基于SrSeO3基质三价Bi3+,Ce3+和Eu3+离子掺杂的发光晶体化合物的制备、结构与光致发光性能研究
Investigation of the Synthesis, Structure, and Photoluminescent Properties of Trivalent Bi3+, Ce3+ and Eu3+ Ions-Doped SrSeO3 Phosphors
DOI: 10.12677/oe.2025.151002, PDF, HTML, XML,    科研立项经费支持
作者: 李东升, 李泽楷, 郑 栩, 唐 园, 黄 巍, 康逢文*:四川大学材料科学与工程学院,四川 成都;顾 鹏:眉山博雅新材料股份有限公司,四川 眉山;姚 雄:中国科学院宁波材料技术与工程研究所,浙江 宁波
关键词: SrSeO3Bi3+Ce3+Eu3+光致发光SrSeO3 Bi3+ Ce3+ Eu3+ Photoluminescence
摘要: 发光晶体化合物在诸如照明与显示、光信息安全、生物医疗等领域已有广泛应用。文章通过高温固相法成功合成了基于SrSeO3基质Bi3+、Eu3+和Ce3+离子掺杂的发光晶体化合物。通过X射线衍射分析发现样品均属于具有正交晶系结构的SrSeO3晶体,空间群为Pnma (62),并且Bi3+、Eu3+和Ce3+倾向于取代[SrO9]中的Sr2+格位。常温光致光谱的测试表明,紫外光可有效激发Bi3+、Ce3+和Eu3+掺杂SrSeO3样品,分别发射出可归属于3P11S0 (Bi3+)、5d → 4F (Ce3+)和5D07Fj (Eu3+)的特征发射峰。此外,基于荧光衰减曲线测试的结果,发现SrSeO3基质与掺杂离子间存在能量传递。据此,构建了机理模型对样品可能存在的发光来源进行了分析。
Abstract: Luminescent crystal compounds have been widely applied in various fields, including but not limited to lighting and display, optical information security, and biomedical purposes. In this work, a series of luminescent crystal compounds that used the SrSeO3 as the host matrix for trivalent Bi3+, Eu3+, and Ce3+ ions doping were successfully synthesized using the high-temperature solid-state reaction method. The X-ray diffraction results indicated that the as-obtained samples belong to an orthorhombic-phased SrSeO3 crystal with a space group of Pnma (62), and the Bi3+, Eu3+, and Ce3+ dopants show a preferential substitution for Sr2+ sites in the [SrO9] polyhedra. Room temperature photoluminescent spectra revealed that the Bi3+, Ce3+, and Eu3+ doped SrSeO3 samples can be effectively excited with ultraviolet light, showing the emission spectra that can be attributed respectively to the characteristic transitions of 3P11S0 for Bi3+, 5d → 4F for Ce3+, and 5D07Fj for Eu3+. Besides, based on the measured fluorescent decay curves and their fitting results, an energy transfer from the SrSeO3 host matrix to the Bi3+, Eu3+, and Ce3+ dopants was revealed. Accordingly, a feasible mechanism that can be used to explain the possible luminescent origin was established.
文章引用:李东升, 李泽楷, 郑栩, 唐园, 黄巍, 顾鹏, 姚雄, 康逢文. 基于SrSeO3基质三价Bi3+,Ce3+和Eu3+离子掺杂的发光晶体化合物的制备、结构与光致发光性能研究[J]. 光电子, 2025, 15(1): 11-21. https://doi.org/10.12677/oe.2025.151002

1. 引言

无机发光材料相关的应用产品已在我们的日常生活与生产中随处可见,其应用领域包括(但不限于)电脑与手机显示屏、交通指示、生物标识与成像、光电通信、医用照明(如手术无影灯)、娱乐场所与舞台景观装饰、光学传感、红外成像等。在照明与显示领域中,基于荧光材料转换型固态照明技术(如pc-LED)由于具有使用寿命长、绿色环保、发光高效、低能耗、不含重金属元素(如汞)等优点[1]-[5],一直受到研究人员的广泛关注。尤其是,相较于诸如卤素灯、白炽灯、荧光灯等传统照明技术,基于发光二极管LED所构建的固体照明技术被誉为21世纪最有价值的照明技术[6]-[8]

针对pc-LED,可靠的荧光材料是实现其高质量光源的关键。近年来,研究人员开发出了诸如基于锗酸盐[9]-[13]、铝酸盐[14]-[17]、镓酸盐[18] [19]和氮化物[5] [20]-[22]基质化合物稀土离子和过渡金属离子掺杂的发光晶体材料,其发光波段可覆盖紫外、可见光和近红外区域,尤其是部分材料具有优异的发光性能,展现出了商用潜力。例如,2024年Wu等[7]采用高温固相法制备出了内量子效率高达91.14%且具有负热淬灭效应的Mg13.75Sc0.25Ge5O24:0.01Mn4+深红光荧光晶体材料。然而,绝大多数性能优越的潜力荧光材料合成条件苛刻(例如,制备氮化物的温度普遍 > 1500℃,同时需要高压条件)甚至需要设计复杂的晶体结构(例如,多元素的基质取代、具有大于3种阳离子的基质化合物等),这要求精确控制制备工艺路线及其所设定的参数。在这种情况下,开发具有“温和”合成制备条件、晶体结构简单且基质化合物阳离子少的新型荧光晶体材料显得尤为重要。

