新生儿坏死性小肠结肠炎肠道微生物群研究进展
Research Progress on Intestinal Microbiota in Neonatal Necrotizing Enterocolitis
DOI: 10.12677/acm.2025.154901, PDF, HTML, XML,   
作者: 曹 涵, 韦 红*:重庆医科大学附属儿童医院新生儿科,儿童发育疾病研究教育部重点实验室,国家儿童健康与疾病临床医学研究中心,重庆
关键词: 新生儿坏死性小肠结肠炎微生物病理生理学Neonatal Necrotizing Enterocolitis Microbes Pathophysiology
摘要: 新生儿坏死性小肠结肠炎(NEC)是新生儿的一种严重的胃肠道疾病,是新生儿尤其是早产儿死亡和残疾的重要原因。NEC的发病机制尚不完全明确,目前研究认为该疾病是在易感宿主的基础上通过饮食和细菌等因素发展而来的。随着NEC的进展,肠穿孔可导致严重感染,肠道微生物易位进入血液循环,可导致严重的败血症和死亡。这篇综述讲述了NEC与肠道微生物之间的相互作用,主要探讨了NEC的病理生理学、肠道微生物群的作用以及潜在的预防治疗策略。
Abstract: Neonatal necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in newborns and represents a leading cause of mortality and disability, particularly in preterm infants. The pathogenesis of NEC remains incompletely understood, though current evidence suggests that the disease develops in predisposed hosts in response to dietary and bacterial factors. As NEC progresses, intestinal perforation may lead to severe infection, while microbial translocation into the bloodstream can result in life-threatening sepsis and death. This review explores the intricate interplay among NEC and the gut microbiota, with a focus on elucidating the pathophysiology of NEC, the role of gut microbial dysbiosis, and potential preventive and therapeutic strategies.
文章引用:曹涵, 韦红. 新生儿坏死性小肠结肠炎肠道微生物群研究进展[J]. 临床医学进展, 2025, 15(4): 51-57. https://doi.org/10.12677/acm.2025.154901

1. 引言

新生儿坏死性小肠结肠炎(Neonatal necrotizing enterocolitis, NEC)是一种早产儿常见严重胃肠道疾病,特点是小肠和结肠缺血性坏死,肠道微生物易位进入血液循环,可导致严重的败血症和死亡[1]。该疾病主要表现为腹胀、呕吐、腹泻、血便、喂养困难等,是新生儿死亡和残疾的重要原因之一,死亡率可高达20%~30%,在需外科治疗的患儿中可接近50% [2]。NEC的发病机制包括多种因素,目前尚不完全清楚,目前研究认为该疾病的发生与肠道微生物群之间复杂的相互作用(细菌多样性减少、肠道黏膜免疫反应性增加)以及某些遗传因素有关[3]

新生儿败血症是指细菌、真菌或病毒等病原微生物入侵新生儿血液循环,并在其中生长繁殖、产生毒素引起的血流动力学改变和全身炎症反应综合征,可迅速发展为多器官功能衰竭及死亡,在早产儿中发病率及死亡率较高[4]。早产儿败血症的常见表现包括体温升高或降低、肺炎、呼吸暂停、嗜睡、喂养不良等[5],这些症状及体征往往不具有特异性,导致临床诊断难度较高。新生儿败血症的发生通常与肠道内生态失调有关,并有与NEC类似的临床表现。研究表明手术NEC的新生儿发生败血症的可能性是疑似NEC或内科NEC患儿的两倍,NEC患儿肠黏膜损伤后病原微生物可易位进入血液循环,导致NEC相关的败血症[6]。另外,研究表明败血症的发展可能是NEC的一个危险因素[7],尽管目前尚不清楚在败血症患儿机体内发生的肠道损伤是否与其他情况下的NEC具有相同的临床病程。

