儿童大环内酯类耐药肺炎支原体肺炎抗菌药物治疗的研究进展
Research Progress of Antibacterial Therapy of Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Children
DOI: 10.12677/acm.2025.154897, PDF, HTML, XML,   
作者: 刘 杨, 谢晓虹*:重庆医科大学附属儿童医院呼吸科,儿童发育疾病研究教育部重点实验室,国家儿童健康与疾病临床医学研究中心,儿童发育重大疾病国家国际科技合作基地,儿科学重庆市重点实验室,重庆
关键词: 肺炎支原体大环内酯类耐药氟喹诺酮类四环素类Mycoplasma pneumoniae Macrolide Resistance Fluoroquinolones Tetracyclines
摘要: 肺炎支原体(Mycoplasma pneumoniae, MP)是社区获得性肺炎(Community-acquired pneumonia, CAP)的常见病原体之一,常引起全球范围内感染,每4~7年可爆发地区流行。重症MP感染有生命危险,并且部分可遗留闭塞性支气管炎等后遗症。由于MP缺乏细胞壁,不同国家常将大环内酯类抗菌药物作为首选治疗肺炎支原体肺炎(Mycoplasma pneumoniae pneumonia, MPP)的药物。但自2000年以来,大环内酯类耐药肺炎支原体肺炎(Macrolide-resistant Mycoplasma pneumoniae, MRMP)在全球不同国家和地区的耐药率逐年上升,尤其是东亚地区,这对儿童健康带来极大威胁,对公共卫生健康带来极大挑战。
Abstract: Mycoplasma pneumoniae is one of the common pathogens of community-acquired pneumonia, which often causes worldwide infection, and can be prevalent in areas every 4~7 years. Severe MP infection is life-threatening, and some may leave sequelae such as bronchitis obliterans. Due to the lack of cell wall in MP, macrolide antibacterial drugs are often used as the first choice for the treatment of Mycoplasma pneumoniae pneumonia in different countries. However, since 2000, the drug resistance rate of macrolide-resistant Mycoplasma pneumoniae pneumonia has increased year by year in different countries and regions around the world, especially in East Asia, which poses a great threat to children’s health and a great challenge to public health.
文章引用:刘杨, 谢晓虹. 儿童大环内酯类耐药肺炎支原体肺炎抗菌药物治疗的研究进展[J]. 临床医学进展, 2025, 15(4): 17-26. https://doi.org/10.12677/acm.2025.154897

1. 引言

MPP约占儿童社区获得性肺炎的10%~40%,是社区获得性肺炎的常见病原体之一。MP是一种高度进化的病原体,缺乏细胞壁,天然对β-内酰胺类抗生素产生耐药性,由于针对细胞壁的抗生素不能用于治疗MPP,因此MP感染的抗生素治疗方案可选择能破坏MP蛋白质的药物,如大环内酯类、四环素类,或选择能抑制MP DNA复制的药物,如氟喹诺酮类。但因四环素、氟喹诺酮类抗生素对儿童牙齿、肌肉、骨骼发育的不良影响,故大环内酯类抗生素常被作为治疗MPP的首选药物[1]。近几年大环内酯类耐药MP在全球范围内检出率逐年上升,尤其是在东亚国家,这导致部分患者尽管接受了大环内酯类药物治疗,但仍无法控制发热,并且临床症状以及胸部影像学表现持续进展,部分可遗留严重并发症甚至死亡,给儿童健康带来极大威胁[2]。因此临床上引入了二线治疗,包括二级抗菌药物,如四环素、氟喹诺酮类或全身性皮质类固醇。本文旨在对儿童MRMP的抗菌药物治疗进展进行综述。

2. MP对大环内酯类抗菌药物的耐药现状

2.1. 耐药机制

关于大环内酯类耐药的机制已被广泛研究,最主要的机制是核糖体作用靶点基因的突变,也就是23S rRNA基因结构域V中的单核苷酸突变和核糖体蛋白的突变是产生耐药性的主要原因。

MP 23S rRNA基因结构域V区位点2063、2064、2067和2617的突变可降低大环内酯类药物对23S rRNA基因的亲和力,减弱其抑制MP蛋白合成的能力,从而导致大环内酯类药物抑制MP生长的强度降低。A2063G是最常见的突变位点,其次是A2064G,虽然A2067和C2617位点的突变也与大环内酯类耐药有关,但它们相对少见[3]。对大环内酯类药物的耐药水平与突变发生的位点有关,从测序结果与抗菌药物敏感性试验的比较可以得到证实,A2063G和A2064G突变赋予了对14元和15元环大环内酯类药物的高水平耐药性,对16元环大环内酯类药物的中等水平耐药性,但A2067G突变赋予了16元环大环内酯类药物高水平的耐药性[4]-[7]

