[1]
|
宣兆宇. 串联质谱技术在新生儿遗传代谢性疾病筛查中的应用[J]. 中国妇幼保健, 2022, 37(17): 3290-3293.
|
[2]
|
Shen, G., Liu, J., Yang, H., Xie, N. and Yang, Y. (2024) MRNA Therapies: Pioneering a New Era in Rare Genetic Disease Treatment. Journal of Controlled Release, 369, 696-721. https://doi.org/10.1016/j.jconrel.2024.03.056
|
[3]
|
Bulcha, J.T., Wang, Y., Ma, H., Tai, P.W.L. and Gao, G. (2021) Viral Vector Platforms within the Gene Therapy Landscape. Signal Transduction and Targeted Therapy, 6, Article No. 53. https://doi.org/10.1038/s41392-021-00487-6
|
[4]
|
Granot-Matok, Y., Kon, E., Dammes, N., Mechtinger, G. and Peer, D. (2019) Therapeutic mRNA Delivery to Leukocytes. Journal of Controlled Release, 305, 165-175. https://doi.org/10.1016/j.jconrel.2019.05.032
|
[5]
|
Rohner, E., Yang, R., Foo, K.S., Goedel, A. and Chien, K.R. (2022) Unlocking the Promise of mRNA Therapeutics. Nature Biotechnology, 40, 1586-1600. https://doi.org/10.1038/s41587-022-01491-z
|
[6]
|
Tombácz, I., Laczkó, D., Shahnawaz, H., Muramatsu, H., Natesan, A., Yadegari, A., et al. (2021) Highly Efficient CD4+ T Cell Targeting and Genetic Recombination Using Engineered CD4+ Cell-Homing mRNA-LNPs. Molecular Therapy, 29, 3293-3304. https://doi.org/10.1016/j.ymthe.2021.06.004
|
[7]
|
Zarghampoor, F., Azarpira, N., Khatami, S.R., Behzad-Behbahani, A. and Foroughmand, A.M. (2019) Improved Translation Efficiency of Therapeutic mRNA. Gene, 707, 231-238. https://doi.org/10.1016/j.gene.2019.05.008
|
[8]
|
Ziemniak, M., Strenkowska, M., Kowalska, J. and Jemielity, J. (2013) Potential Therapeutic Applications of RNA Cap Analogs. Future Medicinal Chemistry, 5, 1141-1172. https://doi.org/10.4155/fmc.13.96
|
[9]
|
Orlandini von Niessen, A.G., Poleganov, M.A., Rechner, C., Plaschke, A., Kranz, L.M., Fesser, S., et al. (2019) Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3’ Utrs Identified by Cellular Library Screening. Molecular Therapy, 27, 824-836. https://doi.org/10.1016/j.ymthe.2018.12.011
|
[10]
|
Roy, B. and Jacobson, A. (2013) The Intimate Relationships of mRNA Decay and Translation. Trends in Genetics, 29, 691-699. https://doi.org/10.1016/j.tig.2013.09.002
|
[11]
|
Alexaki, A., Hettiarachchi, G.K., Athey, J.C., Katneni, U.K., Simhadri, V., Hamasaki-Katagiri, N., et al. (2019) Effects of Codon Optimization on Coagulation Factor IX Translation and Structure: Implications for Protein and Gene Therapies. Scientific Reports, 9, Article No. 15449. https://doi.org/10.1038/s41598-019-51984-2
|
[12]
|
Jiang, L., Berraondo, P., Jericó, D., Guey, L.T., Sampedro, A., Frassetto, A., et al. (2018) Systemic Messenger RNA as an Etiological Treatment for Acute Intermittent Porphyria. Nature Medicine, 24, 1899-1909. https://doi.org/10.1038/s41591-018-0199-z
|
[13]
|
Cao, J., An, D., Galduroz, M., Zhuo, J., Liang, S., Eybye, M., et al. (2019) MRNA Therapy Improves Metabolic and Behavioral Abnormalities in a Murine Model of Citrin Deficiency. Molecular Therapy, 27, 1242-1251. https://doi.org/10.1016/j.ymthe.2019.04.017
|
[14]
|
Sahin, U., Karikó, K. and Türeci, Ö. (2014) MRNA-Based Therapeutics—Developing a New Class of Drugs. Nature Reviews Drug Discovery, 13, 759-780. https://doi.org/10.1038/nrd4278
|
[15]
|
Conry, R.M., Lobuglio, A.F., Wright, M., et al. (1995) Characterization of a Messenger RNA Polynucleotide Vaccine Vector. Cancer Research, 55, 1397-1400.