2. NEC的临床表现及诊断

NEC的临床表现非常多样,婴儿可能表现为轻度、非特异性的症状,也可能暴发性发病导致严重败血症和多器官系统衰竭。NEC常见的肠道征象包括腹胀和喂养不耐受,继发肠梗阻后可出现腹壁变色、呕吐胆汁性物和便血,发生肠穿孔后男婴可能还会出现腹膜炎表现。NEC患儿可能出现非特异性的全身症状,包括温度不稳定、呼吸暂停、心动过缓、心动过速、低血压、高血糖、低血糖和皮肤花斑等[8]。实验室检查通常仍是非特异性的,其中贫血、伴有中性粒细胞核左移的白细胞增多、中性粒细胞减少、血小板减少、代谢性酸中毒、凝血功能障碍、C反应蛋白升高和低钠血症最为常见[9]。NEC的X线可能征象还包括肠壁积气、门静脉积气、气腹、腹腔积液等。腹部超声在NEC中可用于检测气腹、腹腔积液、门静脉积气、肠灌注不足和肠壁积气等,但这项技术受到超声医生专业水平的限制[8]

改良Bell分期标准最常用于明确NEC的严重程度和指导治疗,但该系统有多种局限性,目前仍被不适当地用作诊断工具。例如,Bell 标准I期的症状是非特异性的,这些症状可以在正常的极低出生体重婴儿中观察到。除此之外,由于腹部X线片上有气腹表现,自发性肠穿孔(SIP)可被归类为Bell标准III期,但是SIP与NEC属于两种不同疾病,具有非常不同的流行病学特征。由于这些限制因素影响了NEC诊断的准确性,目前正在努力提出一个更具体的诊断标准来排除这些混杂因素的干扰,例如佛蒙特牛津网络定义、三选二规则和斯坦福NEC评分[10]

3. NEC的病理生理学

从母体内子宫到出生后环境的转变导致了新生儿和定植微生物之间发生了复杂的相互作用,这些微生物在出生后几周内可能成为潜在的病原体。对于免疫系统不成熟、发育不全的早产儿和极低出生体重婴儿来说,这种转变尤其具有挑战性。新生儿免疫系统非常独特,涉及细胞因子、生长因子和激素信号通路的改变,益生菌和母乳的营养效应,以及新生儿期时不同的微生物定植在肠道和其他黏膜等过程。这些转变过程通过产生免疫激活或耐受来对免疫系统产生长期影响,从而决定NEC的发展[11] [12]。虽然NEC的病理生理学仍不明确,但大量证据表明,早产儿肠道中的失调微生物群使肠道上皮上的toll样受体4 (TLR4)被激活,通过细胞凋亡、自噬和坏死的方式导致免疫功能受损和上皮细胞死亡[13]。此外,肠黏膜恢复受损和增殖减少导致不可逆的肠道屏障损伤,导致患儿出现NEC的临床表现[14]

所有新生儿尤其是早产儿,免疫系统的适应性及组成成分都是不成熟的。据报道,早产儿和足月儿免疫谱的差异随年龄的增加而更加加剧,与足月儿相比早产儿更倾向于促炎状态,更易发生败血症[15]。炎症反应的快速积累导致肠上皮细胞紧密连接受损,肠上皮细胞凋亡增加,肠上皮细胞增殖减少,最终导致NEC [11] [13]

4. 肠道微生物群在NEC发病机制中的作用

肠道微生物群是指存在于人类胃肠道中,与人类宿主共生生活的所有微生物的集合[16]。出生后婴儿的肠道最初被厌氧生物(拟杆菌、双歧杆菌和梭状芽孢杆菌)定植,随着细菌丰富度和多样性的增加,在2~5岁左右可形成类似成人的微生物群,其中以拟杆菌门和厚壁菌门占优势[16] [17]。有研究发现双歧杆菌定植减少和微生物群多样性较低与某些疾病的高发病率有关,如NEC和新生儿败血症[18]