相较于诸如硅酸盐、氮化物、硫化物、铝酸盐、磷酸盐、锗酸盐、镓酸盐以及其复合晶体化合物等已有广泛报道的无机光功能材料体系,研究基于硒酸盐氧化物离子掺杂的发光材料较少。代表性的硒酸盐发光材料包括:① 1985年Markku等[23]所报道的在(YO)2SeO3中的Eu3+发光;② 2021年Pinatti等[24]报道的Ag2SeO3,其在355 nm激发下可发射出归属于[AgO6]团簇内辐射跃迁且峰位位于689 nm的深红光发射带,带宽可覆盖550~950 nm光波段;③ 2023年Kuhlmann等[25]所报道的可归属于Eu3+ 5D07Fj (j = 0 - 4)特征跃迁且主发射峰位于613 nm的(Ca, Sr, Ba) SeO4:Eu发光纳米颗粒;④ 2024年Aralbayeva等[26]通过在SiO2/Si基板上合成了一种发射带可覆盖400~600 nm光波段且具有本征发光特性的ZnSeO3硒酸盐发光材料,并经高斯拟合发现:该发射带可进一步被分解成550 nm、488 nm、440 nm和410 nm四个发射峰。很明显,近年来硒酸盐发光材料开始崭露头角,逐渐开始受到研究人员的关注。

Figure 1. (a) Illustration profile of the unit cell structure of orthorhombic-typed SrSeO3 host crystal based on the standard ICSD (file no. ICSD-419386), where yellow, red, and blue balls stand for Sr, Se, and O atoms, respectively; (b) [SrO9] and [SeO6] polyhedra; (c) The connection way for [SrO9] and [SeO6] polyhedra, where the lengths of each Sr-O and Se-O bond are also shown; (d) The substitution of R3+ (R = Bi, Eu, Ce) atoms for Sr site

1. (a) 基于SrSeO3标准卡片(file no. ICSD-419386)所构建的晶体结构示意图,其中黄色、红色和蓝色球分别代表Sr、Se和O原子;(b) [SrO9]十二面体与[SeO6]八面体;(c) Sr与Se原子的连接方式,及其与O原子间的键长;(d) 掺杂离子R3+ (R = Bi, Eu, Ce)的取代示意图

经调研相关晶体数据库发现,硒酸锶氧化物(SrSeO3)是一种非常有趣的晶体化合物,均仅拥有一种Sr和Se阳离子格位,但具有分别对应P21/m (11)和Pnma (62)空间群结构的单斜晶系和正交晶系[27] [28]。以图1(a)所示正交晶系的SrSeO3晶体结构为例,Sr格位与9个氧原子配位形成[SrO9]十二面体,而Se格位与6个氧原子配位形成[SeO6]八面体。同时,[SrO9]之间是通过共享氧棱边而相连到一起,并且沿a轴呈螺旋状排列。对于[SeO6]和[SrO9],它们之间是通过共享氧棱边而连接到一起,以填补晶体中的剩余空间,并呈现出链状螺旋结构,进而构成具有三维空间结构的SrSeO3晶体结构。除这些结构特点之外,单斜晶系的晶格常数abc分别为4.456 Å、5.478 Å和6.574 Å,轴角分别为90˚、107.34˚和90˚;然而,正交相SrSeO3的Sr格位与Se格位都严重偏离其所在的多面体中心(图1(b)),其晶格常数abc分别为4.454 Å、5.477 Å和12.543 Å,Sr-O键与Se-O键的平均键长分别为2.5294 Å和2.48677 Å (图1(c))。结合以往研究人员在具有[HO6]和[MO9]多面体(H表示基质化合物中非取代阳离子格位的元素;M表示基质中被掺杂离子取代阳离子格位的元素)的晶体化合物中所报道的有关离子掺杂发光材料的研究工作可知,SrSeO3可为多种掺杂离子提供合适的取代格位和晶体场环境,为实现相关掺杂离子的特征发射提供必要条件。

为了验证上述设想,本工作选用SrSeO3作为基质化合物,通过引入+3价态的铋、铕和铈离子(即Bi3+、Eu3+和Ce3+)作为发光激活剂,采用传统高温固相反应方法制备了基于SrSeO3基质Bi3+、Eu3+和Ce3+离子掺杂的具有多种光波段发射的发光晶体材料。通过晶体结构和光谱数据分析,发现Bi3+、Eu3+和Ce3+倾向于取代Sr3+格位,且在诸如270 nm紫外光激发下,可分别发射出蓝光、红光和青色光;同时基于SrSeO3基质与掺杂离子间的能量传递关系,构建了合理的机理模型,对这三种掺杂离子在SrSeO3基质中可能的发光规律与来源进行了讨论。

2. 实验部分

2.1. 样品制备

采用高温固相法制备了SrSeO3和SrSeO3:1 mol% R3+ (R = Bi, Eu, Ce)样品。所用化学原材料均为阿拉丁试剂(上海)有限公司所生产,具体包括:SrCO3 (99.995%)、SeO2 (99%)、Bi2O3 (99.999%)、CeO2 (99.999%)和Eu2O3 (99.999%)。首先,按上述所设计的化学计量比称取相应化学原料;然后,在玛瑙研钵中研磨30分钟;随后,将研磨好的粉末样品放入高温箱式炉并在950℃温度下煅烧5小时;最后,将样品自然冷却至室温并重新研磨即可得到所需的目标发光晶体材料。

