新型肥胖相关指标预测高脂血症性胰腺炎严重程度
New Obesity Related Indicators Predict the Severity of Hyperlipidemic Pancreatitis
摘要: 背景:肥胖在急性胰腺炎(AP)的发病机制中起着重要作用,并显著影响其严重程度。尽管体重指数(BMI)是一个广泛使用的肥胖相关测量指标,但它更倾向于描述全身脂肪分布情况,而非内脏脂肪的分布模式。为了克服这一缺点,研究人员开发了新的肥胖相关测量指标,如腰围指数(WTI)、内脏肥胖指数(VAI)、脂质积累产物(LAP)和心脏代谢指数(CMI),以更准确地评估急性胰腺炎(AP)的严重程度。方法:回顾性分析78例高脂血症性胰腺炎(HLAP)患者的身体参数和实验室指标,计算4项新型内脏肥胖人体测量指标。HLAP的严重程度分级采用修订后的亚特兰大分级标准。通过受试者工作特征(ROC)曲线评估腰围指数(WTI)、内脏肥胖指数(VAI)、脂质积累产物(LAP)和心脏代谢指数(CMI)与高脂血症性胰腺炎(HLAP)严重程度的相关性,并采用曲线下面积(AUC)评价各指标的预测效能。脂肪改良的BISAP评分(FM-BISAP)通过将脂肪评分与BISAP评分相加来计算。通过比较FM-BISAP评分与BISAP评分的受试者工作特征曲线下面积(AUC)来预测HLAP严重程度。结果:高脂血症性胰腺炎患者中,重症胰腺炎(SAP)患者胸膜渗出、腰围、甘油三酯、血糖水平高于非重度急性胰腺炎(N-SAP),P < 0.05。肥胖相关测量指标中,SAP患者WTI、LAP、CMI、VAI水平高于N-SAP,P < 0.05,BMI无统计学意义。通过受试者工作特征(ROC)曲线比较WTI、LAP、CMI、VAI和BISAP评分对高脂血症性胰腺炎(HLAP)严重程度的预测性能,VAI的预测效果最好,AUC为0.780 (95%可信区间(CI):0.680~0.881),其次是CMI,AUC为0.767 (95% CI: 0.664~0.869),LAP为0.721 (95% CI: 0.610~0.832),均优于BISAP评分(AUC = 0.683),证明了新的内脏肥胖测量指标在预测HLAP严重程度方面的潜力。而在脂肪改良的BISAP评分系统中CMI-BISAP的预测效果最好,AUC为0.804 (95% CI: 0.709~0.900),其次是VAI~BISAP,AUC为0.798 (95% CI: 0.702~0.895),LAP-BISAP为0.767 (95% CI: 0.665~0.870),均优于BISAP (AUC = 0.683)。结论:本研究表明HLAP严重程度与WTI、VAI、CMI和LAP等指标之间存在显著相关性。在这些人体测量指标中,VAI对HLAP严重程度的预测效果最高,其次是CMI和LAP。在经内脏脂肪测量指标修饰的BISAP评分中,CMI-BISAP的预测效果最优,其次是VAI-BISAP和LAP-BISAP。这些改良评分系统为预测和评估高脂血症性胰腺炎(HLAP)的严重程度提供了重要参考。
Abstract: Background: Obesity plays an important role in the pathogenesis of acute pancreatitis (AP) and significantly affects its severity. Although body mass index (BMI) is a widely used obesity related measurement indicator, it tends to describe the distribution of whole-body fat rather than the distribution pattern of visceral fat. To overcome this drawback, researchers have developed new obesity related measurement indicators such as waist circumference index (WTI), visceral obesity index (VAI), lipid accumulation products (LAP), and cardiac metabolic index (CMI) to more accurately assess the severity of acute pancreatitis (AP). Method: A retrospective analysis was conducted on the physical parameters and laboratory indicators of 78 patients with hyperlipidemic pancreatitis (HLAP), and four novel visceral obesity anthropometric measurement indicators were calculated. The severity grading of HLAP adopts the revised Atlanta grading standards. The correlation between waist circumference index (WTI), visceral obesity index (VAI), lipid accumulation products (LAP), and cardiac metabolic index (CMI) and the severity of hyperlipidemic pancreatitis (HLAP) was evaluated using receiver operating characteristic (ROC) curves, and the predictive power of each index was evaluated using area under the curve (AUC). The Fat Modified BISAP Score (FM-BISAP) is calculated by adding the fat score to the BISAP score. Predicting the severity of HLAP by comparing the area under the working characteristic curve (AUC) of subjects with FM-BISAP score and BISAP score. Result: Among patients with hyperlipidemic pancreatitis, those with severe pancreatitis (SAP) had higher levels of pleural effusion, waist circumference, triglycerides, and blood glucose than those with non severe acute pancreatitis (N-SAP), with P < 0.05. Among the obesity related measurement indicators, the levels of WTI, LAP, CMI, and VAI in SAP patients were higher than those in N-SAP, with P < 0.05, and BMI was not statistically significant. Comparing the predictive performance of WTI, LAP, CMI, VAI, and BISAP scores for the severity of hyperlipidemic pancreatitis (HLAP) through receiver operating characteristic (ROC) curves, VAI showed the best predictive performance with an AUC of 0.780 (95% confidence interval (CI): 0.680~0.881), followed by CMI. The AUC was 0.767 (95% CI: 0.664~0.869) and LAP was 0.721 (95% CI: 0.610~0.832), both better than the BISAP score (AUC = 0.683), demonstrating the potential of the new visceral obesity measurement index in predicting the severity of HLAP. In the fat modified BISAP scoring system, CMI-BISAP showed the best predictive performance with an AUC of 0.804 (95% CI: 0.709~0.900), followed by VAI-BISAP, AUC is 0.798 (95% CI: 0.702~0.895), LAP-BISAP is 0.767 (95% CI: 0.665~0.870), both of which are better than BISAP (AUC = 0.683). Conclusion: This study indicates a significant correlation between the severity of HLAP and indicators such as WTI, VAI, CMI, and LAP. Among these anthropometric indicators, VAI has the highest predictive effect on the severity of HLAP, followed by CMI and LAP. In the BISAP score modified by visceral fat measurement indicators, CMI-BISAP showed the best predictive performance, followed by VAI-BISAP and LAP-BISAP. These improved scoring systems provide important references for predicting and evaluating the severity of hyperlipidemic pancreatitis (HLAP).
文章引用:张书豪, 姚健, 钟一榕. 新型肥胖相关指标预测高脂血症性胰腺炎严重程度[J]. 临床医学进展, 2025, 15(4): 58-71. https://doi.org/10.12677/acm.2025.154902

