[1]
|
Ward, E.F., Tomasin, J. and Vander Griend, R.A. (1987) Open Reduction and Internal Fixation of Vertical Shear Pelvic Fractures. The Journal of Trauma: Injury, Infection, and Critical Care, 27, 291-295. https://doi.org/10.1097/00005373-198703000-00011
|
[2]
|
Stevenson, A.J., Swartman, B. and Bucknill, A.T. (2016) Perkutane interne Fixation bei Beckenfrakturen. Der Unfallchirurg, 119, 825-834. https://doi.org/10.1007/s00113-016-0242-9
|
[3]
|
Zhou, K., Luo, C., Chen, N., Hu, C. and Pan, F. (2016) Minimally Invasive Surgery under Fluoro-Navigation for Anterior Pelvic Ring Fractures. Indian Journal of Orthopaedics, 50, 250-255. https://doi.org/10.4103/0019-5413.181791
|
[4]
|
Leung, K.S., Tang, N., Cheung, L.W.H. and Ng, E. (2010) Image-Guided Navigation in Orthopaedic Trauma. The Journal of Bone and Joint Surgery. British volume, 92, 1332-1337. https://doi.org/10.1302/0301-620x.92b10.24594
|
[5]
|
Zheng, G. and Nolte, L.P. (2015) Computer-Assisted Orthopedic Surgery: Current State and Future Perspective. Frontiers in Surgery, 2, Article 66. https://doi.org/10.3389/fsurg.2015.00066
|
[6]
|
Karthik, K., Colegate-Stone, T., Dasgupta, P., Tavakkolizadeh, A. and Sinha, J. (2015) Robotic Surgery in Trauma and Orthopaedics. The Bone & Joint Journal, 97, 292-299. https://doi.org/10.1302/0301-620x.97b3.35107
|
[7]
|
Zwingmann, J., Konrad, G., Kotter, E., Südkamp, N.P. and Oberst, M. (2009) Computer-Navigated Iliosacral Screw Insertion Reduces Malposition Rate and Radiation Exposure. Clinical Orthopaedics & Related Research, 467, 1833-1838. https://doi.org/10.1007/s11999-008-0632-6
|
[8]
|
Wong, J.M., Bewsher, S., Yew, J., Bucknill, A. and de Steiger, R. (2015) Fluoroscopically Assisted Computer Navigation Enables Accurate Percutaneous Screw Placement for Pelvic and Acetabular Fracture Fixation. Injury, 46, 1064-1068. https://doi.org/10.1016/j.injury.2015.01.038
|
[9]
|
Giráldez-Sánchez, M.A., Lázaro-Gonzálvez, Á., Martínez-Reina, J., Serrano-Toledano, D., Navarro-Robles, A., Cano-Luis, P., et al. (2015) Percutaneous Iliosacral Fixation in External Rotational Pelvic Fractures. a Biomechanical Analysis. Injury, 46, 327-332. https://doi.org/10.1016/j.injury.2014.10.058
|
[10]
|
Zhang, L., Peng, Y., Du, C. and Tang, P. (2014) Biomechanical Study of Four Kinds of Percutaneous Screw Fixation in Two Types of Unilateral Sacroiliac Joint Dislocation: A Finite Element Analysis. Injury, 45, 2055-2059. https://doi.org/10.1016/j.injury.2014.10.052
|
[11]
|
Thakkar, S.C., Thakkar, R.S., Sirisreetreerux, N., Carrino, J.A., Shafiq, B. and Hasenboehler, E.A. (2016) 2D versus 3D Fluoroscopy-Based Navigation in Posterior Pelvic Fixation: Review of the Literature on Current Technology. International Journal of Computer Assisted Radiology and Surgery, 12, 69-76. https://doi.org/10.1007/s11548-016-1465-5
|
[12]
|
Matityahu, A., Kahler, D., Krettek, C., Stöckle, U., Grutzner, P.A., Messmer, P., et al. (2014) Three-Dimensional Navigation Is More Accurate than Two-Dimensional Navigation or Conventional Fluoroscopy for Percutaneous Sacroiliac Screw Fixation in the Dysmorphic Sacrum: A Randomized Multicenter Study. Journal of Orthopaedic Trauma, 28, 707-710. https://doi.org/10.1097/bot.0000000000000092
|
[13]
|
Wu, Z., Dai, Y. and Zeng, Y. (2024) Intelligent Robot-Assisted Fracture Reduction System for the Treatment of Unstable Pelvic Fractures. Journal of Orthopaedic Surgery and Research, 19, Article No. 271. https://doi.org/10.1186/s13018-024-04761-5
|
[14]
|
Bouazza-Marouf, K., Browbank, I. and Hewit, J.R. (1995) Robotic-Assisted Internal Fixation of Femoral Fractures. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 209, 51-58. https://doi.org/10.1243/pime_proc_1995_209_316_02
|
[15]
|