2.2. 样品表征

Figure 2. (a) XRD patterns of pure SrSeO3 and SrSeO3:R3+ (R = Bi, Eu, Ce), as well as the standard ICSD card of the orthorhombic structure SrSeO3 (file no. ICSD-419386); (b) The enlarged XRD patterns selected in the range of 26.5˚~27˚

2. (a) 样品SrSeO3和SrSeO3:R3+ (R = Bi, Eu, Ce)和ICSD编号为419386的XRD衍射图谱;(b) 衍射范围在26.5˚~27˚的放大图

利用DX-2700BH型多功能X射线衍射仪(简称XRD,丹东浩元仪器)获取样品的XRD数据,扫描范围和扫描步长分别设定为10˚~70˚和0.03˚,X射线光管采用Cu靶的Kα1射线(λ = 1.5405 Å),工作电压和电流分别为40 kV和30 mA。采用日立Hitachi F-7000荧光分光光度计测试样品的静态光致激发和发射光谱,所用光源为150 W的氙灯;激发和发射狭缝均设定为2.5 nm,工作电压和扫描速率分别设定为400 kV和1200 nm/min。使用英国爱丁堡FLS 920荧光光谱仪对样品的荧光寿命进行测试,将计数设定为10,000个counts,荧光时间设定为1 ms,激发波长均设定为270 nm,具体监测发射波长见后续正文;该光谱仪配有Hamamatsu R928P光电倍增管的高分辨率荧光光谱仪,所用激发光源为450 W的氙灯。

3. 结果与讨论

3.1. 物相分析

Figure 3. Photoexcitation and emission spectra of SrSeO3 (a), SrSeO3:Bi3+ (b), SrSeO3:Ce3+ (c), and SrSeO3:Eu3+ (d) samples, where the excitation and monitoring emission wavelengths have been labeled beside the spectral curves; (e) CIE chromaticity coordinates of the four samples calculated based on the emission spectra of (a)-(d); (f) Digital photographs of the corresponding samples upon exposure with 270 nm UV light; (g) The fluorescent decay curves of the samples, where the excitation and monitoring emission wavelengths are labeled beside each curve.

3. SrSeO3 (a)、SrSeO3:Bi3+ (b)、SrSeO3:Ce3+ (c) 和SrSeO3:Eu3+ (d)样品的光致激发和发射光谱,以及在270 nm照射下各样品的CIE色坐标(e)和相应的发光照片(f)以及荧光衰减寿命曲线(g)

图2(a)所示的是空白SrSeO3与SrSeO3:R3+ (R = Bi, Eu, Ce)样品的XRD图谱。很明显,样品的衍射峰均能与具有正交晶系的SrSeO3标准卡片的峰位(ICSD-419386)相匹配。这表明所合成的样品为纯相,同时1 mol%的Bi3+、Eu3+和Ce3+离子掺杂量并没有引起杂相的出现以及晶相结构的改变。图2(b)给出了衍射范围在26.5˚~27˚的图谱。很明显,Ce3+的掺杂引起了(111)晶面的衍射峰往高衍射角度偏移。根据布拉格方程 = 2dsinθ (式中,n为反射级数,λ为入射X射线的波长,d是晶面间距,θ为入射线、反射线与反射晶面之间的夹角)可知,相较于SrSeO3,Ce3+的掺杂引起了晶胞收缩。这是因为在配位为9的情况下,Ce3+有效离子半径是1.196 Å而Sr2+的有效离子半径为1.31 Å。当有效离子半径较大的Sr2+被有效离子半径较小的Ce3+有效取代时,会减小晶面间距,进而造成晶胞体积收缩,从而导致衍射峰向高角度移动。然而,理论上Bi3+最大配位数为8,相应的有效离子半径为1.17 Å,但是其也可能取代9配位的Sr2+格位。在这种情况下,理论上Bi3+有效离子半径比其在8配位时大些,相应的衍射峰位出现角度偏移。然而,有趣的是,我们并没观察到这种原本预期的衍射峰位的移动,但是其导致了如图2(a)所示的(400)晶面的相对衍射强度增强。这意味着在SrSeO3中,1 mol%的Bi3+掺杂似乎倾向于增强诸如(400)晶面的结晶倾向性而不是引起晶胞体积的收缩。对于9配位的Eu3+离子,其有效半径为1.12 Å,比Sr2+的小,故其相应的衍射峰出现往高角度微小偏移。正常情况下,相关衍射峰应该按掺杂离子Eu3+ → Bi3+ → Ce3+的顺序往高角度偏移,但是本工作中相关衍射峰的偏移并没有按这个顺序出现。通过Bi3+和Eu3+的掺杂并没有引起杂相出现的事实,结合其在SrSeO3中所出现的特殊激发和发射光谱,可以确定Bi3+和Eu3+是被成功掺入SrSeO3晶体中的。然而,对于上述XRD图谱所出现的实验现象需做进一步研究。