1. 引言

急性胰腺炎(Acute Pancreatitis, AP)是一种严重炎症性疾病,其病理过程涉及胰腺组织的自我消化及周围组织的炎症或坏死,进而可能引发多器官功能衰竭[1]。作为一种消化系统常见疾病,急性胰腺炎具有不可预测性和高致死风险。在病因方面,根据中国急性胰腺炎诊疗指南,胆源性病因仍是其主要致病因素[2]。然而,随着生活方式和饮食结构的改变,高甘油三酯血症性急性胰腺炎(Hypertriglyceridemia-induced Acute Pancreatitis, HTG-AP)的发病率呈逐年上升的趋势[3] [4],目前已超越酒精性病因成为胰腺炎第二大常见病因[5]。相关研究表明,高甘油三酯血症性急性胰腺炎(HTG-AP)的临床预后较其他病因所致的急性胰腺炎更差。一项系统综述和荟萃分析显示,HTG-AP患者在全身炎症反应综合征(SIRS)、持续性器官衰竭及死亡率等方面的风险显著高于其他类型的急性胰腺炎[6]。在急性胰腺炎的严重程度分级中,重度急性胰腺炎(SAP)患者的发病率和死亡率显著高于轻中度急性胰腺炎患者[7],死亡率可超过30%。特别是部分持续性器官衰竭超过48小时的患者,其死亡率甚至可高达50% [8]。尽管随着重症监护治疗的技术不断进步,但是急性胰腺炎的死亡率仍未得到显著下降。因此,早期识别高危患者对改善预后至关重要,这有助于及时实施包括早期液体复苏和营养支持在内的积极治疗策略[9] [10]

急性胰腺炎的严重程度与其病因密切相关[11]。胆源性胰腺炎主要由胆结石阻塞胰管引发,胰管高压导致消化酶自主激活并释放,从而诱发胰腺炎[12]。相比之下,高脂血症性急性胰腺炎(HLAP)的发病机制更为复杂,涉及多种病理生理过程[13]。目前主流的发病机制包括:1) 游离脂肪酸(FFA)损伤学说:当血清FFA的水平超过白蛋白的结合能力时,未结合的FFA会形成具有去污剂特性的微团,进而损伤血小板、血管内皮和胰腺细胞[14] [15]。FFA也可通过激活胰蛋白酶原和溶酶体组织蛋白酶B,进而生成活性胰蛋白酶,最后导致胰腺自我消化[16]。此外,FFA也有对胰腺腺泡和血管内皮细胞的直接细胞毒性作用[17] [18]。2) 微循环障碍学说:血清中乳糜微粒的增加会使甘油三酯(TG)分解产生大量FFA,其沉积在胰腺毛细血管中,堵塞毛细血管,导致局部缺血,从而导致胰腺微循环障碍及组织坏死。3) 炎症反应学说:不饱和脂肪酸(UFA)通过增加炎症介质(如IL-1、IL-6、TNF-α、CXCL1、CXCL2和MCP-1等)引发级联放大反应,促使胰腺炎发生。当促炎因子与抗炎因子的平衡被FFA诱导的胰腺损伤打破,超出机体代偿能力时,甚至会导致全身炎症反应综合征(SIRS)和多器官功能衰竭(MOF) [19]。4) 钙超载机制学说:细胞内钙离子持续升高会促进胰蛋白酶原激活和增加胰液分泌,进而诱发急性胰腺炎。此外,钙超载也会导致线粒体功能障碍、氧化应激、细胞膜过氧化甚至细胞死亡[20]。5) 氧化应激反应学说:高水平活性氧(ROS)具有细胞毒性,可导致胰腺坏死,而低水平ROS可能作为炎症反应的信号分子。高甘油三酯水平在降低胰腺组织中抗氧化物质(超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶等)的水平的同时会增加过氧化氢酶(CAT)和氧氮化物等氧化产物的水平,导致氧化–抗氧化失衡,加重胰腺的损伤[19] [21]。6) 遗传因素及基因突变:基因突变和遗传易感性可能在HLAP的发病中起重要作用[22]

腹部肥胖在高脂血症性胰腺炎(HLAP)的进展中起重要作用[23] [24]。一项涵盖60,000多人的研究表明,腹部肥胖显著增加急性胰腺炎的发病风险[25]。因此,利用常见的人体测量指标(如体重指数BMI)预测急性胰腺炎的严重程度具有可行性[26] [27]。但BMI的局限性是不能将全身脂肪和内脏脂肪区分开来[28] [29]。尽管内脏脂肪组织(VAT)的评估金标准依赖于CT和MRI等影像学方法,但其高成本和操作复杂性限制了临床应用。近年来,更简便的内脏脂肪评估方法受到广泛关注,例如腰围指数(WTI)、内脏肥胖指数(VAI) [30]、脂质积累产物(LAP) [27] [31]和心脏代谢指数(CMI)等新型指标[32] [33],这些指标已被用于评估内脏肥胖[34]。因为这些指标主要在代谢综合征(MetS)的框架内进行研究,其在预测HLAP严重程度中的作用尚未明确[35]。这项研究旨在探讨新型肥胖相关指标与HLAP严重程度的相关性,并在对HLAP严重程度的预测中评估脂肪修饰评分系统的价值。

2. 研究对象与方法

2.1. 研究人群

研究人群纳入2016年1月至2023年12月期间于青岛大学医学院附属医院住院治疗的急性胰腺炎患者,共3909例。其中,128例符合高脂血症性急性胰腺炎(HLAP)诊断标准,经排除后,最终纳入78例患者。根据急性胰腺炎严重程度分级标准,将患者分为两组:43例为重度急性胰腺炎(SAP),36例为非重度急性胰腺炎(N-SAP)。

2.2. 诊断标准

急性胰腺炎的诊断依据亚特兰大国际研讨会及修订版亚特兰大分类标准,需满足以下三项中的两项:(1) 急性、持续的中上腹疼痛;(2) 血清淀粉酶和/或脂肪酶浓度高于正常上限值的3倍;(3) 腹部影像学检查显示符合急性胰腺炎的影像学特征。

高脂血症性急性胰腺炎(HLAP)的诊断标准包括:(1) 符合急性胰腺炎的典型腹痛,表现为突发性、持续性剧烈腹痛,可放射至背部;(2) 血清脂肪酶或淀粉酶水平超过正常上限的3倍;(3) 影像学检查排除胆石症。当患者血清甘油三酯(TG)水平≥11.3 mmol/L,或TG水平为5.65~11.3 mmol/L且伴有乳糜样血时,即可确诊为HLAP [36]

严重程度分级如下:轻症急性胰腺炎(MAP):不伴器官功能障碍及局部或全身并发症,通常在1-2周内恢复,病死率极低。中重症急性胰腺炎(MSAP):伴有一过性(≤48小时)器官功能障碍和/或局部并发症,早期病死率低,但若坏死组织合并感染,则病死率升高。重症急性胰腺炎(SAP):伴有持续性(>48小时)器官功能障碍,病死率高。器官功能障碍的诊断基于改良Marshall评分系统,任一器官评分 ≥ 2分即定义为存在器官功能障碍。