脂多糖(LPS)是革兰氏阴性菌细胞壁中的主要内毒素,它能够与TLR4结合引发炎症反应。在NEC患儿中,肠道微生物群以革兰氏阴性菌(如肠杆菌科)为主,这些细菌能够产生LPS,破坏黏液层,使细菌更容易粘附并入侵肠上皮细胞。同时,细菌及其产物(如LPS)还可以激活TLR4等免疫受体,引发NF-κB等信号通路的激活,导致大量促炎细胞因子产生(如肿瘤坏死因子-α、白细胞介素-6、白细胞介素-8等),这些炎症因子可进一步导致细胞凋亡、破坏肠道屏障,最终导致细菌易位。这些易位细菌随之可与肠系膜血管内膜上的TLR4相互作用,导致一氧化氮合酶活性降低,一氧化氮减少,与一氧化氮维持平衡的内皮素-1 (强效缩血管物质)分泌上调,血管收缩,从而导致肠道血流减少,之后的肠道缺血以及缺血后再灌注等过程都进一步加重了肠道损伤[15]

肠道微生物可通过可溶性介质、细胞外囊泡、神经递质及激素等途径,与肠外器官的免疫细胞进行信号交流[19]。菌群失调会破坏宿主与微生物间的稳态信号传导,进而导致肠道上皮完整性受损、黏液屏障防御功能减弱,并激活常驻免疫细胞[20]。研究表明,新生儿肠道菌群失调与胃肠道炎症反应的发生密切相关,而这些炎症反应最终可能引发NEC [20] [21]

5. NEC、肠道微生物与败血症之间的相互作用机制

早产儿的肠道菌群相较于足月儿发育不成熟且多样性较低,且患有NEC的早产儿的肠道微生物群与未患病者存在显著差异[22] [23]。早产儿的菌群失调不仅源于其免疫系统与肠道功能发育不成熟,还涉及其他引发败血症的高危因素,例如中心导管的长期使用、肠内喂养的延迟启动,以及呼吸机支持时间的延长[24]。研究还发现,肠道微生物组的异常发育(如细菌多样性低、变形菌门和厚壁菌门比例升高,以及专性厌氧菌定植延迟)与败血症的发生存在关联。具体而言,多种革兰阴性肠道细菌(如克雷伯菌属、假单胞菌属、大肠杆菌)和革兰阳性细菌(如链球菌属、肠球菌属、凝固酶阴性葡萄球菌)已被证实可引发早产儿败血症[25]

多项研究结果显示肠腔内的细菌与发育尚未成熟的血管内皮网络之间的相互作用,可导致肠道灌注不足,进而引发肠道缺血及NEC [13] [15] [26]。Yazji等人的研究表明,经过肠屏障易位的细菌激活肠系膜内皮上的TLR4,导致内皮型一氧化氮合酶表达减少,从而导致肠系膜血管收缩和肠缺血的发展[26]。在细菌定植后,TLR4诱导的肠道炎症导致肠上皮屏障的损伤,细菌易位,并最终导致败血症[27]

6. 预防与治疗

6.1. 母乳

母乳喂养已被证明对预防NEC有极大益处。一项纳入49项研究的系统综述与Meta分析探讨了母乳对极低出生体重儿的影响,结果表明母乳不仅可能降低晚发型败血症的发生风险,还对NEC具有保护作用,可使其发病率降低约4% [28]。母乳低聚糖(Human Milk Oligosaccharides, HMOs)是母乳中一类含量丰富且结构复杂的碳水化合物,不仅具有高度生物活性,还能抵抗胃肠道消化酶的分解,难以被肠道大量吸收。其主要益处包括:调节肠道菌群与免疫功能、促进大脑神经发育以及调控肠道上皮细胞应答反应。HMOs兼具有益生元特性与肠道免疫应答调节功能,可能通过正向引导免疫系统发育和优化肠道菌群定向发展的双重作用机制对防治晚发型败血症和坏死性小肠结肠炎起到关键作用[29] [30]

