气时肺功能损害,提高血氧结合效率,有效防止肺泡萎陷和肺不张,抑制肺水肿,在临床中广泛应用于单肺通气[24]。压力控制通气具有降低气道压力和减少肺内分流的优势,可以降低呼吸机所致肺损伤的风险和改善氧合,且其产生递减流量波形可使潮气量分布更加均匀,有利于不充分通气肺单位的补充,此外,压控通气高初始流速引起的肺泡快速膨胀避免了由于气体分布不均而造成的局部过胀,使通气灌注得到更好的匹配[25]。Shen等[26]提出氟比洛芬酯对单肺通气有保护作用,手术开始前20 min注射氟比洛芬酯,发现在单肺通气后15、30和60 min能显著改善术中rScO2平均值和动脉血氧分压(arterial partial pressure of oxygen, PaO2)值,考虑由于氟比洛芬酯通过抑制血栓素A2/前列腺素I2的合成,从而改变肺动脉压,减少肺内分流。Xia等[27]认为右美托咪啶联合异氟醚可抑制氧化应激,增加一氧化氮释放,减少分肺内流,改善单肺通气时的氧合。在李培艺[23]的实验中,小剂量肾上腺素在单肺通气中甚至可以增加rScO2,肾上腺素组无低脑氧事件发生,而生理盐水组有66.7%的患者出现低脑氧,考虑与小剂量肾上腺素激动β受体,增加心排量,从而增加脑血流及脑氧供有关。在刘宇等[28]的研究中,采用目标导向液体治疗,可有效增加rScO2的平均值、最小值,且rScO2波动幅度较小,目标导向液体治疗可有效地维持脑组织供氧状态。

3.3. 低脑氧饱和度与认知功能障碍

术后认知功能障碍(postoperative cognitive dysfunction, POCD)是围术期的一种常见并发症,表现为认知状况和行为的一系列异常,临床上常用蒙特利尔认知评估(MoCA)、韦氏成人智力量表(WAIS)和简易精神状态检查(MMSE)等认知功能量表对POCD进行诊断[29]。目前已经有多项研究证实术中低脑氧饱和度与术后认知功能障碍呈正相关,且与暴露于低脑氧的时间相关。POCD严重影响患者的生活质量,延长住院时间,增加医疗费用和术后死亡率,因此早期诊断和预防POCD对患者很重要。

Tang等[30]提出脑氧饱和度下降与发生早期(术后3 h内) POCD之间存在正相关,相关系数范围为0.27~0.3,具体取决于暴露于低脑氧饱和度的时间及严重程度,即使短时间内rScO2绝对值为65%,POCD的风险也会增加1倍,当术中rScO2绝对值低于65%且持续5 min,术后发生PCOD的风险增加2倍,若rScO2低于60%且持续30 min,则术后PCOD风险增加10倍,其中90%的患者在术后24小时能恢复正常认知功能。Cui等[31]采用多变量logistic回归分析发现,20%的患者在开胸后出现POCD,术中最小rScO2与开胸后POCD无相关性,当左侧rScO2 < 90%基线,或右侧rScO2 < 85%基线且持续时间达到15秒或更久,与术后POCD的风险增加有关。

Teng等[32]使用基于rScO2监测的目标导向治疗,术中通过脑氧监测维持rScO2不低于基线的10%,能改善老年患者的脑氧并降低术后PCOD的发生率,目标导向组中最小rScO2和平均rScO2均高于对照组,术后3d PCOD发生率较对照组降低(8.5% vs 23.3%)。

4. 展望与小结

近红外光谱也被应用于其他领域,如在体外循环心脏手术、肝脏手术及危重患儿监测中,肾脏氧饱和度测量值的降低可以预测术后急性肾损伤的发生发展[33] [34]。在诊断早产儿腹部及其相关疾病,如坏死性小肠结肠炎、喂养不耐受等方面也有一定优势,可预测早产儿疾病,改善其预后和生存质量[35],rScO2在早产儿脑损伤患者运用中也有一定临床价值,rScO2监测结合振幅整合脑电图评分,能更好地预测早产儿脑损伤神经行为发育异常风险,通过早期识别,临床早期干预,能防止或减少后遗症发生[36]