核糖体50S大亚基上的L4蛋白和L22蛋白的突变,导致MP对大环内酯类药物的耐药性增强,这些突变改变了肽输出通道的结构,影响了抗生素结合MP的能力,从而降低了其抗菌活性[8]。Pereyre等人在体外成功诱导出耐药菌株的L4、L22氨基酸突变,L4突变形式为单个氨基酸改变,L22氨基酸的突变是在第60位中有1~3个甘氨酸的插入[9]。Liu等对MRMP肺炎患儿的咽拭子标本进行耐药性分析,结果显示大部分耐药菌株表现A2063G、A2064G及A2063C突变,部分还表现出L4及L22的个别位点突变[10]。此外还有研究表明,MP编码表达外排泵从而降低胞内抗生素浓度也是其耐药原因之一[11]

2.2. 新冠疫情前后不同国家及地区间的MRMP流行情况

MP的感染不限定于任何季节,在不同国家及地区的流行模式中表现出差异。MP的最佳生长温度在35℃至37℃之间,温暖的气候可以延长其环境存活率并促进更广泛的传播。自2001年日本学者首次分离出耐大环内酯类肺炎支原体后,世界各地出现了耐大环内酯类肺炎支原体,其中亚洲地区的耐药率高于世界其他地区[12]。但在2020年,由于居家隔离、旅行禁令、公共场所临时关闭、定期手部消毒和戴口罩等限制性措施,MP的季节性模式被打乱[13]

表1所示,本文选择并总结了新冠疫情前后包括欧洲、亚洲、美洲地区的代表性研究。23S rRNA基因V区的A2063G几乎是所有区域中最常测定的大环内酯类耐药相关突变,其次是A2064G。关于MRMP的数据集中在东亚国家,特别是中国、韩国和日本。中国北京、宁波、重庆地区的MRMP在新冠疫情流行前后及流行期间检出水平均处于较高水平[14]-[18]。而中国台湾地区的MRMP检出率自2021年开始逐渐下降,2022及2023年未检出阳性病例[19]。韩国同中国地区一样,其MRMP检出率一直处于较高水平,而日本的MRMP检出水平近几年均处于低水平[20]-[22]。除亚洲地区外,其余各国的MRMP检出率在新冠疫情前后及流行期间均处于低水平[20] [23] [24]。以上研究表明,除台湾地区的MRMP检出水平在新冠疫情后处于低水平,其余地区的MRMP检出水平在新冠疫情前后及流行期间未见到明显变化波动。

Table 1. MRMP prevalence in different parts of the world before and after the COVID-19 pandemic

1. 新冠疫情前后世界不同地区MRMP流行情况

国家/地区

时间/年

MRMP/MP

MRMP检出率(%)

文献

中国/北京

2019

302/310

97.40

[14]

2020~2021

482/520

92.69

[15]

2023

99/99

100.00

[16]

中国/宁波

2019

-

74.34

[17]

2020

-

74.07

[17]

2021

-

72.82

[17]

2022

-

80.13

[17]

2023

-

86.87

[17]

中国/重庆

2019

164/222

73.87

[18]

2020~2022

660/758

87.07

[18]

2023

780/1029

75.80

[18]

中国/台湾

2018

28/58

48.30

[19]

2019

20/32

62.50

[19]

2020

18/21

85.70

[19]

2021

2/11

18.20

[19]

2022

0/15

0

[19]

2023

0/24

0

[19]

日本

2017~2018

20/103

19.42

[20]

2018~2019

5/97

5.15

[20]

2019~2020

18/124

14.52

[20]

2020~2021

0/8

0

[20]

韩国

2019~2020

73/93

78.50

[21]

2023

93/107

87.00

[22]

法国

2017~2018

0/10

0

[20]

2018~2019

2/15

13.33

[20]

2019~2020

3/30

10.00

[20]

2020~2021

0/3

0

[20]

比利时

2017~2018

1/26

3.85

[20]

2018~2019

0/15

0

[20]

2019~2020

0/30

0

[20]

2020~2021

0/2

0

[20]

美国

2012~2018

37/446

8.30

[23]

2014~2021

11/114

9.60

[24]

注:MRMP:大环内酯类耐药肺炎支原体;Mp:肺炎支原体;“-”表示参考文献中未提及。

3. MRMP的抗感染治疗

3.1. 大环内酯类抗菌药

大环内酯类抗生素作为一种抑菌剂,可以通过与50S核糖体元件结合抑制细菌的蛋白质合成[25],因四环素类和氟喹诺酮类在儿童中的限制使用,大环内酯类抗生素作为治疗MP感染的首选抗生素。但有体内研究发现,在大环内酯类治疗开始的7~24天后,100%的患者可以发现包括A2063G和A2064G在内的大环内酯类药物耐药相关突变[26],此外还有体外研究表明亚抑制浓度的大环内酯类药物可诱导耐药突变[27]

2013~2019年北京地区MRMP患儿的MP菌株普遍对大环内酯类红霉素和阿奇霉素耐药水平较高(MIC ≥ 256 μg/mL),对四环素和左氧氟沙星无耐药(MIC值均小于1 μg/mL),MSMP的MP菌株对红霉素和阿奇霉素MIC < 1 μg/mL [28]。2018年,在中国五个城市(吉林、北京、济南、阜阳和苏州)进行的一项多中心研究中,79.9%(123/154)分离的肺炎支原体菌株对大环内酯类药物表现出耐药性,红霉素MIC范围为128至大于256 mg/L,阿奇霉素MIC范围为2~32 mg/L [29]