6.2. 益生菌

多项大型临床试验已证实益生菌对NEC和新生儿败血症高危患儿的临床有效性,但目前该方向仍有一定的研究空间。以一项纳入45项临床试验、覆盖12,320名受试者的Meta分析为例,研究证实相较于安慰剂组,联合补充双歧杆菌与乳杆菌的复方制剂可显著降低新生儿死亡率及NEC发病率[31]。Cochrane另一项系统评价对比了早产儿预防性使用肠道益生菌制剂(乳杆菌单株或与双歧杆菌复方)的疗效与安全性,研究证实该干预可降低重症坏死性小肠结肠炎(NEC II期及以上)的发病率及全因死亡率,但未发现益生菌能显著降低院内感染败血症的证据[32]。由于上述两个研究纳入标准不同,纳入研究所使用的菌株、剂量、组合、使用时间及患儿成熟度等方面存在差异,Underwood的系统评价显示败血症相关结果无显著意义可能与纳入研究的异质性(如菌株的特异性效应)有关。Good等人的研究进一步揭示,益生菌通过菌体DNA可以激活能够抑制TLR4信号传导的TLR9受体,从而下调培养的肠上皮细胞及人回肠切除样本中的促炎信号通路,这为NEC的临床治疗机制提供了解释依据[33]

6.3. 抗生素

针对存在感染风险的婴儿,临床常规静脉给予氨苄青霉素、庆大霉素、甲硝唑等抗生素以预防败血症。Bury等人系统评估了预防性使用肠内抗生素治疗低出生体重儿及早产儿坏死性小肠结肠炎的益处与风险,研究结果表明,肠内抗生素可能对NEC发生具有预防作用,但同时也可能有促进耐药菌株形成的潜在风险[34]。另外,一项调查静脉注射广谱抗生素的研究结果显示,抗生素治疗时间少于3~5天可能降低NEC的后续风险[35]。一个Cochrane的综述比较了不同抗生素方案治疗NEC患儿的死亡率和手术风险,但未能找到一个抗生素使用方案疗效明显优于其他组合[36]。早产儿因免疫系统未成熟、感染风险高,早期预防性使用抗生素可以通过抑制病原体增殖以及减少肠道炎症反应来降低败血症或NEC的发病率,但抗生素同时还存在产生细菌耐药性、促使其他致病菌增殖以及改变肠道微生物群的风险,从而可能增加新生儿罹患坏死性小肠结肠炎的风险。总之,抗生素种类、用法及使用时长等都可能影响宿主体内微生物群的稳定,目前仍需进一步的研究来明确预防性使用抗生素对NEC后期发展的影响,尤其是抗生素使用对肠道免疫以及肠道微生物群的影响。

NEC目前的治疗方法还包括禁食、胃肠减压、静脉营养以及必要时手术治疗。人乳寡糖、合成羊水和外泌体等其他潜在新型治疗方法正在研究中,具有一定的治疗潜力。

7. 总结

NEC是早产儿多见的严重胃肠道疾病,也是导致许多早产儿死亡和残疾的重要原因。许多研究为NEC的发病机制提供了新的见解,结果表明肠道微生物群和未成熟免疫系统之间的动态反应可能是导致肠上皮细胞发生改变的重要机制。肠道微生物群与新生儿坏死性小肠结肠炎和新生儿败血症的发生发展密切相关,研究者们已经发现了诸如母乳、益生菌和抗生素等方法来预防或治疗新生儿败血症和NEC,未来可能的研究方向如外泌体、羊水、粪便移植以及开发新的治疗靶点等仍需进一步研究和探讨。