目前还没有公认的rScO2正常范围,也没有确定脑缺血或脑缺氧阈值的金标准,故rScO2监测设备一般只用于趋势分析。随着技术的进步,无创、无痛的医疗程序逐渐成为人们追求的目标。越来越多的证据表明,近红外光谱监测具有广阔的应用前景。近红外光谱具有无创、易实现、成本低、操作简单、可连续监测等优点,这些特点都与未来的发展趋势相吻合。

参考文献

[1] Jöbsis, F.F. (1977) Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science, 198, 1264-1267.
https://doi.org/10.1126/science.929199
[2] Ferrari, M. and Quaresima, V. (2012) A Brief Review on the History of Human Functional Near-Infrared Spectroscopy (fNIRS) Development and Fields of Application. NeuroImage, 63, 921-935.
https://doi.org/10.1016/j.neuroimage.2012.03.049
[3] Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., et al. (2018) The Present and Future Use of Functional Near‐Infrared Spectroscopy (fNIRS) for Cognitive Neuroscience. Annals of the New York Academy of Sciences, 1464, 5-29.
https://doi.org/10.1111/nyas.13948
[4] Zhong, W., Ji, Z. and Sun, C. (2021) A Review of Monitoring Methods for Cerebral Blood Oxygen Saturation. Healthcare, 9, Article No. 1104.
https://doi.org/10.3390/healthcare9091104
[5] Cheung, A., Tu, L., Macnab, A., Kwon, B.K. and Shadgan, B. (2022) Detection of Hypoxia by Near-Infrared Spectroscopy and Pulse Oximetry: A Comparative Study. Journal of Biomedical Optics, 27, Article ID: 077001.
https://doi.org/10.1117/1.jbo.27.7.077001
[6] Tobias, J.D. (2008) Cerebral Oximetry Monitoring with near Infrared Spectroscopy Detects Alterations in Oxygenation before Pulse Oximetry. Journal of Intensive Care Medicine, 23, 384-388.
https://doi.org/10.1177/0885066608324380
[7] Tomlin, K.L., Neitenbach, A. and Borg, U. (2017) Detection of Critical Cerebral Desaturation Thresholds by Three Regional Oximeters during Hypoxia: A Pilot Study in Healthy Volunteers. BMC Anesthesiology, 17, Article No. 6.
https://doi.org/10.1186/s12871-016-0298-7
[8] Kara, I., Erkin, A., Saclı, H., Demirtas, M., Percin, B., Diler, M.S., et al. (2015) The Effects of Near-Infrared Spectroscopy on the Neurocognitive Functions in the Patients Undergoing Coronary Artery Bypass Grafting with Asymptomatic Carotid Artery Disease: A Randomized Prospective Study. Annals of Thoracic and Cardiovascular Surgery, 21, 544-550.
https://doi.org/10.5761/atcs.oa.15-00118
[9] Vretzakis, G., Georgopoulou, S., Stamoulis, K., Tassoudis, V., Mikroulis, D., Giannoukas, A., et al. (2013) Monitoring of Brain Oxygen Saturation (INVOS) in a Protocol to Direct Blood Transfusions during Cardiac Surgery: A Prospective Randomized Clinical Trial. Journal of Cardiothoracic Surgery, 8, Article No. 145.
https://doi.org/10.1186/1749-8090-8-145
[10] Colak, Z., Borojevic, M., Bogovic, A., Ivancan, V., Biocina, B. and Majeric-Kogler, V. (2014) Influence of Intraoperative Cerebral Oximetry Monitoring on Neurocognitive Function after Coronary Artery Bypass Surgery: A Randomized, Prospective Study. European Journal of Cardio-Thoracic Surgery, 47, 447-454.
https://doi.org/10.1093/ejcts/ezu193