近年来的研究显示,MRMP感染的患儿在接受大环内酯类药物治疗后,虽然部分患者的肺炎症状有所进展,但总体上有73.83%的MRMP患儿仍然从中获益[30]。Yoon等的研究指出,与MSMP组相比,MRMP组在退热所需的疗程上明显延长,但两组在其他临床症状上并无显著差异,并且延长治疗时间能够使MRMP组的体温恢复至正常水平[31]。此外,另一项研究表明,MRMP感染患儿在大环内酯类药物治疗中的有效率为22.7%,这提示即使在耐药情况下,部分患者的临床症状仍可能得到改善[32]。以上研究均提示MRMP患儿在延长疗程时可能受益于大环内酯类药物的治疗。这可能与MP感染的自限性以及大环内酯类药物的抗炎和免疫调节效应密切相关[33]。叶军的研究得到证实,阿奇霉素治疗MPP患儿时,其细胞因子IL-4、IL-6、CRP、TNF-α较治疗前显著降低,治疗后自身抗体IgM、IgG、IgA水平与治疗前比较均有所降低,表明阿奇霉素能改善患儿炎性因子指标和调节体液免疫功能[60]

3.2. 喹诺酮类抗菌药物

氟喹诺酮类药物对抗拓扑异构酶,抑制DNA合成和复制,在体外对MP非常有效[34]。并且这类药物具有优异的药代动力学特征,口服给药时吸收良好,并广泛分布于全身。一些研究表明,氟喹诺酮类药物对大环内酯类耐药肺炎支原体分离株具有良好的体外活性。通过氟喹诺酮药物的MIC值研究发现,莫西沙星的MIC值范围为0.0008~0.125 mg/mL、雷诺沙星的MIC值范围为0.016~0.0625 mg/mL、加替沙星的MIC值范围为0.016~0.064 mg/mL、左氧氟沙星的MIC值范围为0.25~0.5 mg/mL、环丙沙星的MIC值范围为0.5~4.0 mg/mL和妥舒沙星的MIC值范围为0.25~0.5 mg/mL [35]-[40]

此外氟喹诺酮类药物也被证明可有效治疗MRMP感染。环丙沙星被证明是对克拉霉素或交沙霉素无效的大环内酯类耐药MPP儿童的抢救治疗有效[41] [42]。2021年,Ahn等人的一项Meta分析纳入了8项研究,涉及537名参与者,结果提示感染MRMP的患儿中氟喹诺酮组在给药48小时内退热优于阿奇霉素组[43]。同样在儿童中,托舒沙星在开始后治疗48小时内退烧方面比克拉霉素或阿奇霉素更有效[37]。Cardinale等人发现,感染MRMP的患儿使用左氧氟沙星替代克拉霉素后,发热和咳嗽迅速消退[44]

然而美国食品和药物管理局警告称,氟喹诺酮类药物可能会导致肌腱断裂和关节软骨损伤等严重不良事件,中文版包装说明书禁用于儿童,限制了其在儿童中的应用[45]。然而这类药物用于儿童MRMP感染的安全性亦有报道。2023年北京发表的一项回顾性研究随访了患有重症难治性支原体肺炎的儿童在使用莫西沙星并且停药至少一年后的双膝X线、心脏超声、临床症状,发现关节痛、关节积液、心脏瓣膜反流与仅使用阿奇霉素的患儿相比无显著差异[46]。2021年韩国的一项回顾性队列研究调查发现2002年至2017年肺炎儿童队列中喹诺酮类药物使用相关的跟腱疾病发生率很少,大多数跟腱疾病与基础疾病有关,如遗传代谢疾病或自身免疫性疾病,而不是单独使用氟喹诺酮类药物[47]。根据左氧氟沙星上市后的不良事件监测报告,一项针对2233例患儿的随访研究显示,使用左氧氟沙星治疗的患儿在用药后2个月和1年时,肌肉骨骼疾病的发生率较高。然而,对在1年随访时初步评估为可能与药物相关的肌肉骨骼疾病病例进行进一步2至5年的跟踪观察后,发现两组患儿的不良事件发生率趋于接近,且均降至仅1例可能与药物相关的不良事件。这一结果表明,左氧氟沙星引起肌肉骨骼疾病的发生率较低,并且大多数情况下是可逆的[48] [49]

目前,氟喹诺酮类药物是否可用于儿童尚无统一共识,但一些产品标签或指南中提到,特殊情况下可使用氟喹诺酮类药物治疗儿童,对于感染MRMP的患儿,如果大环内酯类治疗48~72小时后发热持续或胸部影像学持续进展,可以考虑氟喹诺酮类药物,但同时应该权衡临床益处和潜在的不良反应。

3.3. 四环素类抗菌药物

四环素类药物被认为是抑菌的,因其可以抑制细菌蛋白质合成,但在高浓度下可能具有杀菌作用。其中多西环素和米诺环素是第二代抗生素,对革兰氏阳性菌和革兰氏阴性菌、非典型病原体(包括支原体、立克次体、伯氏疏螺旋体)以及其他不太常见的感染性疾病(如布鲁氏菌病、钩端螺旋体病等)表现出广泛的覆盖。两者在口服给药时均显示出良好的生物利用度并且耐受性良好[50]