NOTES

*通讯作者。

参考文献

[1] Niño, D.F., Sodhi, C.P. and Hackam, D.J. (2016) Necrotizing Enterocolitis: New Insights into Pathogenesis and Mechanisms. Nature Reviews Gastroenterology & Hepatology, 13, 590-600.
https://doi.org/10.1038/nrgastro.2016.119
[2] Hull, M.A., Fisher, J.G., Gutierrez, I.M., Jones, B.A., Kang, K.H., Kenny, M., et al. (2014) Mortality and Management of Surgical Necrotizing Enterocolitis in Very Low Birth Weight Neonates: A Prospective Cohort Study. Journal of the American College of Surgeons, 218, 1148-1155.
https://doi.org/10.1016/j.jamcollsurg.2013.11.015
[3] Pammi, M., Cope, J., Tarr, P.I., Warner, B.B., Morrow, A.L., Mai, V., et al. (2017) Intestinal Dysbiosis in Preterm Infants Preceding Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Microbiome, 5, Article No. 31.
https://doi.org/10.1186/s40168-017-0248-8
[4] Garg, P.M., Paschal, J.L., Ansari, M.A.Y., Block, D., Inagaki, K. and Weitkamp, J. (2022) Clinical Impact of Nec-Associated Sepsis on Outcomes in Preterm Infants. Pediatric Research, 92, 1705-1715.
https://doi.org/10.1038/s41390-022-02034-7
[5] Parra-Llorca, A., Pinilla-Gonzlez, A., Torrejón-Rodríguez, L., Lara-Cantón, I., Kuligowski, J., Collado, M.C., et al. (2023) Effects of Sepsis on Immune Response, Microbiome and Oxidative Metabolism in Preterm Infants. Children, 10, Article 602.
https://doi.org/10.3390/children10030602
[6] Bizzarro, M.J., Ehrenkranz, R.A. and Gallagher, P.G. (2014) Concurrent Bloodstream Infections in Infants with Necrotizing Enterocolitis. The Journal of Pediatrics, 164, 61-66.
https://doi.org/10.1016/j.jpeds.2013.09.020
[7] Martinez-Tallo, E., Claure, N. and Bancalari, E. (1997) Necrotizing Enterocolitis in Full-Term or Near-Term Infants: Risk Factors. Neonatology, 71, 292-298.
https://doi.org/10.1159/000244428
[8] Andrews, R.E. and Coe, K.L. (2021) Clinical Presentation and Multifactorial Pathogenesis of Necrotizing Enterocolitis in the Preterm Infant. Advances in Neonatal Care, 21, 349-355.
https://doi.org/10.1097/anc.0000000000000880
[9] Patel, R.M., Ferguson, J., McElroy, S.J., Khashu, M. and Caplan, M.S. (2020) Defining Necrotizing Enterocolitis: Current Difficulties and Future Opportunities. Pediatric Research, 88, 10-15.
https://doi.org/10.1038/s41390-020-1074-4
[10] Sampah, M.E.S. and Hackam, D.J. (2021) Prenatal Immunity and Influences on Necrotizing Enterocolitis and Associated Neonatal Disorders. Frontiers in Immunology, 12, Article 650709.
https://doi.org/10.3389/fimmu.2021.650709
[11] Perez-Muñoz, M.E., Arrieta, M., Ramer-Tait, A.E. and Walter, J. (2017) A Critical Assessment of the “Sterile Womb” and “in Utero Colonization” Hypotheses: Implications for Research on the Pioneer Infant Microbiome. Microbiome, 5, Article No. 48.
https://doi.org/10.1186/s40168-017-0268-4
[12] Costello, E.K., Carlisle, E.M., Bik, E.M., Morowitz, M.J. and Relman, D.A. (2013) Microbiome Assembly across Multiple Body Sites in Low-Birthweight Infants. mBio, 4, e00782-13.
https://doi.org/10.1128/mbio.00782-13
[13] Afrazi, A., Branca, M.F., Sodhi, C.P., Good, M., Yamaguchi, Y., Egan, C.E., et al. (2014) Toll-Like Receptor 4-Mediated Endoplasmic Reticulum Stress in Intestinal Crypts Induces Necrotizing Enterocolitis. Journal of Biological Chemistry, 289, 9584-9599.