[11] Denault, A., Deschamps, A. and Murkin, J.M. (2007) A Proposed Algorithm for the Intraoperative Use of Cerebral Near-Infrared Spectroscopy. Seminars in Cardiothoracic and Vascular Anesthesia, 11, 274-281.
https://doi.org/10.1177/1089253207311685
[12] Parnia, S., Yang, J., Nguyen, R., Ahn, A., Zhu, J., Inigo-Santiago, L., et al. (2016) Cerebral Oximetry during Cardiac Arrest: A Multicenter Study of Neurologic Outcomes and Survival. Critical Care Medicine, 44, 1663-1674.
https://doi.org/10.1097/ccm.0000000000001723
[13] Papadopoulos, G., Karanikolas, M., Liarmakopoulou, A. and Berris, A. (2011) Baseline Cerebral Oximetry Values in Elderly Patients with Hip Fractures: A Prospective Observational Study. Injury, 42, 1328-1332.
https://doi.org/10.1016/j.injury.2011.04.015
[14] Mutch, W.A.C., Patel, S.R., Shahidi, A.M., Kulasekara, S.I., Fisher, J.A., Duffin, J., et al. (2013) Cerebral Oxygen Saturation: Graded Response to Carbon Dioxide with Isoxia and Graded Response to Oxygen with Isocapnia. PLOS ONE, 8, e57881.
https://doi.org/10.1371/journal.pone.0057881
[15] Kamiya, I., Kim, C., Kageyama, A. and Sakamoto, A. (2023) Lateral Position Does Not Cause an Interhemicerebral Difference of Cerebral Hemodynamic in Healthy Adult Volunteers. Physiological Reports, 11, e15685.
https://doi.org/10.14814/phy2.15685
[16] Chen, K. (2022) Commentary: Pay Attention to the Comprehensive Prevention of Acute Lung Injury after Esophagectomy. Seminars in Thoracic and Cardiovascular Surgery, 34, 747-749.
https://doi.org/10.1053/j.semtcvs.2021.04.041
[17] Sugasawa, Y., Yamaguchi, K., Kumakura, S., Murakami, T., Kugimiya, T., Suzuki, K., et al. (2011) The Effect of One-Lung Ventilation upon Pulmonary Inflammatory Responses during Lung Resection. Journal of Anesthesia, 25, 170-177.
https://doi.org/10.1007/s00540-011-1100-0
[18] Verhage, R.J., Croese, A.C. and van Hillegersberg, R. (2015) Reduced Local Immune Response with Continuous Positive Airway Pressure during One-Lung Ventilation for Oesophagectomy. British Journal of Anaesthesia, 114, 1009-1010.
https://doi.org/10.1093/bja/aev130
[19] Theroux, M.C., Olivant, A., Lim, D., Bernardi, J.P., Costarino, A.T., Shaffer, T.H., et al. (2008) Low Dose Methylprednisolone Prophylaxis to Reduce Inflammation during One‐Lung Ventilation. Pediatric Anesthesia, 18, 857-864.
https://doi.org/10.1111/j.1460-9592.2008.02667.x
[20] Ju, N.Y., Gao, H., Huang, W., Niu, F.F., Lan, W.X., Li, F., et al. (2013) Therapeutic Effect of Inhaled Budesonide (Pulmicort® Turbuhaler) on the Inflammatory Response to One‐Lung Ventilation. Anaesthesia, 69, 14-23.
https://doi.org/10.1111/anae.12479
[21] 周小伟, 万志渝, 刘雨鑫, 等. 远隔缺血预处理减轻胸腔镜食管癌根治术患者肺损伤及炎症反应程度的作用观察[J]. 临床和实验医学杂志, 2024, 23(19): 2049-2053.
[22] Kazan, R., Bracco, D. and Hemmerling, T.M. (2009) Reduced Cerebral Oxygen Saturation Measured by Absolute Cerebral Oximetry during Thoracic Surgery Correlates with Postoperative Complications. British Journal of Anaesthesia, 103, 811-816.
https://doi.org/10.1093/bja/aep309