迄今为止,没有关于MP对四环素类药物天然耐药的报道。Cao等人的研究发现米诺环素和多西环素对MSMP患儿的MIC分别为0.125~2 μg/mL和0.125~0.5 μg/mL,对MRMP患儿的MIC分别为2 μg/mL和0.5 μg/mL [51]。2019年Oishi等人发表的2011~2016年日本MP的四环素MIC值范围为0.125~1 μg/mL,而米诺环素MIC值范围为0.125~4 μg/mL [52]。2022年Wang等人发表的一项关于2017~2019年上海地区MP的四环素MIC值范围为0.06~2 μg/mL,多西环素MIC值范围为0.015~1 μg/mL,米诺环素MIC值范围为0.03~4 μg/mL [53]。尽管不同地区报道的MIC值范围不同,但在所有MP对常用抗菌药物的MIC值研究中,无论分离得到的MP菌株对大环内酯类抗菌药物的耐药率和敏感性如何,均表现为对四环素类抗菌药物敏感。

在患有MRMP的儿童中,四环素类药物在大环内酯类药物治疗失败后显示出优异的疗效。Chen等人研究发现单纯口服多西环素的患儿与单纯静脉注射阿奇霉素、或由静脉注射阿奇霉素改为口服多西环素治疗的患儿相比,治疗后的发热持续时间缩短,治疗一周后复查胸部X线片病变范围较入院时减少30%以上的比例更高[54]。一项来自日本的多中心、前瞻性研究比较了MRMP患儿对不同类别抗生素的反应,米诺环素组(87%) 48小时内退热显著高于大环内酯类组(阿奇霉素组41%、克拉霉素组48%),平均发热时间为1.83天(阿奇霉素组3.06天、克拉霉素组3.15天),降低肺炎支原体DNA拷贝数的效率、在治疗结束时鼻咽部肺炎支原体根除率均优于大环内酯类组[37]

虽然缺乏直接比较四环素类和氟喹诺酮类药物在MRMP中疗效的研究,但从一些研究中的数据表明两者在临床疗效上存在差异。2017年一项Meta分析共纳入85项研究包含7095例MP感染者,研究结果提示米诺环素在退热、咳嗽缓解或消失、48小时内退热率方面优于氟喹诺酮类药物[55]。Morozumi等人还发现,对于MRMP,米诺环素、多西环素、妥舒沙星相比大环内酯类药物均表现出优异的体外杀菌活性,但米诺环素在改善临床症状方面更具有优势,推测这种差异可能是由于米诺环素的血药浓度更高、半衰期更长以及对肺组织和支气管粘膜的组织渗透程度更大有关,还表明,对于发病时间超过6小时的肺炎支原体感染,必须考虑药代动力学参数而不是单独的MIC值来选择抗生素[56]

8岁以下儿童尽量避免使用四环素类药物,因为它可能引起牙齿永久变色、牙釉质发育不全、可逆的骨生长抑制、胃肠功能紊乱、光敏性皮炎等不良反应[57]。但多西环素相比传统的四环素类药物,在推荐的剂量和治疗时间内尚未证明会导致牙齿永久着色[58]。2023年中国发布的关于四环素使用的专家共识建议,在权衡益处和风险后,在没有其他抗生素可用的情况下,可考虑对所有年龄段的儿童使用短疗程的多西环素(≤21天) [59]

4. 结语与展望

MPP是全球儿童CAP的重要原因,尽管MPP感染通常呈自限性并且预后良好,但它也可导致严重疾病,如闭塞性细支气管炎、支气管扩张,甚至出现严重的肺外并发症。因过去多年来大环内酯类药物的过度和不必要的使用造成MRMP的广泛流行,MP耐药现象十分严峻,尤其是在亚洲地区,以中国、韩国、日本尤为突出,其中我国的部分地区的大环内酯类耐药MP的检出率甚至达到100%。四环素类药物和氟喹诺酮类药物对于治疗MRMP均有很好的疗效,但四环素类药物因牙齿、骨骼等副作用推荐8岁以上感染MRMP的儿童使用,氟喹诺酮类药物因可能导致肌腱相关疾病推荐在18岁以上的人群中使用。但多个国家关于MPP的指南推荐感染MRMP的儿童在大环内酯类治疗后临床症状及影像学无好转时可以选用四环素类药物或者氟喹诺酮类药物,但儿科医生在选用这两类药物需谨慎,需综合临床获益和风险综合评估,避免新的耐药株产生。