|
[16]
|
Liu, M.A. (2019) A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines, 7, Article 37. https://doi.org/10.3390/vaccines7020037
|
[17]
|
Hu, M., Li, X., You, Z., Cai, R. and Chen, C. (2024) Physiological Barriers and Strategies of Lipid‐Based Nanoparticles for Nucleic Acid Drug Delivery. Advanced Materials, 36, e2303266. https://doi.org/10.1002/adma.202303266
|
[18]
|
Eygeris, Y., Gupta, M., Kim, J. and Sahay, G. (2022) Chemistry of Lipid Nanoparticles for RNA Delivery. Accounts of Chemical Research, 55, 2-12. https://doi.org/10.1021/acs.accounts.1c00544
|
[19]
|
Herrera, M., Kim, J., Eygeris, Y., Jozic, A. and Sahay, G. (2021) Illuminating Endosomal Escape of Polymorphic Lipid Nanoparticles That Boost mRNA Delivery. Biomaterials Science, 9, 4289-4300. https://doi.org/10.1039/d0bm01947j
|
[20]
|
Kulkarni, J.A., Witzigmann, D., Leung, J., Tam, Y.Y.C. and Cullis, P.R. (2019) On the Role of Helper Lipids in Lipid Nanoparticle Formulations of Sirna. Nanoscale, 11, 21733-21739. https://doi.org/10.1039/c9nr09347h
|
[21]
|
Hou, X., Zaks, T., Langer, R. and Dong, Y. (2021) Lipid Nanoparticles for mRNA Delivery. Nature Reviews Materials, 6, 1078-1094. https://doi.org/10.1038/s41578-021-00358-0
|
[22]
|
Hajj, K.A. and Whitehead, K.A. (2017) Tools for Translation: Non-Viral Materials for Therapeutic mRNA Delivery. Nature Reviews Materials, 2, Article No. 17056. https://doi.org/10.1038/natrevmats.2017.56
|
[23]
|
Kowalski, P.S., Rudra, A., Miao, L. and Anderson, D.G. (2019) Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Molecular Therapy, 27, 710-728. https://doi.org/10.1016/j.ymthe.2019.02.012
|
[24]
|
Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B.L., Tam, Y.K., et al. (2015) Expression Kinetics of Nucleoside-Modified mRNA Delivered in Lipid Nanoparticles to Mice by Various Routes. Journal of Controlled Release, 217, 345-351. https://doi.org/10.1016/j.jconrel.2015.08.007
|
[25]
|
Wesselhoeft, R.A., Kowalski, P.S. and Anderson, D.G. (2018) Engineering Circular RNA for Potent and Stable Translation in Eukaryotic Cells. Nature Communications, 9, Article No. 2629. https://doi.org/10.1038/s41467-018-05096-6
|
[26]
|
Blau, N., van Spronsen, F.J. and Levy, H.L. (2010) Phenylketonuria. The Lancet, 376, 1417-1427. https://doi.org/10.1016/s0140-6736(10)60961-0
|
[27]
|
何卫兰, 唐芳, 鄢力, 等. 成都市20年新生儿苯丙酮尿症分析[J]. 江苏医药, 2016, 42(3): 310-311, 前插1.