https://doi.org/10.1074/jbc.m113.526517
[14] Sodhi, C.P., Shi, X., Richardson, W.M., Grant, Z.S., Shapiro, R.A., Prindle, T., et al. (2010) Toll-Like Receptor-4 Inhibits Enterocyte Proliferation via Impaired β-Catenin Signaling in Necrotizing Enterocolitis. Gastroenterology, 138, 185-196.
https://doi.org/10.1053/j.gastro.2009.09.045
[15] Hackam, D.J. and Sodhi, C.P. (2018) Toll-Like Receptor-Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Necrotizing Enterocolitis. Cellular and Molecular Gastroenterology and Hepatology, 6, 229-238.e1.
https://doi.org/10.1016/j.jcmgh.2018.04.001
[16] Masi, A.C. and Stewart, C.J. (2019) The Role of the Preterm Intestinal Microbiome in Sepsis and Necrotising Enterocolitis. Early Human Development, 138, Article ID: 104854.
https://doi.org/10.1016/j.earlhumdev.2019.104854
[17] Rodríguez, J.M., Murphy, K., Stanton, C., Ross, R.P., Kober, O.I., Juge, N., et al. (2015) The Composition of the Gut Microbiota Throughout Life, with an Emphasis on Early Life. Microbial Ecology in Health & Disease, 26, Article ID: 26050.
https://doi.org/10.3402/mehd.v26.26050
[18] Stewart, C.J., Embleton, N.D., Marrs, E.C.L., Smith, D.P., Fofanova, T., Nelson, A., et al. (2017) Longitudinal Development of the Gut Microbiome and Metabolome in Preterm Neonates with Late Onset Sepsis and Healthy Controls. Microbiome, 5, Article No. 75.
https://doi.org/10.1186/s40168-017-0295-1
[19] Zheng, D., Liwinski, T. and Elinav, E. (2020) Interaction between Microbiota and Immunity in Health and Disease. Cell Research, 30, 492-506.
https://doi.org/10.1038/s41422-020-0332-7
[20] Fan, Y. and Pedersen, O. (2020) Gut Microbiota in Human Metabolic Health and Disease. Nature Reviews Microbiology, 19, 55-71.
https://doi.org/10.1038/s41579-020-0433-9
[21] Levy, M., Kolodziejczyk, A.A., Thaiss, C.A. and Elinav, E. (2017) Dysbiosis and the Immune System. Nature Reviews Immunology, 17, 219-232.
https://doi.org/10.1038/nri.2017.7
[22] Thänert, R., Keen, E.C., Dantas, G., Warner, B.B. and Tarr, P.I. (2020) Necrotizing Enterocolitis and the Microbiome: Current Status and Future Directions. The Journal of Infectious Diseases, 223, S257-S263.
https://doi.org/10.1093/infdis/jiaa604
[23] Claud, E.C., Keegan, K.P., Brulc, J.M., Lu, L., Bartels, D., Glass, E., et al. (2013) Bacterial Community Structure and Functional Contributions to Emergence of Health or Necrotizing Enterocolitis in Preterm Infants. Microbiome, 1, Article No. 20.
https://doi.org/10.1186/2049-2618-1-20
[24] Mai, V., Torrazza, R.M., Ukhanova, M., Wang, X., Sun, Y., Li, N., et al. (2013) Distortions in Development of Intestinal Microbiota Associated with Late Onset Sepsis in Preterm Infants. PLOS ONE, 8, e52876.
https://doi.org/10.1371/journal.pone.0052876
[25] Taft, D.H., Ambalavanan, N., Schibler, K.R., Yu, Z., Newburg, D.S., Deshmukh, H., et al. (2015) Center Variation in Intestinal Microbiota Prior to Late-Onset Sepsis in Preterm Infants. PLOS ONE, 10, e0130604.
https://doi.org/10.1371/journal.pone.0130604