NOTES

*通讯作者。

参考文献

[1] Xiao, L., Ptacek, T., Osborne, J.D., Crabb, D.M., Simmons, W.L., Lefkowitz, E.J., et al. (2015) Comparative Genome Analysis of Mycoplasma pneumoniae. BMC Genomics, 16, Article No. 610.
https://doi.org/10.1186/s12864-015-1801-0
[2] Xu, M.X., Li, Y., Shi, Y., Liu, H.Z., Tong, X., Ma, L., et al. (2024) Molecular Epidemiology of Mycoplasma pneumoniae Pneumonia in Children, Wuhan, 2020-2022. BMC Microbiology, 24, Article No. 23.
https://doi.org/10.1186/s12866-024-03180-0
[3] Ou, G., Liu, Y., Tang, Y., et al. (2015) In Vitro Subminimum Inhibitory Concentrations of Macrolide Antibiotics Induce Macrolide Resistance in Mycoplasma pneumoniae. Hippokratia, 19, 57-62.
[4] Morozumi, M., Ubukata, K. and Takahashi, T. (2010) Macrolide-Resistant Mycoplasma pneumoniae: Characteristics of Isolates and Clinical Aspects of Community-Acquired Pneumonia. Journal of Infection and Chemotherapy, 16, 78-86.
https://doi.org/10.1007/s10156-009-0021-4
[5] Ando, M., Morozumi, M., Adachi, Y., Ubukata, K. and Iwata, S. (2018) Multilocus Sequence Typing of Mycoplasma pneumoniae, Japan, 2002-2016. Emerging Infectious Diseases, 24, 1895-1901.
https://doi.org/10.3201/eid2410.171194
[6] Suzuki, Y., Seto, J., Shimotai, Y., Ikeda, T., Yahagi, K., Mizuta, K., et al. (2016) Development of an Endpoint Genotyping Assay to Detect the Mycoplasma pneumoniae 23S rRNA Gene and Distinguish the Existence of Macrolide Resistance-Associated Mutations at Position 2063. Journal of Microbiological Methods, 131, 130-134.
https://doi.org/10.1016/j.mimet.2016.10.017
[7] Zhao, F., Li, J., Liu, J.R., Guan, X.M., Gong, J., Liu, L.Y., et al. (2019) Antimicrobial Susceptibility and Molecular Characteristics of Mycoplasma pneumoniae Isolates across Different Regions of China. Antimicrobial Resistance & Infection Control, 8, Article No. 143.
https://doi.org/10.1186/s13756-019-0576-5
[8] Zaman, S., Fitzpatrick, M., Lindahl, L. and Zengel, J. (2007) Novel Mutations in Ribosomal Proteins L4 and L22 That Confer Erythromycin Resistance in Escherichia coli. Molecular Microbiology, 66, 1039-1050.
https://doi.org/10.1111/j.1365-2958.2007.05975.x
[9] Pereyre, S., Guyot, C., Renaudin, H., Charron, A., Bébéar, C. and Bébéar, C.M. (2004) In Vitro Selection and Characterization of Resistance to Macrolides and Related Antibiotics in Mycoplasma pneumoniae. Antimicrobial Agents and Chemotherapy, 48, 460-465.
https://doi.org/10.1128/aac.48.2.460-465.2004
[10] Liu, X.J., Jiang, Y., Chen, X.G., Li, J., Shi, D.W. and Xin, D.L. (2014) Drug Resistance Mechanisms of Mycoplasma pneumoniae to Macrolide Antibiotics. BioMed Research International, 2014, Article 320801.
https://doi.org/10.1155/2014/320801
[11] Li, S.L., Xue, G.H., Zhao, H.Q., Feng, Y.L., Yan, C., Cui, J.H., et al. (2021) Quantitative Proteomics Analysis of Mycoplasma pneumoniae Identifies Potential Macrolide Resistance Determinants. AMB Express, 11, Article No. 26.
https://doi.org/10.1186/s13568-021-01187-8
[12] Okazaki, N., Narita, M., Yamada, S., Izumikawa, K., Umetsu, M., Kenri, T., et al. (2001) Characteristics of Macrolideresistant mycoplasma pneumoniae Strains Isolated from Patients and Induced with Erythromycin in Vitro. Microbiology and Immunology, 45, 617-620.
https://doi.org/10.1111/j.1348-0421.2001.tb01293.x
[13] Meyer Sauteur, P.M., Beeton, M.L., et al. (2024) Mycoplasma pneumoniae: Delayed Re-Emergence after COVID-19 Pandemic Restrictions. The Lancet, 5, e100-e101.
[14] Wang, X., Li, M.Z., Luo, M., Luo, Q., Kang, L., Xie, H., et al. (2022) Mycoplasma pneumoniae Triggers Pneumonia Epidemic in Autumn and Winter in Beijing: A Multicentre, Population-Based Epidemiological Study between 2015 and 2020. Emerging Microbes & Infections, 11, 1508-1517.
https://doi.org/10.1080/22221751.2022.2078228
[15] Cheng, Y.A., Cheng, Y.J., Dai, S.Z., Hou, D.Q., Ge, M.L., Zhang, Y., et al. (2022) The Prevalence of Mycoplasma pneumoniae among Children in Beijing before and during the COVID-19 Pandemic. Frontiers in Cellular and Infection Microbiology, 12, Article 854505.
https://doi.org/10.3389/fcimb.2022.854505