3.2. 样品的发光性能

图3(a)~(d)所示的是空白SrSeO3和SrSeO3:R3+ (R = Bi, Eu, Ce)样品的光致激发和发射光谱。在250 nm紫外光激发下,SrSeO3可发射出起始于360 nm而终止于600 nm、峰位位于380 nm的宽带发射带,光谱覆盖了近紫外和可见光波段。该发射带可归属于SrSeO3晶体自身[SeO3]2和缺陷相关的自激活发光。以380 nm作为发射监测波长,可获得可归属于Se-O电荷迁移带且峰位位于250 nm的宽带激发光谱。与其他Bi3+掺杂的诸如钒酸盐[29]-[34]、锗酸盐[35] [36]、镓酸盐[37]-[39]、钨酸盐[40] [41]等晶体化合物相似,SrSeO3:Bi3+样品的光致激发和发射带均是宽带,这也是Bi3+相关发光材料所特有的光谱特性。在270 nm和364 nm紫外光激发下,SrSeO3:Bi3+可发射出峰位位于441 nm、半高宽为67.4 nm的宽带发射带;以441 nm作为发射监测波长,其激发光谱由峰位位于270 nm和364 nm的两个宽激发带组成。SrSeO3:Bi3+样品的激发带不同于纯样SrSeO3,其中位于270 nm的激发峰可归属于SrSeO3晶体的激发带,而位于364 nm的激发峰可归属于Bi3+离子从基态1S0到激发态3P1的跃迁;相应地,峰位位于441 nm的发射带可归属于激发态3P1到基态1S0的跃迁。值得一提的是,2023年Lu等[42]报道了一种LaCaGaO4:Bi3+荧光晶体材料,其在365 nm激发下可发射峰位位于445 nm且半峰宽82 nm的Bi3+蓝色宽带发射。该发射带与本工作SrSeO3:Bi3+在364nm激发下所获得的发射带相似,但其半高宽相较于SrSeO3:Bi3+ (67.4 nm)更宽,这意味着理论上本工作所制备的SrSeO3:Bi3+样品具有更优越的发光色纯度。类似于SrSeO3:Bi3+,SrSeO3:Ce3+样品在270 nm激发波长激发下可发射出半高宽为79.8 nm的单一宽带发射带,峰位位于460 nm。相较于Sójka等[43]所报道的具有121 nm半高宽的Ba2Ca2B4O10:Ce3+荧光晶体化合物,理论上SrSeO3:Ce3+样品也是具有更优越的发光色纯度。尤其是,在460 nm作为发射监测波长情况下,SrSeO3:Ce3+除了具有可归属于基质Se-O电荷迁移带、峰位位于270 nm的激发带之外,其还有一个强度较弱的可归属于Ce3+ 4f → 5d跃迁的位于320 nm的肩峰。相关激发光谱可涵盖整个紫外光区域,这使得SrSeO3:Ce3+能够与多种商用的紫外LED芯片相匹配,展现出应用于固态pc-LED照明技术的潜力。对于SrSeO3:Eu3+样品,其在270 nm波长激发下所得的发射光谱由两部分组成:第一部分,光谱范围在350~560 nm且峰位位于400 nm的宽发射带,此发射带可归属于SrSeO3晶体自身[SeO3]2-和缺陷相关的自激活发光;第二部分则由位于500~700 nm范围内的一系列窄带发射峰组成,主峰位于591 nm和617 nm,分别归属于Eu3+离子5D07F1的磁偶极跃迁和5D07F2的电偶极跃迁[44]。值得一提的是,磁偶极跃迁比电偶极跃迁的发射峰强度更强,这与众多Eu3+掺杂的荧光晶体材料所表现出来的电偶极跃迁比磁偶极跃迁强的情况不一样。这可能与被Eu3+取代的Sr2+格位所在[SrO9]多面体的结构扭曲有关,但还需做更为深入的实验和理论研究。以591 nm作为发射监测波长,可以发现SrSeO3:Eu3+的激发光谱是由一个峰位位于270 nm的SrSeO3强激发宽带以及两个可归属于Eu3+特征激发跃迁的强度较弱的窄带激发峰(即394 nm(7F05L6)和465 nm (7F05D2))组成。

基于图3(a)~(d)的发射光谱数据,我们计算了样品的色坐标(CIE),见图3(e)表1。可以看出纯样SrSeO3以及Bi3+、Eu3+和Ce3+掺杂SrSeO3样品的发光颜色分别处于CIE中蓝光、青光和红橙光区域,相应的色坐标为(0.175, 0.168)、(0.166, 0.125)、(0.151, 0.166)和(0.338, 0.264),与图3(f)所采集的在紫外下样品的发光照片是一致的。这些结果表明,我们在SrSeO3基质中实现了基于多种离子掺杂的多色发光。

除上述之外,我们也测试并获得了可通过公式(1) [45] [46]进行拟合的荧光寿命衰减曲线,如图3(g)所示。

I= A 1 e t τ1 + A 2 e t τ2 (1)

式中, I 表示样品的荧光强度,是时间t的函数; τ 1 τ 2 分别代表荧光快衰减和慢衰减指数; A 1 A 2 是拟合常数。相关拟合曲线和拟合结果分别如图3(g)表1所示。相关拟合优度R2 > 99%,表明拟合结果是可靠的。平均荧光寿命 τ av 可由以下公式进一步获得[45]

τ av = A 1 τ 1 2 + A 2 τ 2 2 A 1 τ 1 2 + A 2 τ 2 2 (2)

可以发现,虽然相关荧光寿命数据均是在270 nm激发波长下获取的,但发射监测波长是不一样的,采用的是各掺杂离子自身的特征发射,为此掺杂Bi3+、Eu3+和Ce3+离子在SrSeO3中的荧光寿命彼此不同。相较于纯样SrSeO3 (87.71 μs),掺杂后的样品寿命均更小。

Table 1. The CIE chromaticity coordinates and fluorescent decay lifetimes of SrSeO3:R3+ (R = Bi, Eu, Ce) samples

1. SrSeO3:R3+ (R = Bi, Eu, Ce)样品的CIE色坐标,以及相应的荧光寿命

Samples

CIE Coordinates

τ 1 (μs)

