[1]
|
Yang, J., Nie, J., Ma, X., Wei, Y., Peng, Y. and Wei, X. (2019) Targeting PI3K in Cancer: Mechanisms and Advances in Clinical Trials. Molecular Cancer, 18, Article No. 26. https://doi.org/10.1186/s12943-019-0954-x
|
[2]
|
Engelman, J.A., Luo, J. and Cantley, L.C. (2006) The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nature Reviews Genetics, 7, 606-619. https://doi.org/10.1038/nrg1879
|
[3]
|
Toren, P. and Zoubeidi, A. (2014) Targeting the PI3K/Akt Pathway in Prostate Cancer: Challenges and Opportunities (Review). International Journal of Oncology, 45, 1793-1801. https://doi.org/10.3892/ijo.2014.2601
|
[4]
|
Bohdanowicz, M., Cosío, G., Backer, J.M. and Grinstein, S. (2010) Class I and Class III Phosphoinositide 3-Kinases Are Required for Actin Polymerization That Propels Phagosomes. Journal of Cell Biology, 191, 999-1012. https://doi.org/10.1083/jcb.201004005
|
[5]
|
Xu, Z., Xia, Z., Wang, A., Wang, W., Liu, Z., Chen, L., et al. (2013) Activation of the PI3K/AKT/mTOR Pathway in Diffuse Large B Cell Lymphoma: Clinical Significance and Inhibitory Effect of Rituximab. Annals of Hematology, 92, 1351-1358. https://doi.org/10.1007/s00277-013-1770-9
|
[6]
|
Xu, F., Na, L., Li, Y. and Chen, L. (2021) Retraction Note To: Roles of the PI3K/AKT/mTOR Signalling Pathways in Neurodegenerative Diseases and Tumours. Cell & Bioscience, 11, Article No. 157. https://doi.org/10.1186/s13578-021-00667-5
|
[7]
|
Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q., et al. (2018) PI3K/AKT Signaling Transduction Pathway, Erythropoiesis and Glycolysis in Hypoxia (Review). Molecular Medicine Reports, 19, 783-791. Https://Doi.Org/10.3892/Mmr.2018.9713
|
[8]
|
Hemmings, B.A. and Restuccia, D.F. (2015) The PI3K-PKB/Akt Pathway. Cold Spring Harbor Perspectives in Biology, 7, a026609. https://doi.org/10.1101/cshperspect.a026609
|
[9]
|
Rajeeve, V., Pearce, W., Cascante, M., Vanhaesebroeck, B. and Cutillas, P.R. (2013) Polyamine Production Is Downstream and Upstream of Oncogenic PI3K Signalling and Contributes to Tumour Cell Growth. Biochemical Journal, 450, 619-628. https://doi.org/10.1042/bj20121525
|
[10]
|
Cheng, H., Shcherba, M., Pendurti, G., Liang, Y., Piperdi, B. and Perez-Soler, R. (2014) Targeting the PI3K/AKT/mTOR Pathway: Potential for Lung Cancer Treatment. Lung Cancer Management, 3, 67-75. https://doi.org/10.2217/lmt.13.72
|
[11]
|
Huang, W., Huang, G., Wang, D., Yin, Q., Foster, P.J. and He, M. (2011) Outcomes of Cataract Surgery in Urban Southern China: The Liwan Eye Study. Investigative Opthalmology & Visual Science, 52, 16-20. https://doi.org/10.1167/iovs.10-5382
|
[12]
|
Liegl, R., Wertheimer, C., Kernt, M., Docheva, D., Kampik, A. and Eibl-Lindner, K.H. (2013) Attenuation of Human Lens Epithelial Cell Spreading, Migration and Contraction via Downregulation of the PI3K/AKT Pathway. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 285-292. https://doi.org/10.1007/s00417-013-2524-z
|
[13]
|
蒲雅迪. miRNA-124通过PI3K/AKT/mTOR信号通路调控晶状体上皮细胞增殖、迁移及凋亡的机制研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2021.
|
[14]
|
Guo, R., Meng, Q., Guo, H., Xiao, L., Yang, X., Cui, Y., et al. (2015) TGF-β2 Induces Epithelial-Mesenchymal Transition in Cultured Human Lens Epithelial Cells through Activation of the PI3K/AKT/mTOR Signaling Pathway. Molecular Medicine Reports, 13, 1105-1110. https://doi.org/10.3892/mmr.2015.4645
|
[15]
|
Xiong, W., Cheng, B., Jia, S. and Tang, L. (2010) Involvement of the PI3K/AKT Signaling Pathway in Platelet-Derived Growth Factor-Induced Migration of Human Lens Epithelial Cells. Current Eye Research, 35, 389-401. https://doi.org/10.3109/02713680903584686
|
[16]
|
陶津华, 安小玲, 孔郡, 等. EGF体外对人晶状体上皮细胞迁移的影响[J]. 国际眼科杂志, 2006, 6(1): 68-71.