[16] Wu, H.-M., Wong, K.-S., Huang, Y.-C., Lai, S.-H., Tsao, K.-C., Lin, Y.-J., et al. (2013) Journal of Infection and Chemotherapy, 19, 782-786.
https://doi.org/10.1007/s10156-012-0523-3
[17] Mao, J.B., Chen, D.N., Lu, W.B., et al. (2024) Epidemiological Characteristics of Mycoplasma pneumoniae Infection and Drug Resistance Gene Mutation in Hospitalized Children Aged 0-17 Years in Ningbo City from 2019 to 2023. Chinese Journal of Preventive Medicine, 58, 1035-1040.
[18] You, J.Y., Zhang, L.H., Chen, W., Wu, Q.F., Zhang, D.Y., Luo, Z.X., et al. (2024) Epidemiological Characteristics of Mycoplasma pneumoniae in Hospitalized Children Before, During, and after COVID-19 Pandemic Restrictions in Chongqing, China. Frontiers in Cellular and Infection Microbiology, 14, Article 1424554.
https://doi.org/10.3389/fcimb.2024.1424554
[19] Wu, T.-H., Fang, Y.-P., Liu, F.-C., Pan, H.-H., Yang, Y.-Y., Song, C.-S., et al. (2024) Emerging Infectious Diseases, 30, 1692-1696.
https://doi.org/10.3201/eid3008.231596
[20] Meyer Sauteur, P.M., Beeton, M.L., Uldum, S.A., Bossuyt, N., Vermeulen, M., Loens, K., et al. (2022) Mycoplasma pneumoniae Detections before and during the COVID-19 Pandemic: Results of a Global Survey, 2017 to 2021. Eurosurveillance, 27, Article 2100746.
https://doi.org/10.2807/1560-7917.es.2022.27.19.2100746
[21] Lee, J.K., Choi, Y.Y., Sohn, Y.J., Kim, K., Kim, Y.K., Han, M.S., et al. (2022) Persistent High Macrolide Resistance Rate and Increase of Macrolide-Resistant ST14 Strains among Mycoplasma pneumoniae in South Korea, 2019-2020. Journal of Microbiology, Immunology and Infection, 55, 910-916.
https://doi.org/10.1016/j.jmii.2021.07.011
[22] Lee, J.K., Lee, T., Kim, Y., Kim, D.R., Shin, A., Kang, H.M., et al. (2024) Clinical Manifestations, Macrolide Resistance, and Treatment Utilization Trends of Mycoplasma pneumoniae pneumonia in Children and Adolescents in South Korea. Microorganisms, 12, Article 1806.
https://doi.org/10.3390/microorganisms12091806
[23] Xiao, L., Ratliff, A.E., Crabb, D.M., Mixon, E., Qin, X., Selvarangan, R., et al. (2020) Molecular Characterization of Mycoplasma pneumoniae Isolates in the United States from 2012 to 2018. Journal of Clinical Microbiology, 58, e00710-20.
https://doi.org/10.1128/jcm.00710-20
[24] Rothstein, T.E., Cunningham, S.A., Rieke, R.A., Mainella, J.M., Mutchler, M.M. and Patel, R. (2022) Macrolide Resistance in Mycoplasma pneumoniae, Midwestern United States, 2014 to 2021. Antimicrobial Agents and Chemotherapy, 66, e02432-21.
https://doi.org/10.1128/aac.02432-21
[25] (2012) LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases.
[26] Suzuki, Y., Shimotai, Y., Itagaki, T., Seto, J., Ikeda, T., Yahagi, K., et al. (2017) Development of Macrolide Resistance-Associated Mutations after Macrolide Treatment in Children Infected with Mycoplasma pneumoniae. Journal of Medical Microbiology, 66, 1531-1538.
https://doi.org/10.1099/jmm.0.000582
[27] Okazaki, N., Narita, M., Yamada, S., Izumikawa, K., Umetsu, M., Kenri, T., et al. (2001) Characteristics of Macrolide‐Resistant Mycoplasma pneumoniae Strains Isolated from Patients and Induced with Erythromycin in Vitro. Microbiology and Immunology, 45, 617-620.
https://doi.org/10.1111/j.1348-0421.2001.tb01293.x
[28] Jiang, Y., Dou, H.W., Xu, B., Xu, B.P., Zhou, W., Wang, H., et al. (2024) Macrolide Resistance of Mycoplasma pneumoniaein Several Regions of China from 2013 to 2019. Epidemiology and Infection, 152, e75.
https://doi.org/10.1017/s0950268824000323
[29] Zhao, F., Li, J., Liu, J.R., Guan, X.M., Gong, J., Liu, L.Y., et al. (2019) Antimicrobial Susceptibility and Molecular Characteristics of Mycoplasma pneumoniae Isolates across Different Regions of China. Antimicrobial Resistance & Infection Control, 8, Article No. 143.
https://doi.org/10.1186/s13756-019-0576-5
[30] Cheong, K., Chiu, S.S., Chan, B.W., To, K.K., Chan, E.L. and Ho, P. (2016) Severe Macrolide-Resistant Mycoplasma pneumoniae Pneumonia Associated with Macrolide Failure. Journal of Microbiology, Immunology and Infection, 49, 127-130.
https://doi.org/10.1016/j.jmii.2014.11.003