排除标准包括:(1) 入院前在其他医院接受过系统治疗(如液体复苏、血浆置换等);(2) 合并急慢性心脏病、冠心病、慢性阻塞性肺疾病、肝硬化或慢性肾功能衰竭;(3) 合并血液病或精神神经系统疾病;(4) 其他病因明确的急性胰腺炎(如胆源性、外伤性、药物性或术后胰腺炎);(5) 存在明显或疑似感染;(6) 急性发作的慢性胰腺炎;(7) 临床资料不完整。

根据亚特兰大分级标准将患者分为重度急性胰腺炎(SAP) 43名,非重度急性胰腺炎(N-SAP) 36名。

2.3. 数据收集

本研究属于回顾性研究,默认获得患者知情同意,收集的两组患者一般资料包括性别、年龄、住院时间、是否入住ICU、基础疾病史(糖尿病和冠心病)、胸膜渗出情况、意识状态、白细胞计数(WBC)、白蛋白(Pr)、全身炎症反应综合征(SIRS)及其符合诊断标准的患者数、淀粉酶(AMY)、丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、甘油三酯(TG)、血糖(GLU)、乳酸脱氢酶(LDH)、尿素氮(BUN)、血清肌酐(Cr)、血钙(Ca2⁺)、C-反应蛋白(CRP)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、酸碱度(pH)、动脉二氧化碳分压(PaCO₂)、动脉氧气分压(PaO2)、氧合指数及碱剩余(BE)。基线评估包括所有参与者在≥8小时过夜禁食后采集静脉血样本(期间仅允许饮水,禁止进食或饮酒)。

回顾所有患者入院24小时内的影像学资料,复查腹部、胰腺及胸部CT图像,记录腹部积液及胸腔积液情况[37]。由专业研究人员按照标准化方案测量患者的身高、腰围和体重。

此外,收集了严重程度评分,包括Ranson评分(0~11分)和BISAP评分(0~5分)。

新型肥胖相关指标所使用的公式如下:

WTI=WC( cm )×TG

VAI( males )={ WC( cm )/ ( 39.68+[ 1.88×BMI ] ) }×( TG/ 1.03 )×( 1.31/ HDL )

VAI( females )={ WC( cm )/ ( 36.58+[ 1.89×BMI ] ) }×( TG/ 0.81 )×( 1.52/ HDL )

LAP( males )=( WC( cm )65 )×TG

LAP( females )=( WC( cm )58 )×TG

CMI= TG/ HDL ×Waist-to-HeightRatio( WHtR )

2.4. 统计分析

采用IBM SPSS Statistics 25进行统计学分析。通过Kolmogorov-Smirnov检验评估数据的正态分布,并使用单因素方差分析或Levene检验检验方差齐性。正态分布的连续变量以均值 ± 标准差表示,非正态分布数据以中位数(四分位间距)表示;分类变量以百分比(%)表示。连续变量的组间比较采用独立样本t检验或Mann-Whitney U检验。通过受试者工作特征(ROC)曲线评估独立预测因子及预测模型的曲线下面积(AUC)、最佳截断值及其对应的灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV)。构建联合BISAP评分的ROC曲线,并将预测模型的AUC与BISAP评分的AUC进行比较。以P < 0.05为差异具有统计学意义。

3. 实验结果

3.1. 参与者特征

本研究纳入2016年1月至2023年12月期间在青岛大学医学院附属医院住院的诊断为急性胰腺炎的患者3909人。128例符合HLAP标准,排除资料不全病例,78例符合标准。根据AP严重程度进行分类如下:43名患者表现为重度急性胰腺炎(SAP),36名患者非重度急性胰腺炎(N-SAP)。

表1所示,所有纳入病例中,男性患者56人(72%),女性患者22人(28%),入住ICU患者37人(47.4%),并发糖尿病患者55人(70.5%),并发胸膜渗出患者21人(26.9%)。平均年龄56 ± 9.57岁,平均住院时间37 ± 6.43天,平均腰围100.16 ± 10.91 (cm),平均甘油三酯(TG)21.75 ± 12.15 (mmol/L),平均高密度脂蛋白胆固醇(HDL-C)1.51 ± 1.21 (mmol/L),平均白细胞计数(WBC) 13.87 ± 4.65 (mmol/L)、平均C-反应蛋白(CRP) 81.22 ± 96.36 (mmol/L)、平均血清肌酐(Cr) 74.64 ± 67.00 (mmol/L)、平均总胆固醇(TC) 12.56 ± 6.20 (mmol/L)、平均低密度脂蛋白胆固醇(LDL-C) 3.88 ± 2.30 (mmol/L)、平均白蛋白(Pr) 39.57 ± 5.09 (mmol/L)、平均淀粉酶(AMY) 360.88 ± 326.54 (mmol/L)、平均血糖(GLU) 12.88 ± 4.52 (mmol/L)、平均尿素氮(BUN)5.58 ± 4.12 (mmol/L)、平均天冬氨酸转氨酶(AST) 47.04 ± 179.44 (mmol/L)、平均丙氨酸转氨酶(ALT) 38.20 ± 75.57 (mmol/L)、平均血钙(Ca2+) 2.06 ± 0.30 (mmol/L)。

Table 1. Baseline data of participants

1. 参与者的基线资料

Variable

Total

N-SAP

SAP

P value

age (years)

38.14

39.74

37.10

0.234

Gender (male)

56

22

34

0.990

TIME (day)

9.86

7.29

11.52

0.001

ICU

37

6

31

<0.001

Diabetes

55

20

35

0.434

pleural effusion

21

3

18

0.002

WC (cm)

100.16

96.48

102.53

0.015

TG (mmol/L)

21.75

17.34

24.59

0.009

HDL-C (mmol/L)

1.51

1.39

1.58

0.446

WBC (mmol/L)

13.87

13.80

13.91

0.921

CRP (mmol/L)

81.22

49.30

101.84

0.008

Cr (mmol/L)

74.64

62.48

82.49

0.119

TC (mmol/L)

12.56

9.54

14.50

<0.001

LDL (mmol/L)

3.88

3.29

4.25

0.070

Pr (mmol/L)

39.57

40.83

38.75

0.076

AMY (mmol/L)

360.88

296.48

402.47

0.160

GLU (mmol/L)

12.88

11.55

13.73

0.036

BUN (mmol/L)

5.58

4.77

6.10

0.091

AST (mmol/L)

47.04

24.44

61.64

0.372

ALT (mmol/L)

38.20

30.77

43.00

0.486

Ca (mmol/L)