Gosling, T., Westphal, R., Hufner, T., Faulstich, J., Kfuri, M., Wahl, F., et al. (2005) Robot-Assisted Fracture Reduction: A Preliminary Study in the Femur Shaft. Medical and Biological Engineering and Computing, 43, 115-120. https://doi.org/10.1007/bf02345131
|
[16]
|
Westphal, R., Winkelbach, S., Gösling, T., Hüfner, T., Faulstich, J., Martin, P., et al. (2006) A Surgical Telemanipulator for Femur Shaft Fracture Reduction. The International Journal of Medical Robotics and Computer Assisted Surgery, 2, 238-250. https://doi.org/10.1002/rcs.81
|
[17]
|
Graham, A.E., Xie, S.Q., Aw, K.C., Mukherjee, S. and Xu, W.L. (2008) Bone-Muscle Interaction of the Fractured Femur. Journal of Orthopaedic Research, 26, 1159-1165. https://doi.org/10.1002/jor.20611
|
[18]
|
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R., et al. (2017) Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures. Annals of Biomedical Engineering, 45, 2648-2662. https://doi.org/10.1007/s10439-017-1901-x
|
[19]
|
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R., et al. (2017) Intra-Operative Fiducial-Based CT/Fluoroscope Image Registration Framework for Image-Guided Robot-Assisted Joint Fracture Surgery. International Journal of Computer Assisted Radiology and Surgery, 12, 1383-1397. https://doi.org/10.1007/s11548-017-1602-9
|
[20]
|
Wang, T., Li, C., Hu, L., Tang, P., Zhang, L., Du, H., et al. (2014) A Removable Hybrid Robot System for Long Bone Fracture Reduction. Bio-Medical Materials and Engineering, 24, 501-509. https://doi.org/10.3233/bme-130836
|
[21]
|
Ge, Y., Zhao, C., Wang, Y. and Wu, X. (2022) Robot-Assisted Autonomous Reduction of a Displaced Pelvic Fracture: A Case Report and Brief Literature Review. Journal of Clinical Medicine, 11, Article 1598. https://doi.org/10.3390/jcm11061598
|
[22]
|
Joung, S., Kamon, H., Liao, H., Iwaki, J., Nakazawa, T., Mitsuishi, M., et al. (2008) A Robot Assisted Hip Fracture Reduction with a Navigation System. In: Metaxas, D., Axel, L., Fichtinger, G. and Székely, G., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008., Springer, 501-508. https://doi.org/10.1007/978-3-540-85990-1_60
|
[23]
|
Zhao, J., Li, C., Ren, H., Hao, M., Zhang, L. and Tang, P. (2019) Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review. Annals of Biomedical Engineering, 48, 203-224. https://doi.org/10.1007/s10439-019-02332-y
|
[24]
|
Bai, L., Yang, J., Chen, X., Sun, Y. and Li, X. (2019) Medical Robotics in Bone Fracture Reduction Surgery: A Review. Sensors, 19, Article 3593. https://doi.org/10.3390/s19163593
|
[25]
|
Moolenaar, J.Z., Tümer, N. and Checa, S. (2022) Computer-Assisted Preoperative Planning of Bone Fracture Fixation Surgery: A State-of-the-Art Review. Frontiers in Bioengineering and Biotechnology, 10, Article 1037048. https://doi.org/10.3389/fbioe.2022.1037048
|
[26]
|
Jiménez-Delgado, J.J., Paulano-Godino, F., PulidoRam-Ramírez, R. and Jiménez-Pérez, J.R. (2016) Computer Assisted Preoperative Planning of Bone Fracture Reduction: Simulation Techniques and New Trends. Medical Image Analysis, 30, 30-45. https://doi.org/10.1016/j.media.2015.12.005
|
[27]
|
Liu, H., Duan, S., Liu, S., Jia, F., Zhu, L. and Liu, M. (2018) Robot‐Assisted Percutaneous Screw Placement Combined with Pelvic Internal Fixator for Minimally Invasive Treatment of Unstable Pelvic Ring Fractures. The International Journal of Medical Robotics and Computer Assisted Surgery, 14, e1927. https://doi.org/10.1002/rcs.1927
|
[28]
|
Liu, H., Duan, S., Xin, F., Zhang, Z., Wang, X. and Liu, S. (2019) Robot‐Assisted Minimally‐Invasive Internal Fixation of Pelvic Ring Injuries: A Single‐Center Experience. Orthopaedic Surgery, 11, 42-51. https://doi.org/10.1111/os.12423
|
[29]
|