[31] Yoon, I.A., Hong, K.B., Lee, H.J., Yun, K.W., Park, J.Y., Choi, Y.H., et al. (2017) Radiologic Findings as a Determinant and No Effect of Macrolide Resistance on Clinical Course of Mycoplasma pneumoniae Pneumonia. BMC Infectious Diseases, 17, Article No. 402.
https://doi.org/10.1186/s12879-017-2500-z
[32] Matsubara, K., Okada, T., Matsushima, T., Komiyama, O., Iwata, S., Morozumi, M., et al. (2009) A Comparative Clinical Study of Macrolide-Sensitive and Macrolide-Resistant Mycoplasma pneumoniae Infections in Pediatric Patients. Journal of Infection and Chemotherapy, 15, 380-383.
https://doi.org/10.1007/s10156-009-0715-7
[33] 林江涛, 张永明, 周新, 等. 大环内酯类药物的抗菌外作用与临床应用专家共识[J]. 中华内科杂志, 2017, 56(7), 546-557.
[34] Principi, N. and Esposito, S. (2012) Macrolide-Resistant Mycoplasma pneumoniae: Its Role in Respiratory Infection. Journal of Antimicrobial Chemotherapy, 68, 506-511.
https://doi.org/10.1093/jac/dks457
[35] Cao, B., Zhao, C.-J., Yin, Y.-D., Zhao, F., Song, S.-F., Bai, L., et al. (2010) High Prevalence of Macrolide Resistance in Mycoplasma pneumoniae Isolates from Adult and Adolescent Patients with Respiratory Tract Infection in China. Clinical Infectious Diseases, 51, 189-194.
https://doi.org/10.1086/653535
[36] Yin, Y.-D., Cao, B., Wang, H., et al. (2013) Survey of Macrolide Resistance in Mycoplasma pneumoniae in Adult Patients with Community-Acquired Pneumonia in Beijing, China. Chinese Journal of Tuberculosis and Respiratory Diseases, 36, 1-5.
[37] Kawai, Y., Miyashita, N., Kubo, M., Akaike, H., Kato, A., Nishizawa, Y., et al. (2013) Therapeutic Efficacy of Macrolides, Minocycline, and Tosufloxacin against Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Pediatric Patients. Antimicrobial Agents and Chemotherapy, 57, 2252-2258.
https://doi.org/10.1128/aac.00048-13
[38] Miyashita, N., Akaike, H., Teranishi, H., Ouchi, K. and Okimoto, N. (2013) Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Adolescents and Adults: Clinical Findings, Drug Susceptibility, and Therapeutic Efficacy. Antimicrobial Agents and Chemotherapy, 57, 5181-5185.
https://doi.org/10.1128/aac.00737-13
[39] Yamazaki, T., Sasaki, T. and Takahata, M. (2007) Activity of Garenoxacin against Macrolide-Susceptible and-Resistant Mycoplasma pneumoniae. Antimicrobial Agents and Chemotherapy, 51, 2278-2279.
https://doi.org/10.1128/aac.01561-06
[40] Waites, K.B., Crabb, D.M. and Duffy, L.B. (2008) Comparative in Vitro Activities of the Investigational Fluoroquinolone DC-159a and Other Antimicrobial Agents against Human Mycoplasmas and Ureaplasmas. Antimicrobial Agents and Chemotherapy, 52, 3776-3778.
https://doi.org/10.1128/aac.00849-08
[41] Cardinale, F., Chironna, M., Dumke, R., Binetti, A., Daleno, C., Sallustio, A., et al. (2011) Macrolide-Resistant Mycoplasma pneumoniaein Paediatric Pneumonia. European Respiratory Journal, 37, 1522-1524.
https://doi.org/10.1183/09031936.00172510
[42] Hantz, S., Garnier, F., Peuchant, O., Menetrey, C., Charron, A., Ploy, M., et al. (2012) Multilocus Variable-Number Tandem-Repeat Analysis-Confirmed Emergence of a Macrolide Resistance-Associated Mutation in Mycoplasma pneumoniae during Macrolide Therapy for Interstitial Pneumonia in an Immunocompromised Child. Journal of Clinical Microbiology, 50, 3402-3405.
https://doi.org/10.1128/jcm.01248-12
[43] Ahn, J.G., Cho, H., Li, D., Choi, M., Lee, J., Eun, B., et al. (2021) Efficacy of Tetracyclines and Fluoroquinolones for the Treatment of Macrolide-Refractory Mycoplasma pneumoniae Pneumonia in Children: A Systematic Review and Meta-Analysis. BMC Infectious Diseases, 21, Article No. 1003.
https://doi.org/10.1186/s12879-021-06508-7
[44] Cardinale, F., Chironna, M., Chinellato, I., Principi, N. and Esposito, S. (2013) Clinical Relevance of Mycoplasma pneumoniae Macrolide Resistance in Children. Journal of Clinical Microbiology, 51, 723-724.
https://doi.org/10.1128/jcm.02840-12
[45] The subspecialty Group of Respiratory Disease, the SOCIETY of Pediatrics, Chinese Medical Association, The Editorial Board, Chinese Journal of Pediatrics (2013) Guidelines for Management of Community Acquired Pneumonia in Children (The Revised Edition of 2013). Chinese Journal of Pediatrics, 51, 745-799.