τ 1 (μs)

τ av (μs)

R2

Pure SrSeO3

(0.175, 0.168)

3057.07

15.62

152.78

200.24

87.71

99.462%

SrSeO3:Bi3+

(0.166, 0.125)

1355.78

13.60

71.07

170.90

76.07

99.264%

SrSeO3:Ce3+

(0.151, 0.166)

764.44

27.02

426.09

72.34

54.16

99.463%

SrSeO3:Eu3+

(0.338, 0.264)

1253.22

12.07

78.32

129.41

59.15

99.046%

3.3. 发光解释与机理

从前面的光致光谱信息可知:当采用归属于SrSeO3基质的激发波长(如250 nm和270 nm)去激发Bi3+、Eu3+和Ce3+掺杂的样品时,分别可获得Bi3+ (441 nm)、Eu3+(591 nm和617 nm)和Ce3+ (460 nm)的特征发射峰。这些发射峰很明显与纯样SrSeO3自身的发射峰位(380 nm)是不同的,其中SrSeO3:Bi3+在364 nm和270 nm激发下得到的发射峰位和带宽基本是一样的。通过光谱对比,可以发现归属于Bi3+ (364 nm)、Eu3+ (如对应于7F05L6跃迁的394 nm和对应于7F05D2跃迁的465 nm)以及Ce3+的激发峰(~320 nm)均与光波段在360~600 nm的SrSeO3发射带有相当光谱重叠。这意味着在250 nm或者270 nm波长激发下,SrSeO3所发射出的光可以被Bi3+、Eu3+和Ce3+离子吸收,进而实现Bi3+、Eu3+和Ce3+的特征发射。换句话说,SrSeO3:R3+ (R = Bi, Eu, Ce)中存在SrSeO3基质到Bi3+、Eu3+和Ce3+掺杂离子的能量传递,且这种能量传递是通过光辐射再吸收方式进行的。当然,一些基质到掺杂离子的能量传递效率并不是100%的。例如,在270 nm激发下,SrSeO3:Eu3+除了Eu3+发射峰还出现了SrSeO3的发射带(400 nm)。

为更好说明所观察到的发光现象,我们构建了如图4所示的机理图。在270 nm或250 nm紫外光波长激发下,SrSeO3中O2-的2p态电子(即基态)被激发到Se4+的5s态(即激发态),从而形成Se-O电荷迁移带;随后,受激电子弛豫到导带底;最后,在回到价带顶的过程中以光辐射的形式出现,即出现峰位位于380 nm的纯样SrSeO3发射带。值得一提的是,一般情况下绝大多数基质晶体化合物的发射带均是宽带发射带。例如,基质化合物ScVO4 [29]、LuVO4 [31]、ZnWO4 [39]和CaWO4 [40]的发射带均是宽带发射。除此之外,从前面的晶体结构可知,Sr与Se在正交晶系SrSeO3结构中通过共用O原子或者棱边界可形成Sr···O···Se链;当有适量的Bi3+、Eu3+和Ce3+被成功掺入SrSeO3后,即可通过取代SrSeO3中Sr格位而形成R···O···Se链。由于Bi3+、Eu3+和Ce3+有效离子半径比Sr2+有效离子半径小,因此通过R和O间键长的变化可间接影响O和Se的键长。同时,考虑到R3+和Sr2+具有不同价态,为保持电荷平衡,缺陷的产生在所难免,造成原本归属于SrSeO3激发峰位(250 nm)出现了红移现象(270 nm)。对于SrSeO3:Eu3+,由于SrSeO3到Eu3+的能量传递较低,故在272 nm激发下可出现SrSeO3的发射带峰位,同时也出现原本峰位应该在380 nm的发射带出现红移至400 nm。当然,相关激发和发射峰位的移动也是符合斯托克斯位移。

Figure 4. Mechanism schemes for the observed luminescence in SrSeO3:R3+ (R = Bi, Eu, Ce)

4. SrSeO3:R3+ (R = Bi, Eu, Ce)的发光机理

4. 结论

本文采用高温固相法合成了SrSeO3:R3+ (R = Bi, Ce, Eu)发光晶体材料,并对它们的XRD谱、光致激发和发射光谱,以及荧光衰减曲线进行了测试。结果表明,样品均属于空间群为Pnma (62)的正交晶系,并且纯样SrSeO3在250 nm紫外光激发下可发射出峰位位于~380 nm的宽带发射带,然而Bi3+、Ce3+和Eu3+掺杂的样品在270 nm紫外光激发下表现出了不同的发射光谱,主峰分别位于441 nm (3P11S0)、460 nm (5d → 4F)和591/617 nm (5D07F1,2)。此外,将这些特征激发和发射光谱作为激发波长和监测波长,可分别获得87.71 μs、76.07 μs、54.16 μs和59.15 μs的平均荧光寿命。通过光谱数据分析,发现SrSeO3基质与Bi3+、Ce3+和Eu3+掺杂离子之间存在能量传递关系。据此,本文进一步构建了机理模型,旨在对所观察到的发光现象及其可能存在的来源进行了分析与讨论。值得一提的是,迄今尚未有基于SrSeO3硒酸锶基质Bi3+、Eu3+和Ce3+掺杂的发光材料的研究工作报道。为此,本工作不仅制得了可同时适用于稀土(Ce3+和Eu3+)与非稀土(Bi3+)离子掺杂的潜力发光材料,而且也为今后发掘种类更为丰富、性能更加优越的基于硒酸盐基质晶体离子掺杂的新型发光材料提供了一定的思路。

