小肠梗阻的综合诊治现状:影像学诊断、血清标志物与治疗策略
Current Diagnosis and Treatment of Small Bowel Obstruction: Imaging Diagnosis, Serum Biomarkers, and Treatment Strategies
摘要: 小肠梗阻(SBO)是临床常见的急腹症,若未能及时诊断和处理,可能引发严重并发症,甚至死亡。特别是在老年患者中,由于生理机能下降,肠坏死的发生率较高。本文回顾了小肠梗阻的诊断方法、影像学检查及治疗进展,重点讨论了CT、X线、超声和MRI等影像学手段在诊断中的应用,特别是如何通过影像学特征预测肠缺血和坏死。此外,文章还探讨了生物标志物(如乳酸、D-二聚体、PCT和I-FABP)在肠缺血诊断中的潜力。手术治疗和保守治疗的适应症及决策依据也得到了详细分析。尽管现有诊疗方案已取得一定成效,但对于早期肠绞窄和缺血的识别仍存在挑战,未来需要更多多中心研究优化诊断和治疗策略。
Abstract: Small bowel obstruction (SBO) is a common acute abdominal condition, which, if not diagnosed and managed promptly, may lead to severe complications, including death. This risk is particularly higher in elderly patients due to diminished physiological function and increased likelihood of bowel necrosis. This review discusses the diagnostic methods, imaging techniques, and therapeutic advances in SBO, with a focus on the use of CT, X-ray, ultrasound, and MRI in diagnosis, particularly in predicting bowel ischemia and necrosis through imaging features. Furthermore, the potential of serum biomarkers such as lactate, D-dimer, procalcitonin (PCT), and intestinal fatty acid-binding protein (I-FABP) in diagnosing bowel ischemia is explored. The indications for and decision-making processes surrounding both surgical and conservative treatments are also analyzed. While current diagnosis and treatment strategies have shown effectiveness, early identification of bowel strangulation and ischemia remains a challenge, highlighting the need for more multicenter studies to optimize diagnosis and treatment strategies.
文章引用:蔡丞俊, 马冰清, 张进祥. 小肠梗阻的综合诊治现状:影像学诊断、血清标志物与治疗策略[J]. 临床医学进展, 2025, 15(4): 97-106. https://doi.org/10.12677/acm.2025.154906

1. 引言

小肠梗阻(small bowel obstruction)是临床中常见的急腹症之一,其定义为任何原因引起的小肠内容物通过障碍而导致的病理生理学改变。此种病理生理状态若未能及时识别与处理,其并发症的发生率则会很高,高达30%的SBO患者可能会出现绞窄[1],老年患者易因生理机能降低与慢性疾病共存,导致肠道血供受限,进而提高发生肠坏死的机率,虽然总体SBO死亡率为<3%,但老年SBO患者的死亡率为7%~14% [2] [3]。研究表明,如果发生绞窄的患者能在诊断后200 min内恢复肠道血流,则可以达到80%的肠道挽救率,但300 min后挽救率就下降到了50%以下[4]。因此,对于肠道血供受限的SBO患者,进行早期的诊断、根据病因解除梗阻,可以有效的防止肠坏死的发生,改善患者预后。目前越来越多的研究都在探寻何种临床指标可以有效地预测小肠梗阻的患者是否存在肠缺血坏死,但最终的结果却发现目前临床常用的实验室检查很难达成这一目标。CT是用来诊断小肠梗阻、鉴别病因、评估严重程度的首选检查,其准确率较高,且操作简单、速度快,但是没有哪项研究得出哪些征象可以直接提示肠道出现透壁性坏死,难以对其进行早诊断、早治疗,导致部分患者错过最佳治疗时间,发生继发性肠坏死,进而严重影响患者的预后和生活质量。因此如何在早期准确判断小肠是否存在透壁性坏死逐渐成为目前研究的重点。

2. 研究现状

2.1. 小肠梗阻的影像学检查

2.1.1. 腹部X线

在评估小肠梗阻(SBO)时,仰卧位和直立位X线平片通常作为初始影像学检查。这种检查方法具有以下优势:普及性高、操作简便快捷、辐射剂量低且成本低廉,同时也能够持续动态监测疾病进展[5]。其影像特征为小肠扩张、胃膨胀以及结肠和直肠气体减少。然而,值得注意的是,X线平片的诊断灵敏度仅为50%~80% [6],这表明其在某些情况下的诊断效果可能不够理想。此外,X线平片在识别闭环或绞窄性梗阻、明确梗阻病因等方面效果不佳。因此,即使腹部X线平片似乎可以明确诊断,通常仍然需要通过计算机断层扫描CT来获取更多信息。

2.1.2. 小肠造影剂成像

在急性小肠梗阻(SBO)情况下,小肠造影剂成像的一个重要用途是区分完全性梗阻和部分性梗阻[6]。对于与粘连相关的小肠梗阻(SBO),通常推荐使用水溶性造影剂进行成像,这种方法也被称为“泛影葡胺激发试验”,虽然各个方案略有不同,但通常会在水溶性造影剂给药后4至24小时之间,进行1至4次腹部X线平片检查,以评估造影剂是否已经到达结肠。Abbas等人的一项荟萃分析报告指出,若在24小时内水溶性造影剂到达结肠,能够预测梗阻的非手术性缓解,其敏感性为97%,特异性为96% [7]。Kyle等人的荟萃分析指出,虽然在RCT中小肠造影剂成像对RCT的手术率没有显著影响(19.8% vs. 21.4%),但在观察性研究中它确实降低了手术率(11% vs. 16%,风险比:0.56,95%置信区间:0.39~0.82)。