2.06

2.13

2.01

0.034

3.2. 重症胰腺炎(SAP)组与非重度急性胰腺炎(N-SAP)组基线资料的比较

重症胰腺炎(SAP)组的住院时间(11.52 VS 7.29, P = 0.001),入住ICU比例(31 VS 6, P < 0.001),胸膜渗出(18 VS 3, P = 0.002),腰围(102.53 VS 96.48, P = 0.015),甘油三酯(TG) (24.59 VS 17.34, P = 0.009),C-反应蛋白(CRP) (101.84 VS 49.3, P = 0.008),总胆固醇(TC) (14.5 VS 9.54, P < 0.001),血糖(GLU) (13.73 VS 11.55, P = 0.036)水平高于非重度急性胰腺炎(N-SAP)组,具有统计学意义。血钙(Ca2+) (2.01 VS 2.13, P = 0.034)水平低于非重度急性胰腺炎(N-SAP)组,具有统计学意义。统计分析表明,HLAP的严重程度与胸膜渗出,腰围,甘油三酯(TG),C-反应蛋白(CRP),总胆固醇(TC),血糖(GLU),血钙(Ca2+)水平相关。

3.3. 新型肥胖测量指标的基线资料

表2所示,所有纳入病例中,患者的平均体重指数(BMI)为28.56 ± 4.18,平均腰围指数(WTI)为2169.24 ± 1187,平均内脏肥胖指数(VAI)为30.74 ± 23.05,平均脂质积累产物(LAP)为811.02 ± 497.2,平均心脏代谢指数(CMI)为11.56 ± 8.65,平均BISAP评分为0.49 ± 0.67,平均Ranson评分为3.23 ± 1.81。

Table 2. Comparison of obesity related indicators and scoring scales in acute pancreatitis of different severity levels

2. 不同严重程度急性胰腺炎肥胖相关指标及评分量表的比较

Variable

Total

N-SAP

SAP

P value

BMI

28.56

27.72

29.27

0.099

WTI

2169.24

1706.52

2556.64

0.001

VAI

30.74

19.65

40.03

<0.001

LAP

811.02

602.35

985.73

<0.001

CMI

11.56

7.46

14.99

<0.001

BISAP

0.49

0.22

0.72

0.001

Ranson

3.23

1.67

4.53

<0.001

3.4. 重症胰腺炎(SAP)组与非重度急性胰腺炎(N-SAP)组新型肥胖测量指标特征的比较

重症胰腺炎(SAP)组的腰围指数(WTI) (2556.64 VS 1706.52, P = 0.001)、内脏肥胖指数(VAI) (40.03 VS 19.65, P < 0.001)、脂质积累产物(LAP) (985.73 VS 602.35, P < 0.001)、心脏代谢指数(CMI) (14.99 VS 7.46, P < 0.001),BISAP评分(0.72 VS 0.22, P = 0.001),Ranson评分(4.53 VS 1.67, P < 0.001)水平高于非重度急性胰腺炎(N-SAP)组,具有统计学意义。而体重指数(BMI)不具有统计学意义。

3.5. 新型肥胖测量指标和国际评定量表预测HLAP严重程度的能力

采用受试者工作特征(ROC)曲线比较腰围指数(WTI)、内脏肥胖指数(VAI)、脂质积累产物(LAP)、心脏代谢指数(CMI)和BISAP评分对高脂血症性胰腺炎(HLAP)严重程度的预测性能,结果见表3图1。本研究表明,在新型肥胖相关指标中,内脏肥胖指数(VAI)的预测效果最好,AUC为0.780 (95%可信区间(CI): 0.680~0.881),其次是心脏代谢指数(CMI),AUC为0.767 (95% CI: 0.664~0.869),脂质积累产物(LAP)为0.721 (95% CI: 0.610~0.832)。均优于BISAP评分(AUC = 0.683),证明了新的内脏肥胖测量指标在预测HLAP严重程度方面的潜力。

Table 3. New obesity related indicators predict the severity of diseases

3. 新型肥胖相关指标预测疾病的严重程度

Variable

AUC

P value

95% CI

WTI

0.696

0.003

0.580~0.811

VAI

0.780

<0.001

0.680~0.881

LAP

0.721

0.001

0.610~0.832

CMI

0.767

<0.001

0.664~0.869

BISAP

0.683

0.005

0.566~0.800

Figure 1. ROC curve of new obesity related indicators and scoring scales

1. 新型肥胖相关指标与评分量表的ROC曲线

3.6. 脂肪修饰的BISAP评分预测HLAP严重程度的能力

表4图2所示,根据受试者工作特征(ROC)曲线,获得内脏肥胖指数(VAI)、脂质积累产物(LAP)、心脏代谢指数(CMI)的截断值,分别为30.4135、824.6224、8.8606。内脏肥胖指数(VAI)、脂质积累产物(LAP)、心脏代谢指数(CMI)超过截断值的病例记为1分,将每位患者的相应评分添加到BISAP评分中,并计算内脏肥胖指数(VAI)、脂质积累产物(LAP)、心脏代谢指数(CMI)的FM-BISAP评分,分别记为VAI-BISAP评分、LAP-BISAP评分、CMI-BISAP评分。如表5所示,CMI-BISAP评分的预测效果最好,AUC为0.804 (95%可信区间(CI):0.709~0.900),其次是VAI-BISAP,AUC为0.798 (95% CI: 0.702~0.895),LAP-BISAP为0.767 (95% CI: 0.665~0.870)。均优于BISAP评分(AUC = 0.683)。

Table 4. Cut off value of ROC curve for new obesity related indicators

4. 新型肥胖相关指标ROC曲线的截断值

Variable

截断值

敏感度

特异度

WTI

2181.7959

0.581

0.722

VAI

30.4135

0.628

0.833

LAP

824.6224

0.581

0.778

CMI

8.8606

0.721

0.722

Table 5. The FM-BISAP score predicts the severity of diseases

5. 脂肪修饰的BISAP评分预测疾病的严重程度

Variable

AUC

P value

95% CI

BISAP

0.683

0.005

0.566~0.800

VAI-BISAP

0.798

<0.001

0.702~0.895

CMI-BISAP

0.804

<0.001

0.709~0.900

LAP-BISAP

0.767

<0.001

0.665~0.870

Figure 2. The ROC curve of the FM-BISAP score and the International Rating Scale

2. 脂肪修饰的BISAP评分和国际评定量表的ROC曲线

4. 讨论

急性胰腺炎作为一种全球范围内普遍存在的疾病,其发病率在世界范围内呈逐年上升趋势。由于病程复杂且多变,早期识别重症胰腺炎对改善患者预后具有重要意义。根据中国急性胰腺炎诊疗指南,胆源性病因仍是急性胰腺炎的第一大病因。然而,随着人们生活水平的提高和饮食习惯的改变,高甘油三酯血症性急性胰腺炎(HTG-AP)的发病率逐年上升,目前已超越酒精性病因成为急性胰腺炎的第二大常见病因。近年来,针对高脂血症性胰腺炎的研究日益增多,其流行病学特征、临床表现、辅助检查及治疗措施已得到较为明确的认识,但其发病机制尚未完全阐明。目前已知的主要机制包括:(1) 游离脂肪酸(FFA)损伤;(2) 微循环障碍;(3) 炎症反应;(4) 钙超载机制;(5) 氧化应激反应;(6) 遗传因素及基因突变学说等。早期准确识别重症高脂血症性胰腺炎并及时采取针对性治疗,对改善患者预后具有重要临床意义。在本回顾性研究中,重症胰腺炎(SAP)患者数接近非重度急性胰腺炎(N-SAP)患者。造成这种现象的原因可能是因为研究医院是一家大型三级转诊中心,接受许多从外部机构转诊的重度AP患者,而且要求患者具有完整的影像学及病历资料。因此,纳入研究的患者可能比在基于人群的研究中出现更高的疾病严重程度。

