|
[1]
|
Ward, E.F., Tomasin, J. and Vander Griend, R.A. (1987) Open Reduction and Internal Fixation of Vertical Shear Pelvic Fractures. The Journal of Trauma: Injury, Infection, and Critical Care, 27, 291-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Stevenson, A.J., Swartman, B. and Bucknill, A.T. (2016) Perkutane interne Fixation bei Beckenfrakturen. Der Unfallchirurg, 119, 825-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhou, K., Luo, C., Chen, N., Hu, C. and Pan, F. (2016) Minimally Invasive Surgery under Fluoro-Navigation for Anterior Pelvic Ring Fractures. Indian Journal of Orthopaedics, 50, 250-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Leung, K.S., Tang, N., Cheung, L.W.H. and Ng, E. (2010) Image-Guided Navigation in Orthopaedic Trauma. The Journal of Bone and Joint Surgery. British volume, 92, 1332-1337. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zheng, G. and Nolte, L.P. (2015) Computer-Assisted Orthopedic Surgery: Current State and Future Perspective. Frontiers in Surgery, 2, Article 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Karthik, K., Colegate-Stone, T., Dasgupta, P., Tavakkolizadeh, A. and Sinha, J. (2015) Robotic Surgery in Trauma and Orthopaedics. The Bone & Joint Journal, 97, 292-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zwingmann, J., Konrad, G., Kotter, E., Südkamp, N.P. and Oberst, M. (2009) Computer-Navigated Iliosacral Screw Insertion Reduces Malposition Rate and Radiation Exposure. Clinical Orthopaedics & Related Research, 467, 1833-1838. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wong, J.M., Bewsher, S., Yew, J., Bucknill, A. and de Steiger, R. (2015) Fluoroscopically Assisted Computer Navigation Enables Accurate Percutaneous Screw Placement for Pelvic and Acetabular Fracture Fixation. Injury, 46, 1064-1068. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Giráldez-Sánchez, M.A., Lázaro-Gonzálvez, Á., Martínez-Reina, J., Serrano-Toledano, D., Navarro-Robles, A., Cano-Luis, P., et al. (2015) Percutaneous Iliosacral Fixation in External Rotational Pelvic Fractures. a Biomechanical Analysis. Injury, 46, 327-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, L., Peng, Y., Du, C. and Tang, P. (2014) Biomechanical Study of Four Kinds of Percutaneous Screw Fixation in Two Types of Unilateral Sacroiliac Joint Dislocation: A Finite Element Analysis. Injury, 45, 2055-2059. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Thakkar, S.C., Thakkar, R.S., Sirisreetreerux, N., Carrino, J.A., Shafiq, B. and Hasenboehler, E.A. (2016) 2D versus 3D Fluoroscopy-Based Navigation in Posterior Pelvic Fixation: Review of the Literature on Current Technology. International Journal of Computer Assisted Radiology and Surgery, 12, 69-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Matityahu, A., Kahler, D., Krettek, C., Stöckle, U., Grutzner, P.A., Messmer, P., et al. (2014) Three-Dimensional Navigation Is More Accurate than Two-Dimensional Navigation or Conventional Fluoroscopy for Percutaneous Sacroiliac Screw Fixation in the Dysmorphic Sacrum: A Randomized Multicenter Study. Journal of Orthopaedic Trauma, 28, 707-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wu, Z., Dai, Y. and Zeng, Y. (2024) Intelligent Robot-Assisted Fracture Reduction System for the Treatment of Unstable Pelvic Fractures. Journal of Orthopaedic Surgery and Research, 19, Article No. 271. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bouazza-Marouf, K., Browbank, I. and Hewit, J.R. (1995) Robotic-Assisted Internal Fixation of Femoral Fractures. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 209, 51-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gosling, T., Westphal, R., Hufner, T., Faulstich, J., Kfuri, M., Wahl, F., et al. (2005) Robot-Assisted Fracture Reduction: A Preliminary Study in the Femur Shaft. Medical and Biological Engineering and Computing, 43, 115-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Westphal, R., Winkelbach, S., Gösling, T., Hüfner, T., Faulstich, J., Martin, P., et al. (2006) A Surgical Telemanipulator for Femur Shaft Fracture Reduction. The International Journal of Medical Robotics and Computer Assisted Surgery, 2, 238-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Graham, A.E., Xie, S.Q., Aw, K.C., Mukherjee, S. and Xu, W.L. (2008) Bone-Muscle Interaction of the Fractured Femur. Journal of Orthopaedic Research, 26, 1159-1165. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R., et al. (2017) Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures. Annals of Biomedical Engineering, 45, 2648-2662. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R., et al. (2017) Intra-Operative Fiducial-Based CT/Fluoroscope Image Registration Framework for Image-Guided Robot-Assisted Joint Fracture Surgery. International Journal of Computer Assisted Radiology and Surgery, 12, 1383-1397. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, T., Li, C., Hu, L., Tang, P., Zhang, L., Du, H., et al. (2014) A Removable Hybrid Robot System for Long Bone Fracture Reduction. Bio-Medical Materials and Engineering, 24, 501-509. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ge, Y., Zhao, C., Wang, Y. and Wu, X. (2022) Robot-Assisted Autonomous Reduction of a Displaced Pelvic Fracture: A Case Report and Brief Literature Review. Journal of Clinical Medicine, 11, Article 1598. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Joung, S., Kamon, H., Liao, H., Iwaki, J., Nakazawa, T., Mitsuishi, M., et al. (2008) A Robot Assisted Hip Fracture Reduction with a Navigation System. In: Metaxas, D., Axel, L., Fichtinger, G. and Székely, G., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008., Springer, 501-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhao, J., Li, C., Ren, H., Hao, M., Zhang, L. and Tang, P. (2019) Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review. Annals of Biomedical Engineering, 48, 203-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bai, L., Yang, J., Chen, X., Sun, Y. and Li, X. (2019) Medical Robotics in Bone Fracture Reduction Surgery: A Review. Sensors, 19, Article 3593. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Moolenaar, J.Z., Tümer, N. and Checa, S. (2022) Computer-Assisted Preoperative Planning of Bone Fracture Fixation Surgery: A State-of-the-Art Review. Frontiers in Bioengineering and Biotechnology, 10, Article 1037048. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jiménez-Delgado, J.J., Paulano-Godino, F., PulidoRam-Ramírez, R. and Jiménez-Pérez, J.R. (2016) Computer Assisted Preoperative Planning of Bone Fracture Reduction: Simulation Techniques and New Trends. Medical Image Analysis, 30, 30-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liu, H., Duan, S., Liu, S., Jia, F., Zhu, L. and Liu, M. (2018) Robot‐Assisted Percutaneous Screw Placement Combined with Pelvic Internal Fixator for Minimally Invasive Treatment of Unstable Pelvic Ring Fractures. The International Journal of Medical Robotics and Computer Assisted Surgery, 14, e1927. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, H., Duan, S., Xin, F., Zhang, Z., Wang, X. and Liu, S. (2019) Robot‐Assisted Minimally‐Invasive Internal Fixation of Pelvic Ring Injuries: A Single‐Center Experience. Orthopaedic Surgery, 11, 42-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jing, Y., Chang, L., Cong, B., Wang, J., Chen, M., Tang, Z., et al. (2024) Preoperative 3D Printing Planning Technology Combined with Orthopedic Surgical Robot-Assisted Minimally Invasive Screw Fixation for the Treatment of Pelvic Fractures: A Retrospective Study. PeerJ, 12, e18632. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xu, S., Bernardo, L., Yew, K. and Pang, H. (2020) Robotic-Arm Assisted Direct Anterior Total Hip Arthroplasty; Improving Implant Accuracy. Surgical Technology Online, 38, 347-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zaidi, F., Goplen, C.M., Fitz‐Gerald, C., Bolam, S.M., Hanlon, M., Munro, J.T., et al. (2024) High In‐Vivo Accuracy of a Novel Robotic-Arm-Assisted System for Total Knee Arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 33, 229-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wu, X., Zhou, Y., Shao, H., Yang, D., Guo, S. and Huang, W. (2023) Robotic-Assisted Revision Total Joint Arthroplasty: A State-of-the-Art Scoping Review. EFORT Open Reviews, 8, 18-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hasegawa, M., Tone, S., Naito, Y. and Sudo, A. (2024) Comparison of Accuracy and Early Outcomes in Robotic Total Knee Arthroplasty Using NAVIO and Rosa. Scientific Reports, 14, Article No. 3192. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liao, J., Dai, Y., Wu, Z., et al. (2024) [Effectiveness of Reduction Robot Combined with Navigation Robot-Assisted Minimally Invasive Treatment for Tile Type B Pelvic Fractures]. Chinese Journal of Reparative and Reconstructive Surgery, 38, 954-960.
|
|
[35]
|
Zhou, X., Chen, Y., Miao, G., Guo, Y., Zhang, Q. and Bi, J. (2025) Computer-Aided Robotics for Applications in Fracture Reduction Surgery: Advances, Challenges, and Opportunities. iScience, 28, Article ID: 111509. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Khojastehnezhad, M.A., Youseflee, P., Moradi, A., et al. (2025) Artificial Intelligence and the State of the Art of Orthopedic Surgery. The Archives of Bone and Joint Surgery, 13, 17-22.
|
|
[37]
|
Zeng, G., Li, Z., Hou, J., Yu, L., Cui, Y., Zhu, Y., et al. (2025) Robot‐Assisted Screw Fixation Combined with Endoscopic Bone Graft in the Minimally Invasive Treatment of Lumbar Spondylolysis: A Single‐Center Retrospective Study. Orthopaedic Surger. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Link, B., Haveman, R.A., Van de Wall, B.J.M., Baumgärtner, R., Babst, R., Beeres, F.J.P., et al. (2024) Percutaneous Sacroiliac Screw Fixation with a 3D Robot-Assisted Image-Guided Navigation System: Technical Solutions. Operative Orthopädie und Traumatologie, 37, 3-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cintean, R., Schütze, K., Gebhard, F. and Pankratz, C. (2024) Minimal-Invasive Stabilisation von Azetabulumfrakturen mit Virtueller Navigation in Kombination mit Robotergestützter 3-D-Bildgebung. Operative Orthopädie und Traumatologie, 37, 14-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhao, C., Xiao, H., Cao, Q., Ge, Y., Li, Y., Wang, Y., et al. (2024) Innovative Development of Robot Reduction System in Geriatric Pelvic Fractures: A Single-Center Case Series in Beijing, China. Journal of Orthopaedic Translation, 49, 283-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Rommens, P.M., Hofmann, A., Kraemer, S., Kisilak, M., Boudissa, M. and Wagner, D. (2021) Operative Treatment of Fragility Fractures of the Pelvis: A Critical Analysis of 140 Patients. European Journal of Trauma and Emergency Surgery, 48, 2881-2896. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kou, W., Zhou, P., Lin, J., Kuang, S. and Sun, L. (2023) Technologies Evolution in Robot-Assisted Fracture Reduction Systems: A Comprehensive Review. Frontiers in Robotics and AI, 10, Article 1315250. [Google Scholar] [CrossRef] [PubMed]
|