|
[17]
|
Kayastha, F., Madhu, H., Vasavada, A. and Johar, K. (2014) Andrographolide Reduces Proliferation and Migration of Lens Epithelial Cells by Modulating PI3K/AKT Pathway. Experimental Eye Research, 128, 23-26. https://doi.org/10.1016/j.exer.2014.09.002
|
[18]
|
Yao, L. and Yan, H. (2020) MiR-182 Inhibits Oxidative Stress and Epithelial Cell Apoptosis in Lens of Cataract Rats through PI3K/Akt Signaling Pathway. European Review for Medical and Pharmacological Sciences, 24, 12001-12008.
|
[19]
|
杨培增, 刘奕志. 眼科学[M]. 北京: 人民卫生出版社, 2017: 238-264.
|
[20]
|
王婧, 张楠, 余烁, 等. 内毒素耐受对内毒素诱导的葡萄膜炎炎症程度及虹膜睫状体中PI3K/AKT信号通路的影响[J]. 眼科, 2020, 29(1): 50-54.
|
[21]
|
张城. 鱼腥草水提取物治疗内毒素-诱导的葡萄膜炎(EIU)大鼠模型的疗效评价及其抗炎分子机制研究[D]: [硕士学位论文]. 杭州: 浙江中医药大学, 2023.
|
[22]
|
Virgili, G., Gatta, G., Ciccolallo, L., Capocaccia, R., Biggeri, A., Crocetti, E., et al. (2007) Incidence of Uveal Melanoma in Europe. Ophthalmology, 114, 2309-2315.e2. https://doi.org/10.1016/j.ophtha.2007.01.032
|
[23]
|
Grønborg, M., Kristiansen, T.Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., et al. (2006) Biomarker Discovery from Pancreatic Cancer Secretome Using a Differential Proteomic Approach. Molecular & Cellular Proteomics, 5, 157-171. https://doi.org/10.1074/mcp.m500178-mcp200
|
[24]
|
程英. MicroRNA-222介导PI3K/Akt/MMP-9信号通路参与调控HMGA1对葡萄膜黑色素瘤生物学功能的影响[D]: [博士学位论文]. 济南: 山东大学, 2020.
|
[25]
|
吴以加, 房燕, 沈菲洋, 等. FBXO38通过PI3K-Akt信号通路调控眼部黑色素瘤增殖[J]. 上海交通大学学报(医学版), 2023, 43(12): 1470-1479.
|
[26]
|
牟莹莹. Cx43、E-cadherin、PI3K及CTGF蛋白在脉络膜黑色素瘤中表达的研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2011.
|
[27]
|
冯宇梁, 李杰, 刘巾男, 等. 视网膜脉络膜新生血管性疾病机制及治疗研究进展[J]. 西部医学, 2016, 28(9): 1328-1333.
|
[28]
|
艾明, 陈彬, 贺涛, 等. COX-2通过PI3K/Akt通路调节氧诱导视网膜病变模型中视网膜新生血管的形成[J]. 华中科技大学学报(医学版), 2009, 38(5): 655-659.
|
[29]
|
张月露. 网格蛋白4B对糖尿病视网膜病变新生血管的作用研究[D]: [博士学位论文]. 上海: 上海交通大学, 2018.
|
[30]
|
庄博, 张健, 孙铁权, 等. 阿柏西普减轻高糖诱导的视网膜色素上皮细胞损伤和PI3K/AKT信号通路活化[J]. 中国组织化学与细胞化学杂志, 2021, 30(3): 235-239.
|
[31]
|
Stitt, A.W., Curtis, T.M., Chen, M., Medina, R.J., McKay, G.J., Jenkins, A., et al. (2016) The Progress in Understanding and Treatment of Diabetic Retinopathy. Progress in Retinal and Eye Research, 51, 156-186. https://doi.org/10.1016/j.preteyeres.2015.08.001
|
[32]
|
陈飞. 硫化氢对高糖诱导的人视网膜色素上皮细胞氧化应激和炎症的影响[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2018.
|
[33]
|
刘文强, 冯闯, 左中夫, 等. PI3K/Akt信号通路对高糖状态下视网膜Müller细胞的影响[J]. 眼科新进展, 2020, 40(11): 1024-1028.
|
[34]
|
唐德荣, 杨雨雯, 石蕊, 等. miR-26a-5p调控PTEN/PI3K/Akt信号通路对高糖诱导视网膜Müller细胞活化及凋亡的影响[J]. 西安交通大学学报(医学版), 2024, 45(5): 705-711.