|
[28]
|
Chen, A., Pan, Y. and Chen, J. (2023) Clinical, Genetic, and Experimental Research of Hyperphenylalaninemia. Frontiers in Genetics, 13, Article 1051153. https://doi.org/10.3389/fgene.2022.1051153
|
[29]
|
Arnold, G.L., Vladutiu, C.J., Orlowski, C.C., Blakely, E.M. and DeLuca, J. (2004) Prevalence of Stimulant Use for Attentional Dysfunction in Children with Phenylketonuria. Journal of Inherited Metabolic Disease, 27, 137-143. https://doi.org/10.1023/b:boli.0000028725.37345.62
|
[30]
|
Pinto, A., Ilgaz, F., Evans, S., van Dam, E., Rocha, J.C., Karabulut, E., et al. (2023) Phenylalanine Tolerance over Time in Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients, 15, Article 3506. https://doi.org/10.3390/nu15163506
|
[31]
|
Cunningham, A., Rohr, F., Splett, P., Mofidi, S., Bausell, H., Stembridge, A., et al. (2023) Nutrition Management of PKU with Pegvaliase Therapy: Update of the Web-Based PKU Nutrition Management Guideline Recommendations. Orphanet Journal of Rare Diseases, 18, Article No. 155. https://doi.org/10.1186/s13023-023-02751-0
|
[32]
|
Eshraghi, P., Noroozi Asl, S., Bagheri, S. and Chalak, V. (2019) Response to Sapropterin Hydrochloride (Kuvan®) in Children with Phenylketonuria (PKU): A Clinical Trial. Journal of Pediatric Endocrinology and Metabolism, 32, 885-888. https://doi.org/10.1515/jpem-2018-0503
|
[33]
|
Cacicedo, M.L., Weinl-Tenbruck, C., Frank, D., Limeres, M.J., Wirsching, S., Hilbert, K., et al. (2022) Phenylalanine Hydroxylase mRNA Rescues the Phenylketonuria Phenotype in Mice. Frontiers in Bioengineering and Biotechnology, 10, Article 993298. https://doi.org/10.3389/fbioe.2022.993298
|
[34]
|
Diaz-Trelles, R., Lee, S., Kuakini, K., Park, J., Dukanovic, A., Gonzalez, J.A., et al. (2022) Lipid Nanoparticle Delivers Phenylalanine Ammonia Lyase mRNA to the Liver Leading to Catabolism and Clearance of Phenylalanine in a Phenylketonuria Mouse Model. Molecular Genetics and Metabolism Reports, 32, Article 100882. https://doi.org/10.1016/j.ymgmr.2022.100882
|
[35]
|
Baek, R., Coughlan, K., Jiang, L., Liang, M., Ci, L., Singh, H., et al. (2024) Characterizing the Mechanism of Action for mRNA Therapeutics for the Treatment of Propionic Acidemia, Methylmalonic Acidemia, and Phenylketonuria. Nature Communications, 15, Article No. 3804. https://doi.org/10.1038/s41467-024-47460-9
|
[36]
|
韩连书, 杨艳玲, 杨茹莱, 等. 丙酸血症筛查及诊治专家共识[J]. 中国实用儿科杂志, 2024, 39(4): 241-248.