2.1.3. 超声

超声作为一种经济高效、实时且无辐射的影像学检查方式,在疑似肠梗阻的成人患者评估中,应用较为有限[8],更多的是在特定人群(如孕妇或儿童)中用于辅助诊断小肠梗阻(SBO)。随着负责SBO的初步诊断和管理的急诊科医生近年来对床旁超声(POCUS)的应用逐渐增多,其在临床实践中的作用亦受到越来越多的关注。Hamid等人的一项荟萃分析报告指出,急诊医生进行的POCUS具有相当的诊断准确性,对SBO诊断的总体高敏感性为83.0%,特异性为93.0%,其亚组分析还解释了诊断性能基于临床医生的经验水平存在差异,在主治医师中观察到的敏感性和特异性较住院医师要高,BMI ≥ 30 mg/kg2患者的敏感性比BMI < 30 mg/kg的患者略低[9]-[11],这些发现突出了POCUS作为急诊科准确识别SBO病例的宝贵工具的潜力,从而有助于及时做出管理决策。

2.1.4. CT

CT通常是小肠梗阻(SBO)的首选影像学检查方式,目前被认为是SBO影像学检查的标准护理方法[12]。与传统平片相比,CT能够迅速获得影像,并且具有更高的诊断准确性,高达95%,根据东部创伤外科协会(EAST)指南,I级证据推荐在SBO的诊断中使用CT扫描,尤其是采用具有多平面重建功能的多排CT,因为它能提供平片上无法获得的增量信息,这些信息具有重要的临床价值,可能对患者的管理方案产生影响[13]。静脉注射造影剂的CT扫描能够可靠地诊断SBO及肠道灌注情况。在高危患者中,可使用多相CT扫描,包括未增强的动脉、静脉和延迟期扫描,以便检测可能存在的肠缺血[14]。通过在静脉造影剂CT扫描中加入未增强的CT成像,也能进一步提高SBO患者中肠缺血诊断的准确性[15]。除了经典的能够提示绞窄性肠梗阻的征象:肠壁增强减少、肠袢扩张征、腹水征、游离气体征、肠壁内缘模糊征、高密度肠液征、肠系膜积液征、肠壁增厚征、肠系膜脂肪密度增高征、小肠粪征、肠系膜血管扩张征、缆绳征、鸟嘴征、漩涡征[16],目前更多的研究把目光聚集到了探究哪些CT征象可以区分绞窄性肠梗阻中的可逆性缺血和不可逆性坏死,Camille等人的研究指出在CT平扫中未增强的肠壁衰减增加是唯一与肠坏死显着相关的CT征象(p = 0.0002)。该征象对坏死的敏感性为58% (95% CI: 37~78),特异性为100% (95% CI: 79~100),肠壁增强减少与区分可逆性缺血与坏死无关[17]。虽然在这个研究中,肠壁衰减增加显示出了很高的特异性,但是当小肠扩张时,肠壁通常非常薄,肠壁衰减的测量在这种情况下很难获得,这使得这一体征的可重复性不强。而最近,Li和Qi等人的研究揭示了在闭袢性肠梗阻中肠坏死的新型可靠影像学发现:未增强CT扫描时,肠内容物衰减增加的现象。该发现的敏感性为64%,特异性为99%,观察者间一致性(κ = 0.84)。同时,研究发现未增强CT时肠壁衰减增加的敏感性为67%,特异性为92%,观察者间一致性(κ = 0.59)。尽管肠内容物和肠壁衰减的增加在预测肠坏死时表现出相似的敏感性和特异性,但肠内容物的观察者间一致性优于肠壁,表明其在肠坏死诊断中的可重复性更强[18]。这一新的定量发现具有重要的临床应用潜力,未来需要通过更多外部验证来进一步确认其临床价值[19]

2.1.5. MRI

磁共振成像(MRI)是另一种用于评估肠梗阻的横断面检查方法,具有无电离辐射、更好的软组织对比度以及获取动态信息如肠蠕动和扩张性的优势[20]。由于缺乏辐射暴露,MRI特别适合儿童、孕妇和克罗恩病患者[21]-[23],然而,MRI也存在一些主要局限性,包括高成本、可用性不足、空间分辨率较低以及检查质量的可变性。此外,MRI检查可能较为耗时,并且需要患者配合进行屏气和静卧。Bonouvrie等人的研究指出:磁共振成像(MRI)作为一种安全且可行的替代方法,能够用于减肥手术后妊娠期小肠梗阻(SBO)的诊断。然而,其诊断准确性仅被认为是“可接受”的,且观察者之间的变异性相对较高。此外,MRI在近29%的患者中无法检测到小肠梗阻的存在。这些因素在临床应用中需要引起重视[22]

