|
[1]
|
孔锋, 申丹娜, 吕丽莉, 等. “一带一路”沿线综合气象灾害防范国际合作[J]. 阅江学刊, 2017, 9(6): 69-75+142.
|
|
[2]
|
刘大文. “一带一路”地质调查工作刍议[J]. 中国地质, 2015, 42(4): 819-827.
|
|
[3]
|
Corominas, C., Frattini, W.P., et al. (2014) Recommendations for the Quantitative Analysis of Landslide Risk. Bulletin of Engineering Geology and the Environment, 73, 209-263.
|
|
[4]
|
Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., Yoshida, K., Pradhan, B., Ryu, I.C., et al. (2012) Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya. Natural Hazards, 65, 135-165. [Google Scholar] [CrossRef]
|
|
[5]
|
Huang, F., Chen, L., Yin, K., Huang, J. and Gui, L. (2018) Object-Oriented Change Detection and Damage Assessment Using High-Resolution Remote Sensing Images, Tangjiao Landslide, Three Gorges Reservoir, China. Environmental Earth Sciences, 77, Article No. 183. [Google Scholar] [CrossRef]
|
|
[6]
|
Wu, X., Shen, S. and Niu, R. (2016) Landslide Susceptibility Prediction Using GIS and PSO-SVM. Geomatics and Information Science of Wuhan University.
|
|
[7]
|
Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q. and Wu, Y. (2016) A Modified Frequency Ratio Method for Landslide Susceptibility Assessment. Landslides, 14, 727-741. [Google Scholar] [CrossRef]
|
|
[8]
|
Pradhan, A.M.S. and Kim, Y.T. (2016) Evaluation of a Combined Spatial Multi-Criteria Evaluation Model and Deterministic Model for Landslide Susceptibility Mapping. Catena, 140, 125-139. [Google Scholar] [CrossRef]
|
|
[9]
|
Ding, Q., Chen, W. and Hong, H. (2016) Application of Frequency Ratio, Weights of Evidence and Evidential Belief Function Models in Landslide Susceptibility Mapping. Geocarto International, 32, 619-639. [Google Scholar] [CrossRef]
|
|
[10]
|
Kannan, M., Saranathan, E. and Anabalagan, R. (2012) Landslide Vulnerability Mapping Using Frequency Ratio Model: A Geospatial Approach in Bodi-Bodimettu Ghat Section, Theni District, Tamil Nadu, India. Arabian Journal of Geosciences, 6, 2901-2913. [Google Scholar] [CrossRef]
|
|
[11]
|
Kayastha, P., Dhital, M.R. and De Smedt, F. (2012) Landslide Susceptibility Mapping Using the Weight of Evidence Method in the Tinau Watershed, Nepal. Natural Hazards, 63, 479-498. [Google Scholar] [CrossRef]
|
|
[12]
|
Lee, S. and Choi, J. (2004) Landslide Susceptibility Mapping Using GIS and the Weight-of-Evidence Model. International Journal of Geographical Information Science, 18, 789-814. [Google Scholar] [CrossRef]
|
|
[13]
|
Sarkar, S., Roy, A.K. and Martha, T.R. (2013) Landslide Susceptibility Assessment Using Information Value Method in Parts of the Darjeeling Himalayas. Journal of the Geological Society of India, 82, 351-362. [Google Scholar] [CrossRef]
|
|
[14]
|
Sharma, L.P., Patel, N., Ghose, M.K. and Debnath, P. (2014) Development and Application of Shannon’s Entropy Integrated Information Value Model for Landslide Susceptibility Assessment and Zonation in Sikkim Himalayas in India. Natural Hazards, 75, 1555-1576. [Google Scholar] [CrossRef]
|
|
[15]
|
Kadavi, P.R., Lee, C. and Lee, S. (2019) Landslide-Susceptibility Mapping in Gangwon-Do, South Korea, Using Logistic Regression and Decision Tree Models. Environmental Earth Sciences, 78, Article No. 116. [Google Scholar] [CrossRef]
|
|
[16]
|
Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z.S. and Al-Katheeri, M.M. (2015) Landslide Susceptibility Mapping Using Random Forest, Boosted Regression Tree, Classification and Regression Tree, and General Linear Models and Comparison of Their Performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13, 839-856. [Google Scholar] [CrossRef]
|
|
[17]
|
Shahabi, H., Khezri, S., Ahmad, B.B. and Hashim, M. (2014) RETRACTED: Landslide Susceptibility Mapping at Central Zab Basin, Iran: A Comparison between Analytical Hierarchy Process, Frequency Ratio and Logistic Regression Models. Catena, 115, 55-70. [Google Scholar] [CrossRef]
|
|
[18]
|
黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167.