[46] He, Y.-S., Yang, M., Liu, G., Ji, J. and Qian, S.-Y. (2023) Safety Study of Moxifloxacin in Children with Severe Refractory Mycoplasma pneumoniae Pneumonia. Pediatric Pulmonology, 58, 2017-2024.
https://doi.org/10.1002/ppul.26426
[47] Kim, Y., Park, G.W., Kim, S., Moon, H.J., Won, S., Chung, W., et al. (2021) Fluoroquinolone and No Risk of Achilles-Tendinopathy in Childhood Pneumonia under Eight Years of Age—A Nationwide Retrospective Cohort. Journal of Thoracic Disease, 13, 3399-3408.
https://doi.org/10.21037/jtd-20-2256
[48] Noel, G.J., Bradley, J.S., Kauffman, R.E., Duffy, C.M., Gerbino, P.G., Arguedas, A., et al. (2007) Comparative Safety Profile of Levofloxacin in 2523 Children with a Focus on Four Specific Musculoskeletal Disorders. Pediatric Infectious Disease Journal, 26, 879-891.
https://doi.org/10.1097/inf.0b013e3180cbd382
[49] Zhao, F., Li, J., Liu, J.R., Guan, X.M., Gong, J., Liu, L., et al. (2019) Antimicrobial Susceptibility and Molecular Characteristics of Mycoplasma pneumoniae Isolates across Different Regions of China. Antimicrobial Resistance & Infection Control, 8, Article No. 143.
https://doi.org/10.1186/s13756-019-0576-5
[50] Carris, N.W., Pardo, J., Montero, J. and Shaeer, K.M. (2015) Minocycline as a Substitute for Doxycycline in Targeted Scenarios: A Systematic Review. Open Forum Infectious Diseases, 2, ofv178.
https://doi.org/10.1093/ofid/ofv178
[51] Cao, B., Qu, J.-X., Yin, Y.-D. and Van Eldere, J. (2015) Overview of Antimicrobial Options for Mycoplasma pneumoniae Pneumonia: Focus on Macrolide Resistance. The Clinical Respiratory Journal, 11, 419-429.
https://doi.org/10.1111/crj.12379
[52] Oishi, T., Takahashi, K., Wakabayashi, S., Nakamura, Y., Ono, S., Kono, M., et al. (2019) Comparing Antimicrobial Susceptibilities among Mycoplasma pneumoniae Isolates from Pediatric Patients in Japan between Two Recent Epidemic Periods. Antimicrobial Agents and Chemotherapy, 63, e02517-18.
https://doi.org/10.1128/aac.02517-18
[53] Wang, N., Zhang, H., Yin, Y., Xu, X., Xiao, L. and Liu, Y. (2022) Antimicrobial Susceptibility Profiles and Genetic Characteristics of Mycoplasma pneumoniae in Shanghai, China, from 2017 to 2019. Infection and Drug Resistance, 15, 4443-4452.
https://doi.org/10.2147/idr.s370126
[54] Chen, Y., Zhang, Y., Tang, Q.-N. and Shi, H. (2024) Efficacy of Doxycycline Therapy for Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Children at Different Periods. Italian Journal of Pediatrics, 50, Article No. 38.
https://doi.org/10.1186/s13052-024-01615-y
[55] Cai, F.Q., Li, J.L., Liang, W.J., Wang, L. and Ruan, J.S. (2024) Effectiveness and Safety of Tetracyclines and Quinolones in People with Mycoplasma pneumonia: A Systematic Review and Network Meta-Analysis. eClinicalMedicine, 71, Article 102589.
https://doi.org/10.1016/j.eclinm.2024.102589
[56] Morozumi, M., Okada, T., Tajima, T., Ubukata, K. and Iwata, S. (2017) Killing Kinetics of Minocycline, Doxycycline and Tosufloxacin against Macrolide-Resistant Mycoplasma pneumoniae. International Journal of Antimicrobial Agents, 50, 255-257.
https://doi.org/10.1016/j.ijantimicag.2017.02.027
[57] Chopra, I. and Roberts, M. (2001) Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews, 65, 232-260.
https://doi.org/10.1128/mmbr.65.2.232-260.2001
[58] Todd, S.R., Dahlgren, F.S., Traeger, M.S., Beltrán-Aguilar, E.D., Marianos, D.W., Hamilton, C., et al. (2015) No Visible Dental Staining in Children Treated with Doxycycline for Suspected Rocky Mountain Spotted Fever. The Journal of Pediatrics, 166, 1246-1251.
https://doi.org/10.1016/j.jpeds.2015.02.015
[59] Editing Group for Multidisciplinary Expert Consensus on the Rational Use of Tetracyclines Commonly Used in Clinical Practice, Hospital Infection Control Branch of Chinese Preventive Medicine Association, Clinical Pharmacology Branch of Chinese Pharmacological Society (2023) Multidisciplinary Expert Consensus on the Rational Use of Tetracyclines Commonly Used in Clinical Practice. Chinese Medical Journal, 103, 2281-2296.
[60] 叶军. 阿奇霉素序贯疗法对支原体肺炎患儿炎性因子及体液免疫功能的影响[J]. 中国基层医药, 2015(21), 3286-3288.