2.2. 小肠梗阻的血清生物学指标

2.2.1. 乳酸

乳酸是一种重要的生物标志物,主要通过多种机制在细胞质中产生。在危重症患者中,乳酸水平的升高通常与丙酮酸代谢受损、代谢率增加、氧气供应不足以及多脏器功能衰竭等因素密切相关[24]。在急诊医学领域,乳酸水平的升高引起了临床医生的广泛关注。乳酸几乎已成为危重症患者及临床预后不良患者的常规检测指标。一些研究显示,乳酸水平的升高与缺血性肠段及急性腹部疾病的发生有着密切的关联[25] [26]。Işık等人的研究中纳入了493名腹壁疝的患者,测量其入院时的初始乳酸值,结果显示乳酸值 ≥ 1.96 mmol/L对于肠切除术的特异性为64%,敏感性为71%,阴性预测值为96% (p < 0.05),对于排除性诊断很有价值[27]。同时也有一些研究认为乳酸只是组织灌注不足的非特异性标志物,并不能反映早期特异性肠缺血[28]。其更多的是像一种致死性预测因素,而诊断意义有限。

2.2.2. D-二聚体

D-二聚体是一种可溶性纤维蛋白降解产物,来源于纤溶酶诱导的交联纤维蛋白降解,是凝血激活和继发性纤维蛋白溶解的重要生物标志物[29]。Cudnik等人在2013年评估了来自五项研究的汇总数据,合并敏感性为0.96 (95% CI: 0.89~0.99),特异性为0.40 (95% CI: 0.33~0.47) [30]。Zhou等人最近的研究显示,D-二聚体在预测肠梗阻患者肠缺血方面敏感性为75%,特异性为66.7%,AUC为0.766 (95% CI: 0.647~0.859) [31]。急性的绞窄性肠梗阻可以引起微循环障碍及凝血功能紊乱,进而导致组织缺血、缺氧及血栓形成,血液中的D-二聚体水平在一定程度上可以反应肠道血流循环情况,同时其具备简便经济的特点,但是以上研究中D-二聚体的特异性普遍不高,因此,该指标更多用在排除血栓栓塞,或者可以与其他指标联合组成预测模型。

2.2.3. 降钙素原

降钙素原(PCT)是降钙素的116个氨基酸前体,在许多临床研究中,PCT已被证明是炎症和脓毒症的标志物,也适用于急性肠梗阻后的肠缺血[32],在肠道发生期间,由于释放活性氧(ROS)的再灌注机制,炎症状态得到增强。这些ROS促进促炎细胞因子(TNFα和IL-6)的分泌。这种分泌与粘膜层免疫作用的改变导致了细菌内毒素的释放,进而诱导PCT升高。Cosse等人回顾了1993年至2014年间关于PCT在诊断肠缺血中的应用的相关文献,发现了5项临床研究(共涉及659名患者),结果显示PCT的曲线下面积(AUC)在0.77至0.92之间,敏感性为0.72至1.00,特异性为0.68至0.91,能够有效区分有肠缺血与无肠缺血的患者[33]。此外,Li等人的研究表明,当PCT水平超过0.5 ng/mL时(OR: 11.7, p = 0.003),可作为肠缺血的独立预测因素[34]

2.2.4. 肠脂肪酸结合蛋白

脂肪酸结合蛋白(Fatty Acid-Binding Protein, FABP)是参与脂肪酸吸收与细胞内转运的胞质蛋白家族。在成熟肠上皮细胞中主要表达三种亚型,其中肠型脂肪酸结合蛋白(I-FABP)为可溶性15 kDa蛋白,特异性定位于肠绒毛尖端——该区域对缺血损伤最为敏感。生理状态下,I-FABP在外周循环中呈低水平表达,并通过肾脏代谢清除;当发生粘膜损伤(尤其肠上皮细胞坏死)时,I-FABP可迅速释放入血,使其成为早期反映肠道缺血的生物标志物[35]。Ding等(2020年)通过荟萃分析整合了10项研究数据,结果显示:I-FABP对急性肠缺血的总体诊断效能为灵敏度0.75 (95% CI: 0.68~0.82)、特异度0.85 (95% CI: 0.74~0.92),其受试者工作特征曲线下面积(AUC)达0.82 (95% CI: 0.79~0.86) [36]。这一证据表明,I-FABP在急性肠缺血的实验室诊断中具有中等敏感性和较高特异性。一项诱导大鼠小肠梗阻伴缺血损伤的研究指出,与传统的绞窄性肠梗阻诊断标志物相比,I-FABP在前12小时内表现出更高的准确性,I-FABP水平高于5.432 ng/ml提示绞窄性梗阻,敏感性为83.33%,特异性为88.9% (AUC: 0.906, p < 0.001)。同时,其他肠道疾病如肠系膜缺血性疾病和溃疡性结肠炎也可见I-FABP升高[37] [38],因此其在作为敏感诊断工具方面仍然有一些局限性。

2.2.5. 缺血修饰白蛋白

缺血修饰蛋白(Ischemia Modified Protein, IMP)是一类在组织缺血缺氧条件下发生结构或功能改变的蛋白质,其修饰特征可作为缺血性疾病的生物标志物[39] [40]。其中研究最为深入的是缺血修饰白蛋白(Ischemia Modified Albumin, IMA),在缺血/再灌注过程中,因自由基攻击、金属离子释放(如铜、钴)或pH值变化,血清白蛋白的N末端结构发生特异性改变,导致其与过渡金属离子(如钴2+)的结合能力下降。这种修饰后的白蛋白称为缺血修饰白蛋白[38]。IMA是通过钴–白蛋白结合测定(CABA)进行评估的,这种测定不容易获得。因此,可用的报告较少,最新的是2022年的一项动物研究,其中肠缺血大鼠的组织病理学检查评分与IMA (r = 0.643, p = 0.000)值之间存在显著的正相关[41]