|
[35]
|
Li, J., Chen, K., Li, X., Zhang, X., Zhang, L., Yang, Q., et al. (2023) Mechanistic Insights into the Alterations and Regulation of the AKT Signaling Pathway in Diabetic Retinopathy. Cell Death Discovery, 9, Article No. 418. https://doi.org/10.1038/s41420-023-01717-2
|
[36]
|
祝莹. BET抑制剂JQ1通过PI3K/AKT通路保护DR大鼠视网膜作用机制研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2021.
|
[37]
|
才娜. PI3K/AKT/mTOR信号通路抑制剂在视网膜色素上皮细胞增殖机制中的作用研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2018.
|
[38]
|
Wang, P., Tian, X., Rong, J., Liu, D., Yi, G. and Tan, Q. (2011) Protein Kinase B (AKT) Promotes Pathological Angiogenesis in Murine Model of Oxygen-Induced Retinopathy. Acta Histochemica et Cytochemica, 44, 103-111. https://doi.org/10.1267/ahc.10038
|
[39]
|
Su, S., Zou, P., Yang, G., Wang, Y., Liu, L., Liu, Y., et al. (2022) Propranolol Ameliorates Retinopathy of Prematurity in Mice by Downregulating Hif-1α via the PI3K/AKT/ERK Pathway. Pediatric Research, 93, 1250-1257. https://doi.org/10.1038/s41390-022-02211-8
|
[40]
|
Hanus, J., Anderson, C. and Wang, S. (2015) RPE Necroptosis in Response to Oxidative Stress and in AMD. Ageing Research Reviews, 24, 286-298. https://doi.org/10.1016/j.arr.2015.09.002
|
[41]
|
张馨方, 盛迅伦. 视网膜色素变性的相关基因研究进展[J]. 国际眼科杂志, 2006, 6(3): 654-657.
|
[42]
|
杨梓超, 王育良, 左晶. 蒲黄提取物对糖尿病视网膜病变大鼠的保护作用[J]. 国际眼科杂志 2021, 21(3): 406-410.
|
[43]
|
傅文垚, 罗建平, 刘长虹. PI3K/AKT信号通路在常见神经退行性疾病中的机制研究进展[J]. 生物技术通讯, 2017, 28(6): 853-859.
|
[44]
|
王辉, 沈玲, 姬翔. DHA玻璃体注射对ARMD大鼠模型光感受器细胞凋亡和PI3K/Akt通路的影响[J]. 国际眼科杂志, 2019, 19(12): 2012-2016.
|
[45]
|
马明明. 间充质干细胞来源的外泌体对视网膜脱离的治疗作用[D]: [硕士学位论文]. 天津: 天津医科大学, 2019.
|
[46]
|
洪博, 崔蓓, 王凤翔, 等. 间充质干细胞来源外泌体对视网膜光感受器细胞PI3K/AKT通路及Ang-1蛋白水平作用的研究[J]. 转化医学杂志, 2022, 11(2): 70-75.
|
[47]
|
陆烨, 童剑萍. 视网膜母细胞瘤的发生机制及诊断和治疗进展[J]. 现代肿瘤医学, 2016, 24(6): 1007-1014.
|
[48]
|
杨夏, 吴涛. miR-130b在人视网膜母细胞瘤中的表达及促癌机制研究[J]. 国际眼科杂志, 2019, 19(2): 214-220.
|
[49]
|
安美霞, 张效房, 张金嵩. 挫伤性视网膜病变中光感受器细胞凋亡与氧化损伤的实验研究[J]. 中华眼科杂志, 2004, 40(2): 49-52.
|
[50]
|
王博. 颅脑爆震冲击波对视网膜损伤和PI3K/Akt通路及相关凋亡蛋白表达情况的研究[D]: [硕士学位论文]. 大连: 大连医科大学, 2021.
|
[51]
|
曹雪霞. 罂粟碱对SD大鼠原代视网膜神经节细胞轴突再生的影响及其作用机制的研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2021.
|
[52]
|
Williams, P.A., Marsh-Armstrong, N., Howell, G.R., Bosco, A., Danias, J., Simon, J., et al. (2017) Neuroinflammation in Glaucoma: A New Opportunity. Experimental Eye Research, 157, 20-27. https://doi.org/10.1016/j.exer.2017.02.014
|
[53]
|
Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The Pathophysiology and Treatment of Glaucoma. JAMA, 311, 1901-1911. https://doi.org/10.1001/jama.2014.3192
|
[54]
|
Jayaram, H., Kolko, M., Friedman, D.S. and Gazzard, G. (2023) Glaucoma: Now and Beyond. The Lancet, 402, 1788-1801. https://doi.org/10.1016/s0140-6736(23)01289-8
|
[55]
|
李雪如. S58通过激活PI3k/Akt/Nrf2信号通路抑制兔青光眼滤过性手术术后纤维化[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2020.