统计分析显示,高脂血症性胰腺炎的严重程度与胸膜渗出、腰围、甘油三酯(TG)、C-反应蛋白(CRP)、总胆固醇(TC)、血糖(GLU)及血钙(Ca2+)水平显著相关。

高脂血症性胰腺炎的病理生理机制与炎症反应密切相关。国内外指南均指出,发病第3天CRP水平≥150 mg/L可作为重症急性胰腺炎(SAP)的预后指标。本研究结果证实CRP是重症高脂血症性胰腺炎的独立预测因子,与文献报道一致。

钙超载通常被认为是急性胰腺炎(AP)发病机制的核心环节。血浆中高水平的甘油三酯或游离脂肪酸可导致线粒体ATP生成减少,从而促进Ca2+内流,使胞浆Ca2+水平升高。持续的高Ca2+水平会促进胰蛋白酶原的生成及胰液的分泌,进而诱发急性胰腺炎。此外,持续的高钙状态会导致线粒体Ca2+超载、细胞膜过氧化、氧化应激及细胞死亡。同时,钙盐沉积可能会堵塞胰管,加重微循环障碍,甚至导致胰管结石形成。因此,胞浆Ca2+超载可能是高脂血症性胰腺炎关键机制之一。于等人的研究表明,重症高脂血症性胰腺炎患者的血清Ca2+水平显著低于其他病因的重症胰腺炎患者。目前常用的急性胰腺炎预后模型,如Ranson评分和JSS评分,均将Ca2+纳入评分标准。本研究结果进一步证实Ca2+是重症高脂血症性胰腺炎的独立预测因子,与文献报道一致。

高甘油三酯血症、肥胖、胰腺炎三者密切相关。肥胖不仅是原发性高甘油三酯血症的遗传易感因素,也是继发性高甘油三酯血症的重要危险因素。而且,减肥既是高甘油三酯血症的治疗策略之一,同时也是胰腺炎的危险因素。高甘油三酯诱导胰腺炎的机制在于甘油三酯在血液环境中的不溶性,导致胰腺血管微血栓形成,进而引发缺血和胰腺坏死。因此,高甘油三酯血症性胰腺炎相比于其他病因引起的急性胰腺炎更为严重。

糖尿病可能因胰腺组织损伤或功能丧失而成为急性胰腺炎的并发症,但2型糖尿病可能通过高甘油三酯血症、高脂饮食诱发的胆石症以及胰岛素治疗增加急性胰腺炎的风险。尽管具体机制尚未完全明确,但胰岛细胞肥大(如胰岛细胞增生症)可能导致导管阻塞并诱发胰腺炎。相关研究表明胰高血糖素样肽-1受体激动剂或二肽基肽酶-4抑制剂可能增加急性胰腺炎风险。本研究结果表明血糖(GLU)是重症高脂血症性胰腺炎的独立预测因子,与文献报道一致。

大多数轻中度急性胰腺炎患者症状轻微,无需特殊干预。然而约20%的患者可能会进一步发展为重症胰腺炎[35]。尽管现在有多种评估急性胰腺炎严重程度的评分系统,如急性生理与慢性健康评分(APACHE II)、Ranson评分、急性胰腺炎严重程度床边指数(BISAP)评分及CT评分,但这些系统在疾病早期应用中存在局限性,表现为操作复杂、耗时长且难以在早期阶段实施。例如,Ranson评分需在48小时后进行评估,APACHE II评分包含超过13个变量[38],使用繁琐,且这些系统均未纳入肥胖及脂肪组织因素的影响。

APACHE II评分是一种常用且准确的高脂血症性胰腺炎严重程度评估工具[36]。然而,临床上并非所有急性胰腺炎患者均进行血气分析,本研究在纳入病例时发现大量患者缺乏相关指标,无法完成评分计算,这反映了APACHE II评分的复杂性。吴等人对1848例急性胰腺炎病例的分析显示,BISAP评分预测重症胰腺炎的敏感性仅为64.9% (95%CI: 61.2%~68.5%) [39]。Ranson评分的主要局限性在于其评估需在发病后48小时完成,可能错过早期治疗的关键时期[40]。此外,国内外指南也指出,若在症状出现后72小时内进行增强CT检查,可能低估或错误分类疾病的严重程度[41]

在一项探讨肥胖纳入急性胰腺炎临床评分系统影响的研究中,Johnson等人发现,基于新的肥胖评分(正常BMI为0,超重为1,肥胖为2)与APACHE II评分结合的联合评分(APACHE-O评分)在预测重症急性胰腺炎方面具有更高的敏感性和特异性。然而,Papachristou等人的另一项研究表明,APACHE-O评分并不显著优于APACHE II评分。本研究发现肥胖与急性胰腺炎存在一定关联,在本研究中BMI未显示出显著性差异,可能是因为体重指数(BMI)主要反映全身脂肪而非内脏脂肪[42]

最近一项通过CT测量内脏脂肪组织(VAT)评估高脂血症性胰腺炎的严重程度的研究表明[41]。尽管基于CT的内脏脂肪测量与急性胰腺炎(AP)患者的严重程度密切相关[43],但现有的CT评分系统均未将内脏脂肪纳入评估指标。该研究采用半定量方法测量脂肪体积,并提出脂肪修饰的CT严重指数(FM-CTSI),其预测急性胰腺炎严重程度和临床预后的能力优于传统CT严重指数(MCTSI) [44]

肥胖通常被认为与代谢并发症相关[45] [46]。大量临床和实验数据表明,肥胖与急性胰腺炎的严重程度之间存在显著关联。目前,肥胖相关指标通常采用体重指数(BMI)将身高、体重与体脂及其分布联系起来。然而,BMI的区分能力有限,其无法区分全身脂肪组织与内脏脂肪组织[47] [48]。多项研究表明,内脏脂肪组织(VAT)作为急性胰腺炎严重程度的重要危险因素,其预测价值优于BMI,但是其依赖于CT和MRI等影像学方法,但其高成本和操作复杂性限制了临床应用。因此,开发更全面且更能代表内脏脂肪的测量指标具有重要意义[49]