Jing, Y., Chang, L., Cong, B., Wang, J., Chen, M., Tang, Z., et al. (2024) Preoperative 3D Printing Planning Technology Combined with Orthopedic Surgical Robot-Assisted Minimally Invasive Screw Fixation for the Treatment of Pelvic Fractures: A Retrospective Study. PeerJ, 12, e18632. https://doi.org/10.7717/peerj.18632
|
[30]
|
Xu, S., Bernardo, L., Yew, K. and Pang, H. (2020) Robotic-Arm Assisted Direct Anterior Total Hip Arthroplasty; Improving Implant Accuracy. Surgical Technology Online, 38, 347-352. https://doi.org/10.52198/21.sti.38.os1368
|
[31]
|
Zaidi, F., Goplen, C.M., Fitz‐Gerald, C., Bolam, S.M., Hanlon, M., Munro, J.T., et al. (2024) High In‐Vivo Accuracy of a Novel Robotic-Arm-Assisted System for Total Knee Arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 33, 229-238. https://doi.org/10.1002/ksa.12272
|
[32]
|
Wu, X., Zhou, Y., Shao, H., Yang, D., Guo, S. and Huang, W. (2023) Robotic-Assisted Revision Total Joint Arthroplasty: A State-of-the-Art Scoping Review. EFORT Open Reviews, 8, 18-25. https://doi.org/10.1530/eor-22-0105
|
[33]
|
Hasegawa, M., Tone, S., Naito, Y. and Sudo, A. (2024) Comparison of Accuracy and Early Outcomes in Robotic Total Knee Arthroplasty Using NAVIO and Rosa. Scientific Reports, 14, Article No. 3192. https://doi.org/10.1038/s41598-024-53789-4
|
[34]
|
Liao, J., Dai, Y., Wu, Z., et al. (2024) [Effectiveness of Reduction Robot Combined with Navigation Robot-Assisted Minimally Invasive Treatment for Tile Type B Pelvic Fractures]. Chinese Journal of Reparative and Reconstructive Surgery, 38, 954-960.
|
[35]
|
Zhou, X., Chen, Y., Miao, G., Guo, Y., Zhang, Q. and Bi, J. (2025) Computer-Aided Robotics for Applications in Fracture Reduction Surgery: Advances, Challenges, and Opportunities. iScience, 28, Article ID: 111509. https://doi.org/10.1016/j.isci.2024.111509
|
[36]
|
Khojastehnezhad, M.A., Youseflee, P., Moradi, A., et al. (2025) Artificial Intelligence and the State of the Art of Orthopedic Surgery. The Archives of Bone and Joint Surgery, 13, 17-22.
|
[37]
|
Zeng, G., Li, Z., Hou, J., Yu, L., Cui, Y., Zhu, Y., et al. (2025) Robot‐Assisted Screw Fixation Combined with Endoscopic Bone Graft in the Minimally Invasive Treatment of Lumbar Spondylolysis: A Single‐Center Retrospective Study. Orthopaedic Surger. https://doi.org/10.1111/os.14368
|
[38]
|
Link, B., Haveman, R.A., Van de Wall, B.J.M., Baumgärtner, R., Babst, R., Beeres, F.J.P., et al. (2024) Percutaneous Sacroiliac Screw Fixation with a 3D Robot-Assisted Image-Guided Navigation System: Technical Solutions. Operative Orthopädie und Traumatologie, 37, 3-13. https://doi.org/10.1007/s00064-024-00871-9
|
[39]
|
Cintean, R., Schütze, K., Gebhard, F. and Pankratz, C. (2024) Minimal-Invasive Stabilisation von Azetabulumfrakturen mit Virtueller Navigation in Kombination mit Robotergestützter 3-D-Bildgebung. Operative Orthopädie und Traumatologie, 37, 14-22. https://doi.org/10.1007/s00064-024-00872-8
|
[40]
|
Zhao, C., Xiao, H., Cao, Q., Ge, Y., Li, Y., Wang, Y., et al. (2024) Innovative Development of Robot Reduction System in Geriatric Pelvic Fractures: A Single-Center Case Series in Beijing, China. Journal of Orthopaedic Translation, 49, 283-288. https://doi.org/10.1016/j.jot.2024.08.023
|
[41]
|
Rommens, P.M., Hofmann, A., Kraemer, S., Kisilak, M., Boudissa, M. and Wagner, D. (2021) Operative Treatment of Fragility Fractures of the Pelvis: A Critical Analysis of 140 Patients. European Journal of Trauma and Emergency Surgery, 48, 2881-2896. https://doi.org/10.1007/s00068-021-01799-6
|
[42]
|
Kou, W., Zhou, P., Lin, J., Kuang, S. and Sun, L. (2023) Technologies Evolution in Robot-Assisted Fracture Reduction Systems: A Comprehensive Review. Frontiers in Robotics and AI, 10, Article 1315250. https://doi.org/10.3389/frobt.2023.1315250
|