| [1] | Tang, F., Li, L. and Chen, D. (2012) Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24, 1504-1534. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Zhang, T., Ge, J., Hu, Y., Zhang, Q., Aloni, S. and Yin, Y. (2008) Formation of Hollow Silica Colloids through a Spontaneous Dissolution-Regrowth Process. Angewandte Chemie, 120, 5890-5895. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [3] | Zhu, Y., Shi, J., Chen, H., Shen, W. and Dong, X. (2005) A Facile Method to Synthesize Novel Hollow Mesoporous Silica Spheres and Advanced Storage Property. Microporous and Mesoporous Materials, 84, 218-222. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [4] | Chen, D., Li, L., Tang, F. and Qi, S. (2009) Facile and Scalable Synthesis of Tailored Silica “Nanorattle” Structures. Advanced Materials, 21, 3804-3807. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., et al. (2005) Stimuli‐Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angewandte Chemie International Edition, 44, 5083-5087. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Li, Y., et al. (2003) Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability. Nano Letters, 3, 609-612. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Liu, T., Li, L., Teng, X., Huang, X., Liu, H., Chen, D., et al. (2011) Single and Repeated Dose Toxicity of Mesoporous Hollow Silica Nanoparticles in Intravenously Exposed Mice. Biomaterials, 32, 1657-1668. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Zhu, Y., Fang, Y. and Kaskel, S. (2010) Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery. The Journal of Physical Chemistry C, 114, 16382-16388. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [9] | Liu, J., Qiao, S.Z., Chen, J.S., (David) Lou, X.W., Xing, X. and (Max) Lu, G.Q. (2011) Yolk/Shell Nanoparticles: New Platforms for Nanoreactors, Drug Delivery and Lithium-Ion Batteries. Chemical Communications, 47, 12578-12591. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Lin, C., Liu, X., Wu, S., Liu, K. and Mou, C. (2011) Corking and Uncorking a Catalytic Yolk-Shell Nanoreactor: Stable Gold Catalyst in Hollow Silica Nanosphere. The Journal of Physical Chemistry Letters, 2, 2984-2988. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Zhang, L., Wang, T., Yang, L., Liu, C., Wang, C., Liu, H., et al. (2012) General Route to Multifunctional Uniform Yolk/Mesoporous Silica Shell Nanocapsules: A Platform for Simultaneous Cancer‐targeted Imaging and Magnetically Guided Drug Delivery. Chemistry: A European Journal, 18, 12512-12521. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Okada, A., Nagao, D., Ueno, T., Ishii, H. and Konno, M. (2013) Colloidal Polarization of Yolk/Shell Particles by Reconfiguration of Inner Cores Responsive to an External Magnetic Field. Langmuir, 29, 9004-9009. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Purbia, R. and Paria, S. (2015) Yolk/Shell Nanoparticles: Classifications, Synthesis, Properties, and Applications. Nanoscale, 7, 19789-19873. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Liu, B., Li, C., Ma, P., Chen, Y., Zhang, Y., Hou, Z., et al. (2015) Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG Nanoparticles for UCL/MR Bioimaging and Magnetically Targeted Drug Delivery. Nanoscale, 7, 1839-1848. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Wu, S., Mou, C. and Lin, H. (2013) Synthesis of Mesoporous Silica Nanoparticles. Chemical Society Reviews, 42, 3862-3875. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Fang, X., Zhao, X., Fang, W., Chen, C. and Zheng, N. (2013) Self-Templating Synthesis of Hollow Mesoporous Silica and Their Applications in Catalysis and Drug Delivery. Nanoscale, 5, 2205-2218. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Chen, Y., Chen, H. and Shi, J. (2013) Construction of Homogenous/Heterogeneous Hollow Mesoporous Silica Nanostructures by Silica-Etching Chemistry: Principles, Synthesis, and Applications. Accounts of Chemical Research, 47, 125-137. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Li, Y. and Shi, J. (2014) Hollow‐Structured Mesoporous Materials: Chemical Synthesis, Functionalization and Applications. Advanced Materials, 26, 3176-3205. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Wan, Y. and Zhao, (2007) On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chemical Reviews, 107, 2821-2860. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Wang, X., Feng, J., Bai, Y., Zhang, Q. and Yin, Y. (2016) Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chemical Reviews, 116, 10983-11060. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Lou, X.W., Archer, L.A. and Yang, Z. (2008) Hollow Micro‐/Nanostructures: Synthesis and Applications. Advanced Materials, 20, 3987-4019. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | Zhang, Q., Wang, W., Goebl, J. and Yin, Y. (2009) Self-Templated Synthesis of Hollow Nanostructures. Nano Today, 4, 494-507. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Lu, Y., Fan, H., Stump, A., Ward, T.L., Rieker, T. and Brinker, C.J. (1999) Aerosol-Assisted Self-Assembly of Mesostructured Spherical Nanoparticles. Nature, 398, 223-226. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | Li, Y., Li, N., Pan, W., Yu, Z., Yang, L. and Tang, B. (2017) Hollow Mesoporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery. ACS Applied Materials & Interfaces, 9, 2123-2129. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Yu, Z., Zhou, P., Pan, W., Li, N. and Tang, B. (2018) A Biomimetic Nanoreactor for Synergistic Chemiexcited Photodynamic Therapy and Starvation Therapy against Tumor Metastasis. Nature Communications, 9, Article No. 5044. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Ezzati, N., Mahjoub, A.R., Abolhosseini Shahrnoy, A. and Syrgiannis, Z. (2019) Amino Acid-Functionalized Hollow Mesoporous Silica Nanospheres as Efficient Biocompatible Drug Carriers for Anticancer Applications. International Journal of Pharmaceutics, 572, Article ID: 118709. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Tang, W., Fan, W., Wang, Z., Zhang, W., Zhou, S., Liu, Y., et al. (2018) Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano, 12, 12269-12283. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Tao, G., He, W., Wang, Y., Yu, F., Ge, J. and Yang, W. (2018) Dispersity, Mesoporous Structure and Particle Size Modulation of Hollow Mesoporous Silica Nanoparticles with Excellent Adsorption Performance. Dalton Transactions, 47, 13345-13352. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Huang, P., Chen, Y., Lin, H., Yu, L., Zhang, L., Wang, L., et al. (2017) Molecularly Organic/Inorganic Hybrid Hollow Mesoporous Organosilica Nanocapsules with Tumor-Specific Biodegradability and Enhanced Chemotherapeutic Functionality. Biomaterials, 125, 23-37. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Tan, L., Tang, W., Liu, T., Ren, X., Fu, C., Liu, B., et al. (2016) Biocompatible Hollow Polydopamine Nanoparticles Loaded Ionic Liquid Enhanced Tumor Microwave Thermal Ablation in Vivo. ACS Applied Materials & Interfaces, 8, 11237-11245. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Zhou, Y., Quan, G., Wu, Q., Zhang, X., Niu, B., Wu, B., et al. (2018) Mesoporous Silica Nanoparticles for Drug and Gene Delivery. Acta Pharmaceutica Sinica B, 8, 165-177. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Vallet-Regí, M., Colilla, M., Izquierdo-Barba, I. and Manzano, M. (2017) Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules, 23, Article No. 47. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Tan, L., Liu, T., Li, L., Liu, H., Wu, X., Gao, F., et al. (2013) Uniform Double-Shelled Silica Hollow Spheres: Acid/Base Selective-Etching Synthesis and Their Drug Delivery Application. RSC Advances, 3, 5649-5655. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | Guo, L., Ping, J., Qin, J., Yang, M., Wu, X., You, M., et al. (2021) A Comprehensive Study of Drug Loading in Hollow Mesoporous Silica Nanoparticles: Impacting Factors and Loading Efficiency. Nanomaterials, 11, Article No. 1293. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Chen, Y., Chen, H., Ma, M., Chen, F., Guo, L., Zhang, L., et al. (2011) Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/hydrophobic Anticancer Drug Delivery. Journal of Materials Chemistry, 21, 5290-5298. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [36] | 资鹏鹏, 游清徽, 徐贤柱, 等. 中空介孔二氧化硅在生物医学领域中的应用研究进展[J]. 江西师范大学学报(自然科学版), 2021, 45(1): 86-93. | 
                     