随着人体测量技术的发展,新型内脏肥胖指标应运而生。相关研究表明,这些指标相比体重指数(BMI)能更准确地反映内脏脂肪含量,并具有预测肥胖相关疾病(如代谢综合征)风险的价值[50] [51]。一项针对2017年至2020年美国参与者的横断面研究显示,骨关节炎风险增加与较高的LAP水平相关[52]。另一项对1498例患者的回顾性研究发现,内脏肥胖指数(VAI)的增加与心脏代谢疾病独立相关[23]。此外,一项纳入47,683名中国正常体重成人的研究通过计算心脏代谢指数(CMI)发现,CMI在识别代谢性肥胖正常体重表型方面表现出良好的效果[53]

本研究探讨了新型内脏肥胖指标与高脂血症性胰腺炎(HLAP)严重程度的相关性。综上所述,这项回顾性研究表明,新型内脏肥胖人体测量指标具有快速、简便且可动态监测的特点,能够有效预测高脂血症性胰腺炎的严重程度。研究进一步将内脏肥胖指标与其他急性胰腺炎(AP)临床评分系统进行比较,结果显示内脏肥胖指数(VAI)的预测效果最佳,其次是心脏代谢指数(CMI)和脂质积累产物(LAP),均优于BISAP评分,证实了这些新型指标在预测高脂血症性胰腺炎(HLAP)严重程度方面的潜力。因此,这些指标可作为低成本替代方法,用于早期预测高脂血症性胰腺炎患者的严重程度,从而为早期干预治疗提供依据。

此外,通过将脂肪修饰的BISAP评分(FM-BISAP)与传统BISAP评分进行比较,研究发现CMI-BISAP的预测效果最优,其次是VAI-BISAP和LAP-BISAP,均优于传统BISAP评分。这表明新型内脏肥胖人体测量指标与传统评分系统的联合使用,在早期预测高脂血症性胰腺炎患者严重程度方面具有更高的临床价值。

这项研究存在一定的局限性。首先,本研究是一项回顾性研究,数据可能不完整、不准确或缺失,影响研究质量,研究对象可能无法准确回忆过去的信息,导致数据偏差。其次,纳入的高脂血症性胰腺炎患者数量较少,限制了分析的样本量,研究对象可能无法代表目标人群,导致结果外推受限。第三,研究数据来自单一机构,可能导致选择偏差。因此,未来需要开展更全面、多中心且样本量更大的研究,以验证内脏肥胖指标的真实预测价值。

5. 结论

本研究表明HLAP严重程度与WTI、VAI、CMI和LAP等指标之间存在显著相关性。在这些人体测量指标中,VAI对HLAP严重程度的预测效果最高,其次是CMI和LAP。在经内脏脂肪测量指标修饰的BISAP评分中,CMI-BISAP的预测效果最优,其次是VAI-BISAP和LAP-BISAP。这些改良评分系统为预测和评估高脂血症性胰腺炎(HLAP)的严重程度提供了重要参考。