2.3. 小肠梗阻的治疗

2.3.1. 保守治疗

保守治疗适用于无腹膜炎、肠坏死及肠缺血的小肠梗阻,其核心目标是通过综合措施缓解症状、促进肠道功能恢复并预防可能发生的并发症。为确保治疗效果,需对患者进行全面的评估,明确梗阻的性质、部位及诱因。临床常用的保守治疗方案包括肠道休息、胃肠减压、静脉补液、系统药物治疗以及连续病情监测。

在保守治疗中,肠道休息是基础性措施,主要通过禁止口服以减轻肠道负担并避免进一步刺激。为满足患者营养需求和维持机体水电解质平衡,需进行静脉输液支持治疗。静脉补液方案应根据患者的具体情况制定,特别是在存在不同程度脱水或低血容量状态时,需严格调整输液速度和液体类型,以有效预防脱水及电解质紊乱。

胃肠减压的主要目的是通过鼻胃管减少胃肠道内的压力,缓解肠道的扩张和不适感。有助于排出胃内积气和液体,降低呕吐、误吸的风险,并促进肠道的休息。同时需要对鼻胃管引流进行严密的监测。关注引流量的变化,监测其一致性和输出物的颜色特征。具体而言,从胆汁绿色逐渐转变为透明的胃液,并伴随着引流量的持续减少这一现象,可视为梗阻解除的重要临床标志。除了鼻胃管,还可以放置肠梗阻导管,持续吸除梗阻上方淤积的液体及气体,可迅速减轻肠壁水肿和肠腔压力,解除梗阻状态效果优于鼻胃管减压[42]。另外,肠梗阻导管的插管技术也在不断更新,可以更加靠近阻塞部位[43]

药物治疗是保守治疗的重要组成部分,其中抗呕吐药物可有效缓解肠梗阻引起的恶心和呕吐症状,从而改善患者舒适度。镇痛药物用于缓解腹痛,但需严格控制使用剂量,使用多模式疼痛控制方案[44]-[46],以免掩盖潜在的病情进展。对于由肠道痉挛导致的梗阻,适当使用抗痉挛药物可能具有辅助治疗作用。生长抑素对于胃肠液的分泌具有明显的抑制作用,既往被广泛应用于术后炎性小肠梗阻[47],最近一项研究指出,奥曲肽联合生长抑素对于粘连性肠梗阻患者有较好的治疗有效率[48]

在整个保守治疗过程中,严密的病情监测至关重要。医疗团队需定期评估患者的生命体征、腹部检查所获体征以及实验室检查结果,及时识别可能出现的并发症,如肠缺血或肠穿孔等。同时,应定期进行影像学检查(包括腹部X线、CT扫描、泛影葡胺激发试验[49]),以动态评估梗阻的缓解情况及相关病变程度,为后续治疗方案的调整提供依据。

2.3.2. 手术治疗

手术患者的选择以及手术的时机是外科医生面临的重大的挑战,东部创伤外科协会 (Eastern Association for the Surgery of Trauma)实践管理SBO管理指南指出,全身性腹膜炎或其他临床恶化证据(发热、白细胞增多、心动过速、酸中毒、持续性疼痛)的患者应及时进行手术探查[13]。博洛尼亚粘连性小肠梗阻(ASBO)诊断和管理指南则表示,患者一旦出现肠绞窄、肠缺血或者穿孔,就应该接受手术治疗。保守治疗的患者,如果肠梗阻大于72小时、第三天的鼻胃管引流大于500 ml、腹膜炎或缺血征象(疼痛加剧、CRP > 75 mg/l、WBC:10,000/mm3、腹腔内游离液体 > 500 ml),则表示保守治疗失败,需要进行手术探查[50]

从以上的指南可以看出,手术的决定需要全面的病史和体格检查加上实验室分析,以及适当的放射影像学评估,众多研究也是围绕着这些因素,构建肠梗阻手术的预测模型。LIU等人的研究纳入157例患者,由两名具有10年腹部CT经验的放射科医生进行阅片,共收集17个CT影像特征,多因素logistic回归分析显示:小肠壁衰减增加、弥漫性肠系膜浑浊、肠系膜血管与主动脉CT值差异和U/C形肠袢是诊断机械性SBO伴小肠坏死的独立危险因素,经过内部验证,预测模型的曲线下面积AUC达到0.886 (95% CI: 0.824~0.947) [51]。Xu的研究则是将患者的临床、实验室、反射学特征相结合,最后发现疼痛持续时间 ≤ 3天、反弹痛、肠鸣音低或无肠鸣音、钾、钠、尿素、放射学评分这七个指标是预测绞窄性肠梗阻的独立危险因素,多维模型的AUC为0.857 (95% CI: 0.793~0.920),在分层分析中,高危组(24%)透壁坏死患者的比例显著高于中危组(3%)。在低风险组中未发现透壁坏死。验证集的AUC为0.910 (95% CI: 0.843~0.976)。低风险和中风险评分组的患者均未发生绞窄性肠梗阻。然而,所有肠缺血(12%)和坏死(24%)患者都被归入高风险评分组。[52]。虽然这些模型的AUC都提示模型具有很高的准确性,但是其研究大多数是单中心的,可能存在一定的偏倚。而最近一项发表在European radiology的荟萃分析系统回顾了2001~2021的21项研究,包括影像学、临床和实验室变量,最终确定了4个影像学预测因子(腹膜游离液、肠壁增厚、肠系膜炎症和高度梗阻)、3个临床预测因子(腹胀、腹膜炎和往腹盆腔手术史)和1个实验室预测因子(白细胞增高)与手术干预或手术缺血密切相关[53]。这为以后小肠梗阻管理多变量模型的开发做出了指导。