                                
                                    
                                        | [37] | 凌静. 铁掺杂介孔二氧化硅载药纳米粒子用于增强肿瘤化学动力学治疗的研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2023. | 
                     
                                
                                    
                                        | [38] | 何良泽. MXene/聚合物纳米复合材料力学性能的多尺度研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2024. | 
                     
                                
                                    
                                        | [39] | 黄子超. 基于聚合物纳米颗粒的仿生配体集簇结构设计及其免疫应用[D]: [博士学位论文]. 北京: 中国科学技术大学, 2024. | 
                     
                                
                                    
                                        | [40] | 邵琳杰. 金属工程化介孔二氧化硅药物递送系统构建及抗肿瘤效应[D]: [硕士学位论文]. 长沙: 中南大学, 2022. | 
                     
                                
                                    
                                        | [41] | 龙琳, 朱琳, 汤惠茗, 等. 金属纳米材料对细菌耐药的影响及其机制研究进展[J]. 中国环境科学, 1-9. | 
                     
                                
                                    
                                        | [42] | 沈明佳, 曹晴, 张满杰, 等. 无机金属纳米材料在生物成像和光热治疗中的研究进展[J]. 中国科学: 化学, 2024, 54(2): 160-181. | 
                     
                                
                                    
                                        | [43] | 陈彦宇, 关桦楠. 碳基纳米复合材料作为电催化剂的亚硝酸盐检测传感器研究进展[J]. 现代食品科技, 1-14. | 
                     
                                
                                    
                                        | [44] | 张文君, 赵雪莹, 吕江维, 等. 中空有序介孔有机硅的研究进展: 制备及在肿瘤治疗中的应用[J]. 无机材料学报, 2022, 37(11): 1192-1202. | 
                     
                                
                                    
                                        | [45] | 屈正阳. 基于中空介孔二氧化硅的双重响应智能药物载体的构筑及其性质研究[D]: [硕士学位论文]. 沈阳: 辽宁大学, 2022. | 
                     
                                
                                    
                                        | [46] | 王亚平. 智能响应型聚合物修饰中空介孔二氧化硅的制备与药物递送研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2021. | 
                     
                                
                                    
                                        | [47] | Zhang, S., Li, J., Xu, F., Tian, X., Chen, Y. and Luo, Y. (2021) Hollow Polypyrrole Coated with Mesoporous Silica Nanoparticles Graft Copolymer Multifunctional Nanocomposites for Intracellular Cancer Therapy. Microporous and Mesoporous Materials, 328, Article ID: 111431. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [48] | Wu, S., Teng, Y., Qu, Z., Bai, L., Yang, W., Wu, Q., et al. (2024) Multilayer Ph-Responsive Hollow Mesoporous Silica Nanoparticles with Charge Reversal for Drug Delivery and Real-Time Monitoring by Fluorescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 690, Article ID: 133831. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [49] | 孙彦萍. 基于中空介孔二氧化硅的多模态示踪细菌纳米探针研究[D]: [硕士学位论文]. 上海: 东华大学, 2022. | 
                     
                                
                                    
                                        | [50] | Wu, Y., Guan, X., Xu, X., Yang, R., Kong, F., Chen, X., et al. (2024) Rod-Shaped Hollow Mesoporous Silica Drug Delivery System: Synthetic Design, Ibuprofen Delivery, and Optical Imaging. Chemical Papers, 78, 3997-4005. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [51] | 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021(11): 2085-2102. | 
                     
                                
                                    
                                        | [52] | 谢其鹏. 中空介孔二氧化硅纳米材料在抑菌和检测中的应用[D]: [硕士学位论文]. 无锡: 江南大学, 2021. | 
                     
                                
                                    
                                        | [53] | Cui, W., Liu, Q., Yang, L., Wang, K., Sun, T., Ji, Y., et al. (2023) Correction to “Sustained Delivery of BMP-2-Related Peptide from the True Bone Ceramics/Hollow Mesoporous Silica Nanoparticles Scaffold for Bone Tissue Regeneration”. ACS Biomaterials Science & Engineering, 9, 3724-3724. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [54] | 李爽. 一种功能化的中空介孔二氧化硅作为治疗炎症性肠病药物运输系统[D]: [硕士学位论文]. 天津: 天津理工大学, 2024. | 
                     
                                
                                    
                                        | [55] | Li, Q., Liu, Q., Li, H., Dong, L., Zhou, Y., Zhu, J., et al. (2022) Modified Hollow Mesoporous Silica Nanoparticles as Immune Adjuvant-Nanocarriers for Photodynamically Enhanced Cancer Immunotherapy. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 1039154. [Google Scholar] [CrossRef] [PubMed] |