NOTES

*通讯作者。

参考文献

[1] Singla, A., Csikesz, N.G., Simons, J.P., Li, Y.F., Ng, S.C., Tseng, J.F., et al. (2009) National Hospital Volume in Acute Pancreatitis: Analysis of the Nationwide Inpatient Sample 1998-2006. HPB, 11, 391-397.
https://doi.org/10.1111/j.1477-2574.2009.00072.x
[2] Pongprasobchai, S., Vibhatavata, P. and Apisarnthanarak, P. (2017) Severity, Treatment, and Outcome of Acute Pancreatitis in Thailand: The First Comprehensive Review Using Revised Atlanta Classification. Gastroenterology Research and Practice, 2017, Article 3525349.
https://doi.org/10.1155/2017/3525349
[3] Gapp, J., Hall, A.G., Walters, R.W., Jahann, D., Kassim, T. and Reddymasu, S. (2019) Trends and Outcomes of Hospitalizations Related to Acute Pancreatitis. Pancreas, 48, 548-554.
https://doi.org/10.1097/mpa.0000000000001275
[4] Lankisch, P.G., Apte, M. and Banks, P.A. (2015) Acute pancreatitis. The Lancet, 386, 85-96.
https://doi.org/10.1016/s0140-6736(14)60649-8
[5] McKay, C.J. and Imrie, C.W. (2004) The Continuing Challenge of Early Mortality in Acute Pancreatitis. British Journal of Surgery, 91, 1243-1244.
https://doi.org/10.1002/bjs.4750
[6] Yadav, D. and Lowenfels, A.B. (2006) Trends in the Epidemiology of the First Attack of Acute Pancreatitis. Pancreas, 33, 323-330.
https://doi.org/10.1097/01.mpa.0000236733.31617.52
[7] Valdivielso, P., Ramírez-Bueno, A. and Ewald, N. (2014) Current Knowledge of Hypertriglyceridemic Pancreatitis. European Journal of Internal Medicine, 25, 689-694.
https://doi.org/10.1016/j.ejim.2014.08.008
[8] Bosques-Padilla, F.J., Vázquez-Elizondo, G., González-Santiago, O., Del Follo-Martínez, L., González, O.P., González-González, J.A., et al. (2015) Hypertriglyceridemia-Induced Pancreatitis and Risk of Persistent Systemic Inflammatory Response Syndrome. The American Journal of the Medical Sciences, 349, 206-211.
https://doi.org/10.1097/maj.0000000000000392
[9] Patel, K., Trivedi, R.N., Durgampudi, C., Noel, P., Cline, R.A., DeLany, J.P., et al. (2015) Lipolysis of Visceral Adipocyte Triglyceride by Pancreatic Lipases Converts Mild Acute Pancreatitis to Severe Pancreatitis Independent of Necrosis and Inflammation. The American Journal of Pathology, 185, 808-819.
https://doi.org/10.1016/j.ajpath.2014.11.019
[10] Adiamah, A., Psaltis, E., Crook, M. and Lobo, D.N. (2018) A Systematic Review of the Epidemiology, Pathophysiology and Current Management of Hyperlipidaemic Pancreatitis. Clinical Nutrition, 37, 1810-1822.
https://doi.org/10.1016/j.clnu.2017.09.028
[11] Stefanutti, C., Labbadia, G. and Morozzi, C. (2013) Severe Hypertriglyceridemia‐Related Acute Pancreatitis. Therapeutic Apheresis and Dialysis, 17, 130-137.
https://doi.org/10.1111/1744-9987.12008
[12] Premkumar, R., Phillips, A.R.J., Petrov, M.S. and Windsor, J.A. (2015) The Clinical Relevance of Obesity in Acute Pancreatitis: Targeted Systematic Reviews. Pancreatology, 15, 25-33.
https://doi.org/10.1016/j.pan.2014.10.007
[13] Kuan, L.L., Dennison, A.R. and Garcea, G. (2020) Association of Visceral Adipose Tissue on the Incidence and Severity of Acute Pancreatitis: A Systematic Review. Pancreatology, 20, 1056-1061.
https://doi.org/10.1016/j.pan.2020.05.027
[14] Sadr-Azodi, O., Orsini, N., Andrén-Sandberg, Å. and Wolk, A. (2013) Abdominal and Total Adiposity and the Risk of Acute Pancreatitis: A Population-Based Prospective Cohort Study. American Journal of Gastroenterology, 108, 133-139.
https://doi.org/10.1038/ajg.2012.381
[15] Yang, L.X., Liu, J., Xing, Y., Du, L.C., Chen, J., Liu, X., et al. (2017) Correlation of Body Mass Index and Waist-Hip Ratio with Severity and Complications of Hyperlipidemic Acute Pancreatitis in Chinese Patients. Gastroenterology Research and Practice, 2017, Article 6757805.
https://doi.org/10.1155/2017/6757805
[16] Nevill, A.M., Stewart, A.D., Olds, T. and Holder, R. (2005) Relationship between Adiposity and Body Size Reveals Limitations of BMI. American Journal of Physical Anthropology, 129, 151-156.
https://doi.org/10.1002/ajpa.20262
[17] Xia, W.Z., Yu, H.J., Huang, Y.B., Yang, Y.J. and Shi, L.Z. (2021) The Visceral Adiposity Index Predicts the Severity of Hyperlipidaemic Acute Pancreatitis. Internal and Emergency Medicine, 17, 417-422.
https://doi.org/10.1007/s11739-021-02819-4
[18] Heymsfield, S.B., Scherzer, R., Pietrobelli, A., Lewis, C.E. and Grunfeld, C. (2009) Body Mass Index as a Phenotypic Expression of Adiposity: Quantitative Contribution of Muscularity in a Population-Based Sample. International Journal of Obesity, 33, 1363-1373.
https://doi.org/10.1038/ijo.2009.184
[19] Kyrou, I., Panagiotakos, D.B., Kouli, G., Georgousopoulou, E., Chrysohoou, C., Tsigos, C., et al. (2018) Lipid Accumulation Product in Relation to 10-Year Cardiovascular Disease Incidence in Caucasian Adults: The ATTICA Study. Atherosclerosis, 279, 10-16.
https://doi.org/10.1016/j.atherosclerosis.2018.10.015
[20] Gómez-Ambrosi, J., Silva, C., Galofré, J.C., Escalada, J., Santos, S., Millán, D., et al. (2011) Body Mass Index Classification Misses Subjects with Increased Cardiometabolic Risk Factors Related to Elevated Adiposity. International Journal of Obesity, 36, 286-294.
https://doi.org/10.1038/ijo.2011.100
[21] Wu, J.S., Gong, L.L., Li, Q.F., Hu, J.B., Zhang, S.P., Wang, Y., et al. (2017) A Novel Visceral Adiposity Index for Prediction of Type 2 Diabetes and Pre-Diabetes in Chinese Adults: A 5-Year Prospective Study. Scientific Reports, 7, Article No. 13784.
https://doi.org/10.1038/s41598-017-14251-w
[22] Ewald, N., Hardt, P.D. and Kloer, H. (2009) Severe Hypertriglyceridemia and Pancreatitis: Presentation and Management. Current Opinion in Lipidology, 20, 497-504.
https://doi.org/10.1097/mol.0b013e3283319a1d
[23] Scherer, J., Singh, V.P., Pitchumoni, C.S. and Yadav, D. (2014) Issues in Hypertriglyceridemic Pancreatitis: An Update. Journal of Clinical Gastroenterology, 48, 195-203.
https://doi.org/10.1097/01.mcg.0000436438.60145.5a
[24] Zhu, Y., Pan, X.L., Zeng, H., He, W.H., Xia, L., Liu, P., et al. (2017) A Study on the Etiology, Severity, and Mortality of 3260 Patients with Acute Pancreatitis According to the Revised Atlanta Classification in Jiangxi, China over an 8-Year Period. Pancreas, 46, 504-509.
https://doi.org/10.1097/mpa.0000000000000776
[25] Li, J.X., Chen, J. and Tang, W.F. (2019) The Consensus of Integrative Diagnosis and Treatment of Acute Pancreatitis‐2017. Journal of Evidence-Based Medicine, 12, 76-88.
https://doi.org/10.1111/jebm.12342
[26] Spanier, B.W.M., Dijkgraaf, M.G.W. and Bruno, M.J. (2008) Epidemiology, Aetiology and Outcome of Acute and Chronic Pancreatitis: An Update. Best Practice & Research Clinical Gastroenterology, 22, 45-63.
https://doi.org/10.1016/j.bpg.2007.10.007
[27] Brisinda, G., Vanella, S., Crocco, A., Mazzari, A., Tomaiuolo, P., Santullo, F., et al. (2011) Severe Acute Pancreatitis Advances and Insights in Assessment of Severity and Management. European Journal of Gastroenterology & Hepatology, 23, 541-551.