[26] Yazji, I., Sodhi, C.P., Lee, E.K., Good, M., Egan, C.E., Afrazi, A., et al. (2013) Endothelial TLR4 Activation Impairs Intestinal Microcirculatory Perfusion in Necrotizing Enterocolitis via Enos-No-Nitrite Signaling. Proceedings of the National Academy of Sciences, 110, 9451-9456.
https://doi.org/10.1073/pnas.1219997110
[27] Good, M., Siggers, R.H., Sodhi, C.P., Afrazi, A., Alkhudari, F., Egan, C.E., et al. (2012) Amniotic Fluid Inhibits Toll-Like Receptor 4 Signaling in the Fetal and Neonatal Intestinal Epithelium. Proceedings of the National Academy of Sciences of the United States of America, 109, 11330-11335.
https://doi.org/10.1073/pnas.1200856109
[28] Sodhi, C.P., Wipf, P., Yamaguchi, Y., Fulton, W.B., Kovler, M., Niño, D.F., et al. (2020) The Human Milk Oligosaccharides 2’-Fucosyllactose and 6’-Sialyllactose Protect against the Development of Necrotizing Enterocolitis by Inhibiting Toll-Like Receptor 4 Signaling. Pediatric Research, 89, 91-101.
https://doi.org/10.1038/s41390-020-0852-3
[29] Xu, G., Davis, J.C., Goonatilleke, E., Smilowitz, J.T., German, J.B. and Lebrilla, C.B. (2017) Absolute Quantitation of Human Milk Oligosaccharides Reveals Phenotypic Variations during Lactation. The Journal of Nutrition, 147, 117-124.
https://doi.org/10.3945/jn.116.238279
[30] Wang, C., Zhang, M., Guo, H., Yan, J., Liu, F., Chen, J., et al. (2019) Human Milk Oligosaccharides Protect against Necrotizing Enterocolitis by Inhibiting Intestinal Damage via Increasing the Proliferation of Crypt Cells. Molecular Nutrition & Food Research, 63, Article ID: 1900262.
https://doi.org/10.1002/mnfr.201900262
[31] Morgan, R.L., Preidis, G.A., Kashyap, P.C., Weizman, A.V., Sadeghirad, B., Chang, Y., et al. (2020) Probiotics Reduce Mortality and Morbidity in Preterm, Low-Birth-Weight Infants: A Systematic Review and Network Meta-Analysis of Randomized Trials. Gastroenterology, 159, 467-480.
https://doi.org/10.1053/j.gastro.2020.05.096
[32] Underwood, M.A. (2019) Probiotics and the Prevention of Necrotizing Enterocolitis. Journal of Pediatric Surgery, 54, 405-412.
https://doi.org/10.1016/j.jpedsurg.2018.08.055
[33] Good, M., Sodhi, C.P., Ozolek, J.A., Buck, R.H., Goehring, K.C., Thomas, D.L., et al. (2014) lactobacillus Rhamnosus HN001 Decreases the Severity of Necrotizing Enterocolitis in Neonatal Mice and Preterm Piglets: Evidence in Mice for a Role of TLR9. American Journal of Physiology-Gastrointestinal and Liver Physiology, 306, G1021-G1032.
https://doi.org/10.1152/ajpgi.00452.2013
[34] Bury, R.G., Tudehope, D. and Cochrane Neonatal Group (1996) Enteral Antibiotics for Preventing Necrotizing Enterocolitis in Low Birthweight or Preterm Infants. Cochrane Database of Systematic Reviews, No. 1, CD000405.
[35] Ting, J.Y., Roberts, A., Sherlock, R., Ojah, C., Cieslak, Z., Dunn, M., et al. (2019) Duration of Initial Empirical Antibiotic Therapy and Outcomes in Very Low Birth Weight Infants. Pediatrics, 143, e20182286.
https://doi.org/10.1542/peds.2018-2286
[36] Shah, D. and Sinn, J.K. (2012) Antibiotic Regimens for the Empirical Treatment of Newborn Infants with Necrotising Enterocolitis. Cochrane Database of Systematic Reviews, No. 8, CD007448.
https://doi.org/10.1002/14651858.cd007448.pub2