|
[37]
|
Chace, D.H., DiPerna, J.C., Kalas, T.A., Johnson, R.W. and Naylor, E.W. (2001) Rapid Diagnosis of Methylmalonic and Propionic Acidemias. Clinical Chemistry, 47, 2040-2044. https://doi.org/10.1093/clinchem/47.11.2040
|
[38]
|
Al-Hamed, M.H., Imtiaz, F., Al-Hassnan, Z., Al-Owain, M., Al-Zaidan, H., Alamoudi, M.S., et al. (2019) Spectrum of Mutations Underlying Propionic Acidemia and Further Insight into a Genotype-Phenotype Correlation for the Common Mutation in Saudi Arabia. Molecular Genetics and Metabolism Reports, 18, 22-29. https://doi.org/10.1016/j.ymgmr.2018.12.004
|
[39]
|
Manoli, I. and Venditti, C.P. (2016) Disorders of Branched Chain Amino Acid Metabolism. Translational Science of Rare Diseases, 1, 91-110. https://doi.org/10.3233/trd-160009
|
[40]
|
Romano, S., Valayannopoulos, V., Touati, G., Jais, J., Rabier, D., de Keyzer, Y., et al. (2010) Cardiomyopathies in Propionic Aciduria Are Reversible after Liver Transplantation. The Journal of Pediatrics, 156, 128-134. https://doi.org/10.1016/j.jpeds.2009.07.002
|
[41]
|
Hörster, F., Baumgartner, M.R., Viardot, C., Suormala, T., Burgard, P., Fowler, B., et al. (2007) Long-Term Outcome in Methylmalonic Acidurias Is Influenced by the Underlying Defect (mut0, mut−, cblA, cblB). Pediatric Research, 62, 225-230. https://doi.org/10.1203/pdr.0b013e3180a0325f
|
[42]
|
Sutton, V.R., Chapman, K.A., Gropman, A.L., MacLeod, E., Stagni, K., Summar, M.L., et al. (2012) Chronic Management and Health Supervision of Individuals with Propionic Acidemia. Molecular Genetics and Metabolism, 105, 26-33. https://doi.org/10.1016/j.ymgme.2011.08.034
|
[43]
|
Chu, T., Chien, Y., Lin, H., Liao, H., Ho, H., Lai, C., et al. (2019) Methylmalonic Acidemia/Propionic Acidemia—The Biochemical Presentation and Comparing the Outcome between Liver Transplantation versus Non-Liver Transplantation Groups. Orphanet Journal of Rare Diseases, 14, Article No. 73. https://doi.org/10.1186/s13023-019-1045-1
|
[44]
|
Kasahara, M., Horikawa, R., Tagawa, M., Uemoto, S., Yokoyama, S., Shibata, Y., et al. (2006) Current Role of Liver Transplantation for Methylmalonic Acidemia: A Review of the Literature. Pediatric Transplantation, 10, 943-947. https://doi.org/10.1111/j.1399-3046.2006.00585.x
|
[45]
|
Jiang, L., Park, J., Yin, L., Laureano, R., Jacquinet, E., Yang, J., et al. (2020) Dual mRNA Therapy Restores Metabolic Function in Long-Term Studies in Mice with Propionic Acidemia. Nature Communications, 11, Article No. 5339. https://doi.org/10.1038/s41467-020-19156-3
|
[46]
|
Attarwala, H., Lumley, M., Liang, M., Ivaturi, V. and Senn, J. (2023) Translational Pharmacokinetic/Pharmacodynamic Model for mRNA-3927, an Investigational Therapeutic for the Treatment of Propionic Acidemia. Nucleic Acid Therapeutics, 33, 141-147. https://doi.org/10.1089/nat.2022.0036
|
[47]
|
An, D., Schneller, J.L., Frassetto, A., Liang, S., Zhu, X., Park, J., et al. (2017) Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia. Cell Reports, 21, 3548-3558. https://doi.org/10.1016/j.celrep.2017.11.081
|
[48]
|
Critelli, K., McKiernan, P., Vockley, J., Mazariegos, G., Squires, R.H., Soltys, K., et al. (2018) Liver Transplantation for Propionic Acidemia and Methylmalonic Acidemia: Perioperative Management and Clinical Outcomes. Liver Transplantation, 24, 1260-1270. https://doi.org/10.1002/lt.25304