|
[56]
|
Zhao, N., Shi, J., Xu, H., Luo, Q., Li, Q. and Liu, M. (2021) Baicalin Suppresses Glaucoma Pathogenesis by Regulating the PI3K/AKT Signaling in Vitro and in Vivo. Bioengineered, 12, 10187-10198. https://doi.org/10.1080/21655979.2021.2001217
|
[57]
|
Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C., et al. (2017) TFOS DEWS II Definition and Classification Report. The Ocular Surface, 15, 276-283. https://doi.org/10.1016/j.jtos.2017.05.008
|
[58]
|
Wu, C., Mao, J., Zhu, J., Xie, C., Yao, J., Yang, X., et al. (2023) DZ2002 Alleviates Corneal Angiogenesis and Inflammation in Rodent Models of Dry Eye Disease via Regulating STAT3-PI3K-AKT-NF-κB Pathway. Acta Pharmacologica Sinica, 45, 166-179. https://doi.org/10.1038/s41401-023-01146-y
|
[59]
|
Han, Y., Guo, S., Li, Y., Li, J., Zhu, L., Liu, Y., et al. (2023) Berberine Ameliorate Inflammation and Apoptosis via Modulating PI3K/AKT/NFκB and MAPK Pathway on Dry Eye. Phytomedicine, 121, Article ID: 155081. https://doi.org/10.1016/j.phymed.2023.155081
|
[60]
|
朱婷婷, 孙松. 翼状胬肉手术治疗方法研究进展[J]. 眼科新进展, 2011, 31(3): 293-296.
|
[61]
|
姚亮, 柏凌, 何娜, 等. PI3K/Akt/Bcl-2信号通路在原发性翼状胬肉中的机制研究[J]. 山西医科大学学报, 2017, 48(5): 441-444.
|
[62]
|
Verma, S., Singh, A., Varshney, A., Chandru, R.A., Acharya, M., Rajput, J., et al. (2021) Infectious Keratitis: An Update on Role of Epigenetics. Frontiers in Immunology, 12, Article 765890. https://doi.org/10.3389/fimmu.2021.765890
|
[63]
|
周洪伟. P物质在小鼠单纯疱疹病毒性角膜炎复发中的作用研究[D]: [博士学位论文]. 武汉: 武汉大学, 2016.
|
[64]
|
蒋浩. FGF5通过PI3K-AKT信号通路促进角膜上皮损伤修复机制研究[D]: [博士学位论文]. 贵州: 贵州医科大学, 2023.
|
[65]
|
丁辉, 胡施思, 杨镇朵, 等. 丁香酚通过PI3K/AKT信号通路减轻镰刀菌诱导的角膜炎症[J]. 国际眼科杂志, 2024, 24(8): 1194-1199.
|
[66]
|
Chen, K., Li, Y., Zhang, X., Ullah, R., Tong, J. and Shen, Y. (2022) The Role of the PI3K/AKT Signalling Pathway in the Corneal Epithelium: Recent Updates. Cell Death & Disease, 13, Article No. 513. https://doi.org/10.1038/s41419-022-04963-x
|
[67]
|
Garrity, J.A. and Bahn, R.S. (2006) Pathogenesis of Graves Ophthalmopathy: Implications for Prediction, Prevention, and Treatment. American Journal of Ophthalmology, 142, 147-153.e2. https://doi.org/10.1016/j.ajo.2006.02.047
|
[68]
|
Zhang, Y., Li, X., Guo, C., Dong, J. and Liao, L. (2020) Mechanisms of Spica Prunellae against Thyroid-Associated Ophthalmopathy Based on Network Pharmacology and Molecular Docking. BMC Complementary Medicine and Therapies, 20, Article No. 229. https://doi.org/10.1186/s12906-020-03022-2
|
[69]
|
Woeller, C.F., Roztocil, E., Hammond, C. and Feldon, S.E. (2019) TSHR Signaling Stimulates Proliferation through PI3K/Akt and Induction of Mir-146a and Mir-155 in Thyroid Eye Disease Orbital Fibroblasts. Investigative Opthalmology & Visual Science, 60, 4336-4345. https://doi.org/10.1167/iovs.19-27865
|
[70]
|
马飞. 视网膜Sonic hedgehog信号介导PI3K/AKT通路在豚鼠形觉剥夺性近视模型中的作用及机制研究[D]: [博士学位论文]. 上海: 复旦大学, 2014.
|