手术方式分为两种,开腹手术和腹腔镜手术,虽然腹腔镜手术治疗SBO理论上比开放手术具有许多潜在益处(例如,住院时间更短、粘连重塑减少) [54],但是最近的一项荟萃分析显示,没有证据表明一种技术在核心临床结局方面优于另一种技术[55],外科医生在临床实践中需要根据患者的具体情况来选择最佳的手术方式。对于没有腹膜炎或严重的脓毒症,放射影像学检查显示肠道扩张不严重,单个粘连带或粘连轻的患者,腹腔镜手术是很好的选择。但是如果患者有血流动力学不稳定、严重肠扩张或心肺功能损害等气腹禁忌症的情况,则需要开腹手术[50]。另外,腹腔镜手术转为开腹手术并不是失败,是出于患者的安全考虑,治疗措施的调整[56]

3. 研究不足与展望

肠梗阻作为常见的急腹症之一,对其进行早期诊断与治疗十分重要。首先早期诊断体系仍待完善,目前对早期肠绞窄、肠缺血的识别仍存在滞后性。现有生物标志物(如I-FABP、乳酸)敏感性与特异性不足,尚缺乏可床旁快速检测的指标。其次针对手术治疗的预测模型多为单中心研究,缺乏循证等级较高的多中心RCT支持,未来需要有更多的研究来优化诊断模型、制定精准的治疗策略,在发掘具有诊断潜力的生物学标志物的同时,可以运用当下热门的影像组学相,通过勾画感兴趣区域ROI来分析对应梗阻肠壁的CT影像中的高通量特征,进一步提高CT对于肠绞窄诊断的准确性,从而优化诊断。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ellis, H. (1997) The Clinical Significance of Adhesions: Focus on Intestinal Obstruction. The European Journal of Surgery. Supplement, No. 577, 5-9.
[2] Miettinen, P., Pasanen, P., Salonen, A., Lahtinen, J. and Alhava, E. (1996) The Outcome of Elderly Patients after Operation for Acute Abdomen. Annales Chirurgiae et Gynaecologiae, 85, 11-15.
[3] Sikirica, V., Bapat, B., Candrilli, S.D., Davis, K.L., Wilson, M. and Johns, A. (2011) The Inpatient Burden of Abdominal and Gynecological Adhesiolysis in the US. BMC Surgery, 11, Article No. 13.
https://doi.org/10.1186/1471-2482-11-13
[4] Kyuno, T., Otsuka, K., Kobayashi, M., Yoshida, E., Sato, K., Kawagishi, R., et al. (2022) Time Limit to Rescue Intestine with Viability at Risk Caused by Blood Flow Disruption in Patients Presenting with Acute Abdomen. Surgery Today, 52, 1627-1633.
https://doi.org/10.1007/s00595-022-02495-7
[5] Nelms, D.W. and Kann, B.R. (2021) Imaging Modalities for Evaluation of Intestinal Obstruction. Clinics in Colon and Rectal Surgery, 34, 205-218.
https://doi.org/10.1055/s-0041-1729737
[6] Feister, K., Konstantinoff, K., Hamade, M. and Mellnick, V. (2024) Pearls and Pitfalls of Imaging Small Bowel Obstruction. Canadian Association of Radiologists Journal, 75, 631-643.
https://doi.org/10.1177/08465371241230276
[7] Abbas, S.M., Bissett, I.P. and Parry, B.R. (2007) Meta-Analysis of Oral Water-Soluble Contrast Agent in the Management of Adhesive Small Bowel Obstruction. British Journal of Surgery, 94, 404-411.
https://doi.org/10.1002/bjs.5775
[8] Piro, K., Ma, I.W.Y., Shokoohi, H. and Novak, K. (2025) Intestinal Ultrasound in Common Gastrointestinal Disorders: An Evidence-Based Approach. Medical Clinics of North America, 109, 177-189.
https://doi.org/10.1016/j.mcna.2024.08.006
[9] Shokoohi, H., Mayes, K.D., Peksa, G.D., Loesche, M.A., Becker, B.A., Boniface, K.S., et al. (2023) Multi-Center Analysis of Point-of-Care Ultrasound for Small Bowel Obstruction: A Systematic Review and Individual Patient-Level Meta-analysis. The American Journal of Emergency Medicine, 70, 144-150.
https://doi.org/10.1016/j.ajem.2023.05.039
[10] Becker, B.A., Lahham, S., Gonzales, M.A., Nomura, J.T., Bui, M.K., Truong, T.A., et al. (2019) A Prospective, Multicenter Evaluation of Point‐of‐Care Ultrasound for Small‐Bowel Obstruction in the Emergency Department. Academic Emergency Medicine, 26, 921-930.
https://doi.org/10.1111/acem.13713
[11] Boniface, K.S., King, J.B., LeSaux, M.A., Haciski, S.C. and Shokoohi, H. (2020) Diagnostic Accuracy and Time-Saving Effects of Point-of-Care Ultrasonography in Patients with Small Bowel Obstruction: A Prospective Study. Annals of Emergency Medicine, 75, 246-256.
https://doi.org/10.1016/j.annemergmed.2019.05.031
[12] Nakamura, Y., Kondo, S., Narita, K., Maeda, S., Fonseca, D., Honda, Y., et al. (2022) Understanding CT Imaging Findings Based on the Underlying Pathophysiology in Patients with Small Bowel Ischemia. Japanese Journal of Radiology, 41, 353-366.
https://doi.org/10.1007/s11604-022-01367-x
[13] Maung, A.A., Johnson, D.C., Piper, G.L., Barbosa, R.R., Rowell, S.E., Bokhari, F., et al. (2012) Evaluation and Management of Small-Bowel Obstruction: An Eastern Association for the Surgery of Trauma Practice Management Guideline. Journal of Trauma and Acute Care Surgery, 73, S362-S369.