|
[49]
|
Chen, P.W., Hwu, W.L., Ho, M.C., Lee, N.C., Chien, Y.H., Ni, Y.H., et al. (2010) Stabilization of Blood Methylmalonic Acid Level in Methylmalonic Acidemia after Liver Transplantation. Pediatric Transplantation, 14, 337-341. https://doi.org/10.1111/j.1399-3046.2009.01227.x
|
[50]
|
An, D., Frassetto, A., Jacquinet, E., Eybye, M., Milano, J., DeAntonis, C., et al. (2019) Long-Term Efficacy and Safety of mRNA Therapy in Two Murine Models of Methylmalonic Acidemia. EBioMedicine, 45, 519-528. https://doi.org/10.1016/j.ebiom.2019.07.003
|
[51]
|
Batshaw, M.L., Tuchman, M., Summar, M. and Seminara, J. (2014) A Longitudinal Study of Urea Cycle Disorders. Molecular Genetics and Metabolism, 113, 127-130. https://doi.org/10.1016/j.ymgme.2014.08.001
|
[52]
|
Dionisi-Vici, C., Rizzo, C., Burlina, A.B., Caruso, U., Sabetta, G., Uziel, G., et al. (2002) Inborn Errors of Metabolism in the Italian Pediatric Population: A National Retrospective Survey. The Journal of Pediatrics, 140, 321-329. https://doi.org/10.1067/mpd.2002.122394
|
[53]
|
Keskinen, P., Siitonen, A. and Salo, M. (2008) Hereditary Urea Cycle Diseases in Finland. Acta Paediatrica, 97, 1412-1419. https://doi.org/10.1111/j.1651-2227.2008.00923.x
|
[54]
|
Seker Yilmaz, B., Baruteau, J., Arslan, N., Aydin, H.I., Barth, M., Bozaci, A.E., et al. (2022) Three-Country Snapshot of Ornithine Transcarbamylase Deficiency. Life, 12, Article 1721. https://doi.org/10.3390/life12111721
|
[55]
|
Brassier, A., Gobin, S., Arnoux, J.B., Valayannopoulos, V., Habarou, F., Kossorotoff, M., et al. (2015) Long-Term Outcomes in Ornithine Transcarbamylase Deficiency: A Series of 90 Patients. Orphanet Journal of Rare Diseases, 10, Article No. 58. https://doi.org/10.1186/s13023-015-0266-1
|
[56]
|
Lu, D., Han, F., Qiu, W., Zhang, H., Ye, J., Liang, L., et al. (2020) Clinical and Molecular Characteristics of 69 Chinese Patients with Ornithine Transcarbamylase Deficiency. Orphanet Journal of Rare Diseases, 15, Article No. 340. https://doi.org/10.1186/s13023-020-01606-2
|
[57]
|
Foschi, F.G. (2015) Urea Cycle Disorders: A Case Report of a Successful Treatment with Liver Transplant and a Literature Review. World Journal of Gastroenterology, 21, 4063-4068. https://doi.org/10.3748/wjg.v21.i13.4063
|
[58]
|
Prieve, M.G., Harvie, P., Monahan, S.D., Roy, D., Li, A.G., Blevins, T.L., et al. (2018) Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Molecular Therapy, 26, 801-813. https://doi.org/10.1016/j.ymthe.2017.12.024
|
[59]
|
Yu, H., Brewer, E., Shields, M., Crowder, M., Sacchetti, C., Soontornniyomkij, B., et al. (2022) Restoring Ornithine Transcarbamylase (OTC) Activity in an OTC‐Deficient Mouse Model Using LUNAR‐OTC mRNA. Clinical and Translational Discovery, 2, e33. https://doi.org/10.1002/ctd2.33
|
[60]
|
Yamazaki, K., Kubara, K., Ishii, S., Kondo, K., Suzuki, Y., Miyazaki, T., et al. (2023) Lipid Nanoparticle-Targeted mRNA Formulation as a Treatment for Ornithine-Transcarbamylase Deficiency Model Mice. Molecular Therapy—Nucleic Acids, 33, 210-226. https://doi.org/10.1016/j.omtn.2023.06.023
|