|
|
[19]
|
Ermini, L., Catani, F. and Casagli, N. (2005) Artificial Neural Networks Applied to Landslide Susceptibility Assessment. Geomorphology, 66, 327-343. [Google Scholar] [CrossRef]
|
|
[20]
|
Kalantar, B., Pradhan, B., Naghibi, S.A., Motevalli, A. and Mansor, S. (2017) Assessment of the Effects of Training Data Selection on the Landslide Susceptibility Mapping: A Comparison between Support Vector Machine (SVM), Logistic Regression (LR) and Artificial Neural Networks (ANN). Geomatics, Natural Hazards and Risk, 9, 49-69. [Google Scholar] [CrossRef]
|
|
[21]
|
Vakhshoori, V. and Zare, M. (2016) Landslide Susceptibility Mapping by Comparing Weight of Evidence, Fuzzy Logic, and Frequency Ratio Methods. Geomatics, Natural Hazards and Risk, 7, 1731-1752. [Google Scholar] [CrossRef]
|
|
[22]
|
Wang, L., Guo, M., Sawada, K., Lin, J. and Zhang, J. (2015) A Comparative Study of Landslide Susceptibility Maps Using Logistic Regression, Frequency Ratio, Decision Tree, Weights of Evidence and Artificial Neural Network. Geosciences Journal, 20, 117-136. [Google Scholar] [CrossRef]
|
|
[23]
|
Mohammady, M., Pourghasemi, H.R. and Pradhan, B. (2012) Landslide Susceptibility Mapping at Golestan Province, Iran: A Comparison between Frequency Ratio, Dempster-Shafer, and Weights-of-Evidence Models. Journal of Asian Earth Sciences, 61, 221-236. [Google Scholar] [CrossRef]
|
|
[24]
|
Yesilnacar, E. and Topal, T. (2005) Landslide Susceptibility Mapping: A Comparison of Logistic Regression and Neural Networks Methods in a Medium Scale Study, Hendek Region (Turkey). Engineering Geology, 79, 251-266. [Google Scholar] [CrossRef]
|
|
[25]
|
Gordon, A.D., Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classification and Regression Trees. Biometrics, 40, 874. [Google Scholar] [CrossRef]
|
|
[26]
|
Donoho, D.L. (1995) De-Noising by Soft-Thresholding. IEEE Transactions on Information Theory, 41, 613-627. [Google Scholar] [CrossRef]
|
|
[27]
|
刘庆和, 梁正友. 一种基于信息增益的特征优化选择方法[J]. 计算机工程与应用, 2011, 47(12): 130-132+136.
|
|
[28]
|
Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32. [Google Scholar] [CrossRef]
|
|
[29]
|
Fawcett, T. (2006) An Introduction to ROC Analysis. Pattern Recognition Letters, 27, 861-874. [Google Scholar] [CrossRef]
|
|
[30]
|
巩云鹏. 青海乐都地区地质环境适宜性评价[D]: [硕士学位论文]. 西安: 长安大学, 2018.
|
|
[31]
|
马国超. 强震区汶川县地质灾害危险性评价研究[D]: [硕士学位论文]. 成都: 成都理工大学, 2015.
|
|
[32]
|
陈洪凯, 魏来, 谭玲. 降雨型滑坡经验性降雨阈值研究综述[J]. 重庆交通大学学报(自然科学版), 2012, 31(5): 990-996.
|
|
[33]
|
Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L. and Michael, J.A. (2006) Modeling Regional Initiation of Rainfall-Induced Shallow Landslides in the Eastern Umbria Region of Central Italy. Landslides, 3, 181-194. [Google Scholar] [CrossRef]
|
|
[34]
|
杨乐, 彭海游, 周莫林, 谢洪斌, 罗真富, 谭亮. 基于层次分析法的奉节县城地质环境承载力评价[J]. 重庆交通大学学报(自然科学版), 2014, 33(2): 95-99.
|
|
[35]
|
刘希林, 王士革, 张信宝. 论地质条件对滑坡发育的影响: 以云南昭通地区为例[J]. 灾害学, 1991(3): 31-34.
|
|
[36]
|
Sidle, R.C. and Ochiai, H. (2013) Landslides: Processes, Prediction, and Land Use.
|
|
[37]
|
Gupta, R.P. and Joshi, B.C. (1990) Landslide Hazard Zoning Using the GIS Approach—A Case Study from the Ramganga Catchment, Himalayas. Engineering Geology, 28, 119-131. [Google Scholar] [CrossRef]
|
|
[38]
|
Kornejady, A., Ownegh, M. and Bahremand, A. (2017) Landslide Susceptibility Assessment Using Maximum Entropy Model with Two Different Data Sampling Methods. Catena, 152, 144-162. [Google Scholar] [CrossRef]
|
|
[39]
|
刘明吉, 王秀峰, 黄亚楼. 数据挖掘中的数据预处理[J]. 计算机科学, 2000, 27(4): 54-57.
|
|
[40]
|
Probst, P., Wright, M.N. and Boulesteix, A. (2019) Hyperparameters and Tuning Strategies for Random Forest. WIREs Data Mining and Knowledge Discovery, 9, e1301. [Google Scholar] [CrossRef]
|