https://doi.org/10.1097/ta.0b013e31827019de
[14] Jaidee, W., Teerasamit, W., Apisarnthanarak, P., Kongkaewpaisan, N., Panya, S. and Kaewlai, R. (2023) Small Bowel Transmural Necrosis Secondary to Acute Mesenteric Ischemia and Strangulated Obstruction: CT Findings of 49 Patients. Heliyon, 9, e17543.
https://doi.org/10.1016/j.heliyon.2023.e17543
[15] Chuong, A.M., Corno, L., Beaussier, H., Boulay-Coletta, I., Millet, I., Hodel, J., et al. (2016) Assessment of Bowel Wall Enhancement for the Diagnosis of Intestinal Ischemia in Patients with Small Bowel Obstruction: Value of Adding Unenhanced CT to Contrast-Enhanced CT. Radiology, 280, 98-107.
https://doi.org/10.1148/radiol.2016151029
[16] 田晶, 成人急性小肠梗阻危险度评分系统的构建[D]: [博士学位论文]. 南京: 南京医科大学, 2018.
[17] Rondenet, C., Millet, I., Corno, L., Boulay-Coletta, I., Taourel, P. and Zins, M. (2018) Increased Unenhanced Bowel-Wall Attenuation: A Specific Sign of Bowel Necrosis in Closed-Loop Small-Bowel Obstruction. European Radiology, 28, 4225-4233.
https://doi.org/10.1007/s00330-018-5402-6
[18] Li, B., Qi, W., Yuan, M., Wang, H., Chen, M., Song, Z., et al. (2024) Increased Attenuation of Intestinal Contents at CT Indicates Bowel Necrosis in Closed-Loop Small Bowel Obstruction. Radiology, 310, e231710.
https://doi.org/10.1148/radiol.231710
[19] Taourel, P. and Zins, M. (2024) Unenhanced CT for Predicting Bowel Necrosis in Small Bowel Obstruction: Time to Adapt Our Protocol. Radiology, 310, e240001.
https://doi.org/10.1148/radiol.240001
[20] Olson, M.C., Navin, P.J., Welle, C.L. and Goenka, A.H. (2021) Small Bowel Radiology. Current Opinion in Gastroenterology, 37, 267-274.
https://doi.org/10.1097/mog.0000000000000719
[21] Rimola, J., Torres, J., Kumar, S., Taylor, S.A. and Kucharzik, T. (2022) Recent Advances in Clinical Practice: Advances in Cross-Sectional Imaging in Inflammatory Bowel Disease. Gut, 71, 2587-2597.
https://doi.org/10.1136/gutjnl-2021-326562
[22] Bonouvrie, D.S., van Beek, H.C., Taverne, S.B.M., Janssen, L., van der Linden, T.N., van Dielen, F.M.H., et al. (2021) Pregnant Women after Bariatric Surgery: Diagnostic Accuracy of Magnetic Resonance Imaging for Small Bowel Obstruction. Obesity Surgery, 32, 245-255.
https://doi.org/10.1007/s11695-021-05784-1
[23] Didier-Mathon, H., Grévent, D., Khen-Dunlop, N., Sonigo, P., Rousseau, V., Ville, Y., et al. (2021) Ultrasound and Fetal MRI Complementary Contributions to Appropriate Counseling in Small Bowel Obstruction. Fetal Diagnosis and Therapy, 48, 567-574.
https://doi.org/10.1159/000517728
[24] Adeva-Andany, M., López-Ojén, M., Funcasta-Calderón, R., Ameneiros-Rodríguez, E., Donapetry-García, C., Vila-Altesor, M., et al. (2014) Comprehensive Review on Lactate Metabolism in Human Health. Mitochondrion, 17, 76-100.
https://doi.org/10.1016/j.mito.2014.05.007
[25] Catena, F., De Simone, B., Coccolini, F., Di Saverio, S., Sartelli, M. and Ansaloni, L. (2019) Bowel Obstruction: A Narrative Review for All Physicians. World Journal of Emergency Surgery, 14, Article No. 20.
https://doi.org/10.1186/s13017-019-0240-7
[26] Lange, H. and Jäckel, R. (1994) Usefulness of Plasma Lactate Concentration in the Diagnosis of Acute Abdominal Disease. The European Journal of Surgery, 160, 381-384.
[27] Işık, N.İ., Katipoğlu, B., Turan, Ö.F., Gezer, A.E., Yazla, M. and Surel, A.A. (2024) The Significance of Initial Lactate Levels in Emergency Department Presentations of Abdominal Wall Hernia. Hernia, 28, 567-574.
https://doi.org/10.1007/s10029-023-02950-5
[28] Demir, I.E., Ceyhan, G.O. and Friess, H. (2012) Beyond Lactate: Is There a Role for Serum Lactate Measurement in Diagnosing Acute Mesenteric Ischemia? Digestive Surgery, 29, 226-235.
https://doi.org/10.1159/000338086