https://doi.org/10.1097/meg.0b013e328346e21e
[28] Mounzer, R., Langmead, C.J., Wu, B.U., Evans, A.C., Bishehsari, F., Muddana, V., et al. (2012) Comparison of Existing Clinical Scoring Systems to Predict Persistent Organ Failure in Patients with Acute Pancreatitis. Gastroenterology, 142, 1476-1482.
https://doi.org/10.1053/j.gastro.2012.03.005
[29] He, W.-H., Zhu, Y., Zhu, Y., Jin, Q., Xu, H.-R., Xion, Z.-J., et al. (2017) Comparison of Multifactor Scoring Systems and Single Serum Markers for the Early Prediction of the Severity of Acute Pancreatitis. Journal of Gastroenterology and Hepatology, 32, 1895-1901.
https://doi.org/10.1111/jgh.13803
[30] Di, M., Liu, H., Yang, Z., Bonis, P.A.L., Tang, J. and Lau, J. (2016) Prediction Models of Mortality in Acute Pancreatitis in Adults. Annals of Internal Medicine, 165, 482-490.
https://doi.org/10.7326/m16-0650
[31] O’Leary, D.P., O’Neill, D., McLaughlin, P., O’Neill, S., Myers, E., Maher, M.M., et al. (2012) Effects of Abdominal Fat Distribution Parameters on Severity of Acute Pancreatitis. World Journal of Surgery, 36, 1679-1685.
https://doi.org/10.1007/s00268-011-1414-y
[32] Shen, H., Ben, Q.W. Jiang, Y., An, W. and Tong, C.Y. (2011) Body Mass Index and the Risk and Prognosis of Acute Pancreatitis. European Journal of Gastroenterology & Hepatology, 23, 1136-1143.
https://doi.org/10.1097/meg.0b013e32834b0e0e
[33] Fei, Y., Gao, K., Tu, J.F., Wang, W., Zong, G.-Q. and Li, W.-Q. (2018) Predicting and Evaluation the Severity in Acute Pancreatitis Using a New Modeling Built on Body Mass Index and Intra-Abdominal Pressure. The American Journal of Surgery, 216, 304-309.
https://doi.org/10.1016/j.amjsurg.2017.04.017
[34] Romero-Corral, A., Somers, V.K., Sierra-Johnson, J., Thomas, R.J., Collazo-Clavell, M.L., Korinek, J., et al. (2008) Accuracy of Body Mass Index in Diagnosing Obesity in the Adult General Population. International Journal of Obesity, 32, 959-966.
https://doi.org/10.1038/ijo.2008.11
[35] Duan, Y.T., Zhang, W.G., Li, Z., Niu, Y., Chen, Y.Z., Liu, X.M., et al. (2022) Predictive Ability of Obesity-and Lipid-Related Indicators for Metabolic Syndrome in Relatively Healthy Chinese Adults. Frontiers in Endocrinology, 13, Article 1016581.
https://doi.org/10.3389/fendo.2022.1016581
[36] Han, M.H., Qin, P., Li, Q.M., Qie, R.R., Liu, L.L., Zhao, Y., et al. (2020) Chinese Visceral Adiposity Index: A Reliable Indicator of Visceral Fat Function Associated with Risk of Type 2 Diabetes. Diabetes/Metabolism Research and Reviews, 37, e3370.
https://doi.org/10.1002/dmrr.3370
[37] Subramanian, S. and Chait, A. (2012) Hypertriglyceridemia Secondary to Obesity and Diabetes. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821, 819-825.
https://doi.org/10.1016/j.bbalip.2011.10.003
[38] Chang, Y., Guo, X.F., Chen, Y.T., Guo, L., Li, Z., Yu, S.S., et al. (2015) A Body Shape Index and Body Roundness Index: Two New Body Indices to Identify Diabetes Mellitus among Rural Populations in Northeast China. BMC Public Health, 15, Article No. 794.
https://doi.org/10.1186/s12889-015-2150-2
[39] Huang, J., Han, J.H., Rozi, R., Fu, B.S., Lu, Z.C., Liu, J., et al. (2024) Association between Lipid Accumulation Products and Osteoarthritis among Adults in the United States: A Cross-Sectional Study, NHANES 2017-2020. Preventive Medicine, 180, Article 107861.
https://doi.org/10.1016/j.ypmed.2024.107861
[40] Wei, J.X., Liu, X., Xue, H., Wang, Y.F. and Shi, Z.M. (2019) Comparisons of Visceral Adiposity Index, Body Shape Index, Body Mass Index and Waist Circumference and Their Associations with Diabetes Mellitus in Adults. Nutrients, 11, Article 1580.
https://doi.org/10.3390/nu11071580
[41] Liu, X., Wu, Q., Yan, G., Duan, J., Chen, Z., Yang, P., et al. (2020) Cardiometabolic Index: A New Tool for Screening the Metabolically Obese Normal Weight Phenotype. Journal of Endocrinological Investigation, 44, 1253-1261.
https://doi.org/10.1007/s40618-020-01417-z
[42] Ji, T., Li, X.L., Zhang, X.C., Hui, L.L., Shang, F.T., Zhu, X.X., et al. (2019) Evaluation of the Severity of Hyperlipidemia Pancreatitis Using CT-Measured Visceral Adipose Tissue. Journal of Clinical Gastroenterology, 53, e276-e283.
https://doi.org/10.1097/mcg.0000000000001079
[43] Natu, A., Stevens, T., Kang, L., Yasinow, S., Mansoor, E., Lopez, R., et al. (2017) Visceral Adiposity Predicts Severity of Acute Pancreatitis. Pancreas, 46, 776-781.
https://doi.org/10.1097/mpa.0000000000000845
[44] Amato, M.C., Giordano, C., Galia, M., Criscimanna, A., Vitabile, S., Midiri, M., et al. (2010) Visceral Adiposity Index: A Reliable Indicator of Visceral Fat Function Associated with Cardiometabolic Risk. Diabetes Care, 33, 920-922.
https://doi.org/10.2337/dc09-1825
[45] Fujita, M., Sato, Y., Nagashima, K., Takahashi, S. and Hata, A. (2015) Predictive Power of a Body Shape Index for Development of Diabetes, Hypertension, and Dyslipidemia in Japanese Adults: A Retrospective Cohort Study. PLOS ONE, 10, e0128972.
https://doi.org/10.1371/journal.pone.0128972
[46] Hahn, S.J., Park, J., Lee, J.H., Lee, J.K. and Kim, K. (2010) Severe Hypertriglyceridemia in Diabetic Ketoacidosis Accompanied by Acute Pancreatitis: Case Report. Journal of Korean Medical Science, 25, Article 1375.
https://doi.org/10.3346/jkms.2010.25.9.1375
[47] Inayat, F., Zafar, F., Riaz, I., Younus, F., Baig, A.S. and Imran, Z. (2018) Hypertriglyceridemic Pancreatitis: Is Insulin Monotherapy a Feasible Therapeutic Option? Cureus, 10, e3461.
https://doi.org/10.7759/cureus.3461
[48] Wang, Y., Sternfeld, L., Yang, F., Rodriguez, J.A., Ross, C., Hayden, M.R., et al. (2008) Enhanced Susceptibility to Pancreatitis in Severe Hypertriglyceridaemic Lipoprotein Lipase-Deficient Mice and Agonist-Like Function of Pancreatic Lipase in Pancreatic Cells. Gut, 58, 422-430.
https://doi.org/10.1136/gut.2007.146258
[49] Yan, M.-X., Li, Y.Q., Meng, M., Ren, H.-B. and Kou, Y. (2006) Long-Term High-Fat Diet Induces Pancreatic Injuries via Pancreatic Microcirculatory Disturbances and Oxidative Stress in Rats with Hyperlipidemia. Biochemical and Biophysical Research Communications, 347, 192-199.
https://doi.org/10.1016/j.bbrc.2006.06.063
[50] 肖健雄, 武依娜, 谢东辉. 高脂血症性急性胰腺炎的发病机制及治疗的研究进展[J]. 牡丹江医学院学报, 2021,42(1): 158-160.
[51] Zhou, Z.-G., Chen, Y.-Q., Liu, X.-B., Hu, W.-M., Tian, B.-L. and Chen, H.-Q. (2004) Changes of Cytosolic [Ca2+]i in Neutrophils in Pancreatic Microcirculation of Rats with Caerulein-Induced Acute Pancreatitis under Fluid Shear Stress. World Journal of Gastroenterology, 10, Article 3185.
https://doi.org/10.3748/wjg.v10.i21.3185
[52] Jiang, J.J., Wang, Y.H., Ling, Y., Kayoumu, A., Liu, G. and Gao, X. (2016) A Novel APOC2 Gene Mutation Identified in a Chinese Patient with Severe Hypertriglyceridemia and Recurrent Pancreatitis. Lipids in Health and Disease, 15, Article No. 12.
https://doi.org/10.1186/s12944-015-0171-6
[53] Banks, P.A., Bollen, T.L., Dervenis, C., et al. (2013) Classification of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut, 62, 102-111.