[23] 李培艺, 魏蔚. 单肺通气期间泵注小剂量肾上腺素对脑氧饱和度及苏醒时间影响的随机对照试验[J]. 中国胸心血管外科临床杂志, 2018, 25(3): 208-212.
[24] O’Gara, B. and Talmor, D. (2018) Perioperative Lung Protective Ventilation. BMJ, 362, k3030.
https://doi.org/10.1136/bmj.k3030
[25] Kim, K.N., Kim, D.W., Jeong, M.A., Sin, Y.H. and Lee, S.K. (2015) Comparison of Pressure-Controlled Ventilation with Volume-Controlled Ventilation during One-Lung Ventilation: A Systematic Review and Meta-Analysis. BMC Anesthesiology, 16, Article No. 72.
https://doi.org/10.1186/s12871-016-0238-6
[26] Shen, L., Chen, J., Yang, X., Hu, J., Gao, W., Chai, X., et al. (2022) Flurbiprofen Used in One-Lung Ventilation Improves Intraoperative Regional Cerebral Oxygen Saturation and Reduces the Incidence of Postoperative Delirium. Frontiers in Psychiatry, 13, Article ID: 889637.
https://doi.org/10.3389/fpsyt.2022.889637
[27] Xia, R., Xu, J., Yin, H., Wu, H., Xia, Z., Zhou, D., et al. (2015) Intravenous Infusion of Dexmedetomidine Combined Isoflurane Inhalation Reduces Oxidative Stress and Potentiates Hypoxia Pulmonary Vasoconstriction during One‐Lung Ventilation in Patients. Mediators of Inflammation, 2015, Article ID: 238041.
https://doi.org/10.1155/2015/238041
[28] 刘宇, 赵建益, 单晓山. 目标导向液体治疗对老年单肺通气患者局部脑氧饱和度及血流动力学的影响[J]. 中国现代医学杂志. 2020, 30(8): 114-118.
[29] Zhao, Q., Wan, H., Pan, H. and Xu, Y. (2024) Postoperative Cognitive Dysfunction—Current Research Progress. Frontiers in Behavioral Neuroscience, 18, Article ID: 1328790.
https://doi.org/10.3389/fnbeh.2024.1328790
[30] Tang, L., Kazan, R., Taddei, R., Zaouter, C., Cyr, S. and Hemmerling, T.M. (2013) Reduced Cerebral Oxygen Saturation during Thoracic Surgery Predicts Early Postoperative Cognitive Dysfunction. Survey of Anesthesiology, 57, 3-4.
https://doi.org/10.1097/sa.0b013e31827f2daa
[31] Cui, F., Zhao, W., Mu, D., Zhao, X., Li, X., Wang, D., et al. (2021) Association between Cerebral Desaturation and Postoperative Delirium in Thoracotomy with One-Lung Ventilation: A Prospective Cohort Study. Anesthesia & Analgesia, 133, 176-186.
https://doi.org/10.1213/ane.0000000000005489
[32] Teng, P., Liu, H., Xu, D., Feng, X., Liu, M. and Wang, Q. (2024) Effect of Optimizing Cerebral Oxygen Saturation on Postoperative Delirium in Older Patients Undergoing One-Lung Ventilation for Thoracoscopic Surgery. Journal of International Medical Research, 52, 1-11.
https://doi.org/10.1177/03000605241274604
[33] 李雪, 邱林, 赵亮, 等. 肾氧饱和度监测临床应用的最新研究进展[J]. 医药论坛杂志, 2020, 41(3): 166-169.
[34] Liu, C., Wang, X., Shi, W., Yu, Y., Sha, X., Wang, P., et al. (2024) The Relationship between Trajectories of Renal Oxygen Saturation and Acute Kidney Injury: A Prospective Cohort Study with a Secondary Analysis. Aging Clinical and Experimental Research, 36, Article No. 46.
https://doi.org/10.1007/s40520-024-02701-1
[35] 邓洪, 赵婧. 近红外光谱技术在早产儿腹部应用的研究进展[J]. 安徽医学, 2025, 46(1): 120-123.
[36] 刘晓静, 司志梅, 马欢欢, 等. 脑氧饱和度监测结合振幅整合脑电图对早产儿脑损伤神经行为发育的预测价值[J]. 临床误诊误治, 2024, 37(21): 55-61.