[29] Franchini, M., Focosi, D., Pezzo, M.P. and Mannucci, P.M. (2024) Response to the Comment: “Advocating Prudent D-Dimer Testing: Constructive Perspectives and Comments on “How We Manage a High D-Dimer”. Haematologica, 109, Article 3454.
https://doi.org/10.3324/haematol.2024.285769
[30] Cudnik, M.T., Darbha, S., Jones, J., Macedo, J., Stockton, S.W. and Hiestand, B.C. (2013) The Diagnosis of Acute Mesenteric Ischemia: A Systematic Review and Meta-Analysis. Academic Emergency Medicine, 20, 1087-1100.
https://doi.org/10.1111/acem.12254
[31] Zhou, Y., Zhao, H., Liu, B., Qian, J., Chen, N., Wang, Y., et al. (2024) The Value of D-Dimer and Platelet-Lymphocyte Ratio Combined with CT Signs for Predicting Intestinal Ischemia in Patients with Bowel Obstruction. PLOS ONE, 19, e0305163.
https://doi.org/10.1371/journal.pone.0305163
[32] Formenti, P., Gotti, M., Palmieri, F., Pastori, S., Roccaforte, V., Menozzi, A., et al. (2024) Presepsin in Critical Illness: Current Knowledge and Future Perspectives. Diagnostics, 14, Article 1311.
https://doi.org/10.3390/diagnostics14121311
[33] Cosse, C., Sabbagh, C., Kamel, S., Galmiche, A. and Regimbeau, J. (2014) Procalcitonin and Intestinal Ischemia: A Review of the Literature. World Journal of Gastroenterology, 20, 17773-17778.
https://doi.org/10.3748/wjg.v20.i47.17773
[34] Li, X., Tian, M. Liu, Y. Zhang, Y. and Chen, J. (2024) Predictive Factors of Intestinal Ischaemia in Adhesive Small Bowel Obstruction. Journal of the College of Physicians and Surgeons, 34, 146-150.
[35] Olivero, C., Carbone, F., Liberale, L. and Montecucco, F. (2024) Precision Medicine in Intestinal Ischemia: The Emerging Role of Biomarkers. Internal and Emergency Medicine.
https://doi.org/10.1007/s11739-024-03808-z
[36] Ding, C., Wu, Y. and Liu, X. (2020) Diagnostic Accuracy of Intestinal Fatty Acid Binding Protein for Acute Intestinal Ischemia: A Systematic Review and Meta-Analysis. Clinical Laboratory, 66.
https://doi.org/10.7754/clin.lab.2019.191139
[37] Tamme, K., Acosta, S., Biloslavo, A., Björck, M., Casian, D., Damaskos, D., et al. (2024) Biomarkers in Prediction of Acute Mesenteric Ischaemia: A Prospective Multicentre Study (BIPAMI Study): A Study Protocol. BMC Surgery, 24, Article No. 201.
https://doi.org/10.1186/s12893-024-02491-3
[38] Szymanska, E., Bierla, J., Dadalski, M., Wierzbicka, A., Konopka, E., Cukrowska, B., et al. (2024) New Noninvasive Biomarkers of Intestinal Inflammation and Increased Intestinal Permeability in Pediatric Inflammatory Bowel Diseases and Their Correlation with Fecal Calprotectin: A Pilot Study. Minerva Gastroenterology, 69, 504-510.
https://doi.org/10.23736/s2724-5985.22.03156-4
[39] Reintam Blaser, A., Starkopf, J., Björck, M., Forbes, A., Kase, K., Kiisk, E., et al. (2023) Diagnostic Accuracy of Biomarkers to Detect Acute Mesenteric Ischaemia in Adult Patients: A Systematic Review and Meta-Analysis. World Journal of Emergency Surgery, 18, Article No. 44.
https://doi.org/10.1186/s13017-023-00512-9
[40] Zoroddu, S., Zinellu, A., Carru, C. and Sotgia, S. (2024) Analytical Insights into Methods for Measuring Ischemia-Modified Albumin. Molecules, 29, Article 4636.
https://doi.org/10.3390/molecules29194636
[41] Cekic, A.B., Gonenc Cekic, O., Aygun, A., Pasli, S., Yaman Ozer, S., Caner Karahan, S., et al. (2020) The Diagnostic Value of Ischemia-Modified Albumin (IMA) and Signal Peptide-Cub-EGF Domain-Containing Protein-1 (SCUBE-1) in an Experimental Model of Strangulated Mechanical Bowel Obstruction. Journal of Investigative Surgery, 35, 450-456.
https://doi.org/10.1080/08941939.2020.1847218
[42] Dou, C., Li, K. and Wang, L. (2022) Computed Tomography Image Segmentation of the Proximal Colon by U-Net for the Clinical Study of Somatostatin Combined with Intestinal Obstruction Catheter. Computational and Mathematical Methods in Medicine, 2022, Article ID: 6868483.