基金项目

本研究工作受到了教育部博士后海外引才专项–回国工作专项、中央高校基本科研业务费–四川大学高层次人才引进/双百人才项目和四川省科技计划项目(重点研发项目,项目号2023YFG0074)的支持。

NOTES

*通讯作者。

参考文献

[1] Ye, S., Xiao, F., Pan, Y.X., Ma, Y.Y. and Zhang, Q.Y. (2010) Phosphors in Phosphor-Converted White Light-Emitting Diodes: Recent Advances in Materials, Techniques and Properties. Materials Science and Engineering: R: Reports, 71, 1-34.
https://doi.org/10.1016/j.mser.2010.07.001
[2] Nair, G.B., Swart, H.C. and Dhoble, S.J. (2020) A Review on the Advancements in Phosphor-Converted Light Emitting Diodes (pc-LEDs): Phosphor Synthesis, Device Fabrication and Characterization. Progress in Materials Science, 109, Article ID: 100622.
https://doi.org/10.1016/j.pmatsci.2019.100622
[3] Wei, Y., Cheng, Z. and Lin, J. (2019) An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted LEDs. Chemical Society Reviews, 48, 310-350.
https://doi.org/10.1039/c8cs00740c
[4] Fang, M., Bao, Z., Huang, W. and Liu, R. (2022) Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications for Light-Emitting Diodes. Chemical Reviews, 122, 11474-11513.
https://doi.org/10.1021/acs.chemrev.1c00952
[5] Wang, L., Xie, R., Suehiro, T., Takeda, T. and Hirosaki, N. (2018) Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chemical Reviews, 118, 1951-2009.
https://doi.org/10.1021/acs.chemrev.7b00284
[6] Riechert, H. (2015) Lighting the 21st Century. Physica Status Solidi (A), 212, 893-896.
https://doi.org/10.1002/pssa.201570434
[7] Cho, J., Park, J.H., Kim, J.K. and Schubert, E.F. (2017) White Light‐Emitting Diodes: History, Progress, and Future. Laser & Photonics Reviews, 11, Article ID: 1600147.
https://doi.org/10.1002/lpor.201600147
[8] Schubert, E.F. and Kim, J.K. (2005) Solid-State Light Sources Getting Smart. Science, 308, 1274-1278.
https://doi.org/10.1126/science.1108712
[9] Zhang, Y., Chen, B., Zhang, X., Cao, Y., Zhang, J., Xu, S., et al. (2023) Sn2+/Mn2+ Co-Doped Germanate Glass with Quasi-Sunlight Spectrum Visible-Emission and Its High-Quality W-Led Application. Chemical Engineering Journal, 467, Article ID: 143467.
https://doi.org/10.1016/j.cej.2023.143467
[10] Wu, H., Zhang, B., Zou, X., Molokeev, M.S., Zhang, X., Wang, Z., et al. (2024) Thermal Stability Enhancement of an Mn4+-Activated Germanate Phosphor by a Cationic Non-Equivalent Substitution Strategy. Journal of Materials Chemistry C, 12, 15924-15933.
https://doi.org/10.1039/d4tc02903h
[11] Wei, Y., Xing, G., Liu, K., Li, G., Dang, P., Liang, S., et al. (2019) New Strategy for Designing Orangish-Red-Emitting Phosphor via Oxygen-Vacancy-Induced Electronic Localization. Light: Science & Applications, 8, Article No. 15.
https://doi.org/10.1038/s41377-019-0126-1
[12] Ji, C., Huang, Z., Tian, X., He, H., Wen, J. and Peng, Y. (2020) Novel Red Emitting Phosphors Mg3Y2Ge3O12:Sm3+ with High Color Purity and Excellent Thermal Stability Used in W-LEDs. Journal of Alloys and Compounds, 825, Article ID: 154176.
https://doi.org/10.1016/j.jallcom.2020.154176
[13] Dang, P., Li, G., Yun, X., Zhang, Q., Liu, D., Lian, H., et al. (2021) Thermally Stable and Highly Efficient Red-Emitting Eu3+-Doped Cs3GdGe3O9 Phosphors for WLEDs: Non-Concentration Quenching and Negative Thermal Expansion. Light: Science & Applications, 10, Article No. 29.
https://doi.org/10.1038/s41377-021-00469-x
[14] Liu, X., Qian, X., Zheng, P., Hu, Z., Chen, X., Pan, H., et al. (2019) Preparation and Optical Properties of MgAl2O4-Ce:GdYAG Composite Ceramic Phosphors for White LEDs. Journal of the European Ceramic Society, 39, 4965-4971.
https://doi.org/10.1016/j.jeurceramsoc.2019.07.027
[15] Muley, A., Dhoble, S.B., Ramesh, P., Yadav, R.S. and Dhoble, S.J. (2022) Recent Development of Aluminate Materials for Solid State Lighting. Progress in Solid State Chemistry, 66, Article ID: 100347.
https://doi.org/10.1016/j.progsolidstchem.2022.100347
[16] Xue, B., Hu, L., Xiong, P., Xia, H. and Lu, B. (2023) Effects of Activator Oxidation Number and Matrix Composition on Structure Feature, Microscopic Morphology, and Luminescence Behavior of Blue-Emitting (Gd, Y)3Al5O12:Bi Phosphors. Journal of Luminescence, 257, Article ID: 119737.
https://doi.org/10.1016/j.jlumin.2023.119737
[17] Wang, B., Lin, H., Huang, F., Xu, J., Chen, H., Lin, Z., et al. (2016) Non-Rare-Earth BaMgAl10–2xO17:xMn4+, xMg2+: A Narrow-Band Red Phosphor for Use as a High-Power Warm W-LED. Chemistry of Materials, 28, 3515-3524.
https://doi.org/10.1021/acs.chemmater.6b01303
[18] Yang, J., Yuan, L., Qian, D., Wu, H. and Jin, Y. (2024) Highly Thermal-Stable Broadband Near-Infrared Emission of Cr3+ Doped Spinel CdGa2O4 Phosphors. Journal of Luminescence, 275, Article ID: 120825.
https://doi.org/10.1016/j.jlumin.2024.120825
[19] Zhu, X., Wang, T., Liu, H., Nie, L., Zhao, F., Yu, S., et al. (2023) Achievement of Full-Visible-Spectrum Lighting in Bi3+-Activated Strontium Gallates via Lattice Site Occupancy Engineering toward WLEDs Applications. Materials Today Physics, 31, Article ID: 100968.
https://doi.org/10.1016/j.mtphys.2023.100968
[20] He, C., Takeda, T., Huang, Z., Xu, J., Chen, J., Yi, W., et al. (2023) Powder Synthesis and Luminescence of a Novel Yellow-Emitting Ba5Si11Al7N25: Eu2+ Phosphor Discovered by a Single-Particle-Diagnosis Approach for Warm W-LEDs. Chemical Engineering Journal, 455, Article ID: 140932.
https://doi.org/10.1016/j.cej.2022.140932
[21] Pust, P., Weiler, V., Hecht, C., Tücks, A., Wochnik, A.S., Henß, A.-K., Wiechert, D., et al. (2014) Narrow-Band Red-Emitting Sr[LiAl3N4]:Eu2+ as a Next-Generation LED-Phosphor Material. Nature Materials, 13, 891-896.
https://doi.org/10.1038/nmat4012
[22] Takeda, T., Xie, R., Suehiro, T. and Hirosaki, N. (2018) Nitride and Oxynitride Phosphors for White LEDs: Synthesis, New Phosphor Discovery, Crystal Structure. Progress in Solid State Chemistry, 51, 41-51.
https://doi.org/10.1016/j.progsolidstchem.2017.11.002
[23] Leskelä, M. and Hölsä, J. (1985) Thermal Stability of Eu3+ Activated Rare Earth Hydrogenselenites. Thermochimica Acta, 92, 489-491.
https://doi.org/10.1016/0040-6031(85)85922-0
[24] Pinatti, I.M., Trench, A.B., Tello, A.C.M., Pereira, P.F.S., Souza, J.C., Teodoro, M.D., et al. (2021) Structure, Photoluminescence Emissions, and Photocatalytic Activity of Ag2seo3: A Joint Experimental and Theoretical Investigation. Inorganic Chemistry, 60, 5937-5954.
https://doi.org/10.1021/acs.inorgchem.1c00368
[25] Kuhlmann, N. and Wickleder, C. (2023) Glowing Selenates: Novel Alkaline Earth Nanoparticles. RSC Advances, 13, 21225-21230.
https://doi.org/10.1039/d3ra01669b
[26] Aralbayeva, G., Sarsekhan, G., Akylbekova, A., Vlasukova, L.A., Baimukhanov, Z., Yuvchenko, V., et al. (2024) The Thermal Stability and Photoluminescence of ZnSeO3 Nanocrystals Chemically Synthesized into SiO2/Si Track Templates. Crystals, 14, Article 730.
https://doi.org/10.3390/cryst14080730
[27] Wildner, M. and Giester, G. (2007) Crystal Structures of SrSeO3 and CaSeO3 and Their Respective Relationships with Molybdomenite-and Monazite-Type Compounds an Example for Stereochemical Equivalence of ESeO3 Groups (E = Lone Electron Pair) with Tetrahedral TO4 Groups. Neues Jahrbuch für MineralogieAbhandlungen, 184, 29-37.
https://doi.org/10.1127/0077-7757/2007/0083
[28] Lipp, C. and Schleid, T. (2008) Orthorhombisches Sr[SeO3]. Zeitschrift für anorganische und allgemeine Chemie, 634, 2060-2060.
https://doi.org/10.1002/zaac.200870104
[29] Kang, F., Zhang, H., Wondraczek, L., Yang, X., Zhang, Y., Lei, D.Y., et al. (2016) Band-Gap Modulation in Single Bi3+-Doped Yttrium-Scandium-Niobium Vanadates for Color Tuning over the Whole Visible Spectrum. Chemistry of Materials, 28, 2692-2703.
https://doi.org/10.1021/acs.chemmater.6b00277
[30] Kang, F., Yang, X., Peng, M., Wondraczek, L., Ma, Z., Zhang, Q., et al. (2014) Red Photoluminescence from Bi3+and the Influence of the Oxygen-Vacancy Perturbation in Scvo4: A Combined Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118, 7515-7522.
https://doi.org/10.1021/jp4081965
[31] Kang, F., Peng, M., Yang, X., Dong, G., Nie, G., Liang, W., et al. (2014) Broadly Tuning Bi3+ Emission via Crystal Field Modulation in Solid Solution Compounds (Y, Lu, Sc)VO4:Bi for Ultraviolet Converted White LEDs. Journal of Materials Chemistry C, 2, 6068-6076.