https://doi.org/10.1155/2022/6868483
[43] Tan, Y., Chen, H., Mao, W., Yuan, Q. and Niu, J. (2020) Short-Term Clinical Outcomes after Using Novel Deeper Intubation Technique (DIT) of Ileus Tube for Acute Bowel Obstruction Patients. Gastroenterology Research and Practice, 2020, Article ID: 1625154.
https://doi.org/10.1155/2020/1625154
[44] Lauretta, M.P., Marino, L. and Bilotta, F. (2024) Safety and Efficacy of Opioid-Sparing Anesthesia Compared with Traditional Opioid Anesthesia: A Scoping Review. The Clinical Journal of Pain, 41, e1261.
https://doi.org/10.1097/ajp.0000000000001261
[45] Albalawi, H.I.H., Alyoubi, R.K.A., Alsuhaymi, N.M.M., Aldossary, F.A.K., Mohammed G, A.A., Albishi, F.M., et al. (2024) Beyond the Operating Room: A Narrative Review of Enhanced Recovery Strategies in Colorectal Surgery. Cureus, 16, e76123.
https://doi.org/10.7759/cureus.76123
[46] Reichert, M., Willis, F., Post, S., Schneider, M., Vilz, T., Willis, M., et al. (2024) Pharmacologic Prevention and Therapy of Postoperative Paralytic Ileus after Gastrointestinal Cancer Surgery: Systematic Review and Meta-Analysis. International Journal of Surgery, 110, 4329-4341.
https://doi.org/10.1097/js9.0000000000001393
[47] Wu, Z., Wang, S., Yuan, S. and Lin, M. (2020) Clinical Efficacy and Safety of Somatostatin in the Treatment of Early Postoperative Inflammatory Small Bowel Obstruction: A Protocol for Systematic Review and Meta Analysis. Medicine, 99, e20288.
https://doi.org/10.1097/md.0000000000020288
[48] 张华秦, 薛飞. 奥曲肽结合生长抑素治疗粘连性肠梗阻患者的临床效果[J]. 临床医学研究与实践, 2023, 8(24): 54-57.
[49] Detz, D.J., Podrat, J.L., Muniz Castro, J.C., Lee, Y.K., Zheng, F., Purnell, S., et al. (2021) Small Bowel Obstruction. Current Problems in Surgery, 58, Article 100893.
https://doi.org/10.1016/j.cpsurg.2020.100893
[50] Ten Broek, R.P.G., Krielen, P., Di Saverio, S., Coccolini, F., Biffl, W.L., Ansaloni, L., et al. (2018) Bologna Guidelines for Diagnosis and Management of Adhesive Small Bowel Obstruction (ASBO): 2017 Update of the Evidence-Based Guidelines from the World Society of Emergency Surgery ASBO Working Group. World Journal of Emergency Surgery, 13, Article No. 24.
https://doi.org/10.1186/s13017-018-0185-2
[51] Liu, X., Zhu, M., Wu, M., Cheng, Z., Wu, X. and Zhu, R. (2023) Unenhanced CT-Based Predictive Model to Identify Small Bowel Necrosis in Patients with Mechanical Small Bowel Obstruction. BMC Medical Imaging, 23, Article No. 80.
https://doi.org/10.1186/s12880-023-01041-2
[52] Xu, W., Zhong, Q., Cai, Y., Zhan, C., Chen, S., Wang, H., et al. (2022) Prediction and Management of Strangulated Bowel Obstruction: A Multi-Dimensional Model Analysis. BMC Gastroenterology, 22, Article No. 304.
https://doi.org/10.1186/s12876-022-02363-1
[53] Eze, V.N., Parry, T., Boone, D., Mallett, S. and Halligan, S. (2023) Prognostic Factors to Identify Resolution of Small Bowel Obstruction without Need for Operative Management: Systematic Review. European Radiology, 34, 3861-3871.
https://doi.org/10.1007/s00330-023-10421-9
[54] Suzuki, Y., Tei, M., Wakasugi, M., Masuzawa, T., Ohtsuka, M., Mikamori, M., et al. (2020) Role of Single-Incision Laparoscopic Surgery in the Management of Small Bowel Obstruction. Surgical Endoscopy, 35, 2558-2565.
https://doi.org/10.1007/s00464-020-07671-9
[55] Krielen, P., Di Saverio, S., ten Broek, R., Renzi, C., Zago, M., Popivanov, G., et al. (2020) Laparoscopic versus Open Approach for Adhesive Small Bowel Obstruction, a Systematic Review and Meta-Analysis of Short Term Outcomes. Journal of Trauma and Acute Care Surgery, 88, 866-874.
https://doi.org/10.1097/ta.0000000000002684
[56] Quach, G. and Zielinski, M.D. (2023) Surgical Management of Small Bowel Obstruction: What You Need to Know. Journal of Trauma and Acute Care Surgery, 96, 357-363.
https://doi.org/10.1097/ta.0000000000004195