https://doi.org/10.1039/c4tc00238e
[32] Kang, F., Peng, M., Zhang, Q. and Qiu, J. (2014) Abnormal Anti‐Quenching and Controllable Multi‐Transitions of Bi3+ Luminescence by Temperature in a Yellow‐emitting LuVo4:Bi3+ Phosphor for UV‐Converted White LEDs. ChemistryA European Journal, 20, 11522-11530.
https://doi.org/10.1002/chem.201402081
[33] Kang, F., Peng, M., Lei, D.Y. and Zhang, Q. (2016) Recoverable and Unrecoverable Bi3+-Related Photoemissions Induced by Thermal Expansion and Contraction in LuVo4:Bi3+ and ScVo4:Bi3+ Compounds. Chemistry of Materials, 28, 7807-7815.
https://doi.org/10.1021/acs.chemmater.6b03062
[34] Kang, F., Sun, G., Boutinaud, P., Gao, F., Wang, Z., Lu, J., et al. (2019) Tuning the Bi3+-Photoemission Color over the Entire Visible Region by Manipulating Secondary Cations Modulation in the ScVxP1−xO4:Bi3+ (0 ≤ x ≤ 1) Solid Solution. Journal of Materials Chemistry C, 7, 9865-9877.
https://doi.org/10.1039/c9tc01385g
[35] Hu, T., Yu, J., Zeng, Q., Zhang, C., Teng, Y., Shao, K., et al. (2025) Ternary Afterglow and Dynamic Anti-Counterfeiting Applications of Self-Activated Zinc Germanate. Journal of Materials Chemistry C, 13, 81-92.
https://doi.org/10.1039/d4tc04090b
[36] Yue, Y., Wang, T., Yan, Y., Guo, L., Zhu, X., Bu, W., et al. (2024) Nonstoichiometry-induced Self-Activated Phosphors for Dynamic Anti-Counterfeiting Applications. ACS Applied Materials & Interfaces, 16, 32402-32410.
https://doi.org/10.1021/acsami.4c04746
[37] Wang, Y., Guo, N., Xin, Y., Li, J., Ouyang, R., Shao, B., et al. (2021) A Solid-Solution Modulation Strategy in Trivalent Bismuth-Doped Gallate Phosphors for Single Substrate Tunable Emission. Dalton Transactions, 50, 12592-12606.
https://doi.org/10.1039/d1dt02222a
[38] Yu, X., Wang, S., Zhu, Y., Liang, J., Qiu, J., Xu, X., et al. (2017) High-Temperature Long Persistent and Photo-Stimulated Luminescence in Tb3+ Doped Gallate Phosphor. Journal of Alloys and Compounds, 701, 774-779.
https://doi.org/10.1016/j.jallcom.2017.01.210
[39] Ren, J., Xu, X., Zeng, H., Chen, G., Kong, D., Gu, C., et al. (2014) Novel Self‐Activated Zinc Gallogermanate Phosphor: The Origin of Its Photoluminescence. Journal of the American Ceramic Society, 97, 3197-3201.
https://doi.org/10.1111/jace.13103
[40] Han, J., Li, L., Peng, M., Huang, B., Pan, F., Kang, F., et al. (2017) Toward Bi3+ Red Luminescence with No Visible Reabsorption through Manageable Energy Interaction and Crystal Defect Modulation in Single Bi3+-Doped ZnWO4 Crystal. Chemistry of Materials, 29, 8412-8424.
https://doi.org/10.1021/acs.chemmater.7b02979
[41] Kang, F. and Peng, M. (2014) A New Study on the Energy Transfer in the Color-Tunable Phosphor CaWO4:Bi. Dalton Trans., 43, 277-284.
https://doi.org/10.1039/c3dt51183a
[42] Lu, Z., Sun, D., Lyu, Z., Shen, S., Luo, P., Wei, S., et al. (2023) Novel Color Tunable LaCaGaO4:Bi3+, Eu3+ Phosphors for High Color Rendering Warm White LEDs. Journal of the American Ceramic Society, 106, 6617-6629.
https://doi.org/10.1111/jace.19255
[43] Sójka, M., Hariyani, S., Lee, N. and Brgoch, J. (2023) Colossal Chromatic Shift in the Ba2Ca2B4O10:Ce3+ Phosphor. Chemistry of Materials, 35, 6491-6501.
https://doi.org/10.1021/acs.chemmater.3c01465
[44] Annadurai, G., Li, B., Devakumar, B., Guo, H., Sun, L. and Huang, X. (2019) Synthesis, Structural and Photoluminescence Properties of Novel Orange-Red Emitting Ba3Y2B6O15: Eu3+ Phosphors. Journal of Luminescence, 208, 75-81.
https://doi.org/10.1016/j.jlumin.2018.12.028
[45] Raghupathi, P. and Jamalaiah, B.C. (2022) Li6AlGd(BO3)4: Sm3+ Phosphors for Orange-Red Light Sources. Optical Materials, 131, Article ID: 112702.
https://doi.org/10.1016/j.optmat.2022.112702
[46] Farooq, M., Rafiq, H., Nazir, I., Tantray, A.M., Younis, H. and Rasool, M.H. (2025) Comparative Investigation of Structural, Morphological and Temperature-Dependent Photoluminescence Characteristics of Trivalent Rare-Earth-Activated NaCaPO4 Phosphors for Solid-State Lighting Applications. Journal of Luminescence, 277, Article ID: 120901.
https://doi.org/10.1016/j.jlumin.2024.120901