肝癌早期诊断血清学标志物的研究进展
Research Progress on Serological Markers for Early Diagnosis of Liver Cancer
DOI: 10.12677/acm.2025.154911, PDF, HTML, XML,   
作者: 卢 静, 高晓红*:延安大学医学院,陕西 延安;延安大学附属医院感染病科,陕西 延安
关键词: 肝细胞癌血清标志物早期诊断Hepatocellular Carcinoma Serum Biomarkers Early Diagnosis
摘要: 原发性肝癌主要包括肝细胞癌、肝内胆管癌和混合型癌三种病理类型,其中肝细胞癌为主要的病理类型。肝细胞癌的诊断主要依靠影像学和病理诊断,但其检查价格昂贵,肝穿刺活检具有一定的风险性,并且肝癌发病较为隐匿,早期无典型的临床表现,故早期诊断率低,往往发现时已经为中晚期,很多患者因此错失手术机会,预后较差。因此,许多研究者正在努力寻找可以更有效地诊断早期肝癌的生物标志物。本文将归纳总结肝癌的血清学标志物及其特点,并分析它们在肝癌早期诊断、预测复发及转移方面的价值,为肝癌的早期筛查提供一些理论支持。
Abstract: Primary liver cancer mainly includes three pathological types: hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and mixed type carcinoma, among which hepatocellular carcinoma is the main pathological type. The diagnosis of hepatocellular carcinoma mainly relies on imaging and pathological diagnosis, but its examination cost is expensive, liver biopsy has a certain degree of risk, and the onset of liver cancer is relatively insidious. There are no typical clinical manifestations in the early stage, and the early diagnosis rate is low. Often, it is discovered in the middle or late stage, and many patients miss the opportunity for surgery, resulting in a poor prognosis. Therefore, many researchers are working hard to find biomarkers that can more effectively diagnose early liver cancer. This article will summarize the serological markers and their characteristics of liver cancer, and analyze their value in early diagnosis, prediction of recurrence and metastasis of liver cancer, providing some theoretical support for early screening of liver cancer.
文章引用:卢静, 高晓红. 肝癌早期诊断血清学标志物的研究进展[J]. 临床医学进展, 2025, 15(4): 139-147. https://doi.org/10.12677/acm.2025.154911

1. 肝癌流行现状

原发性肝癌(Primary liver cancer, PLC)是临床上最常见的恶性肿瘤之一,主要包括肝细胞癌(hepatocellular carcinoma, HCC)、肝内胆管癌(intrahepatic cholangiocarcinoma, ICC)和混合型肝细胞癌–胆管癌(combined hepatocellular-cholangiocarcinoma, HCC-CCA) 3种不同病理学类型,其中HCC占75%~85%,ICC占10%~15% [1]。据统计,2022年全球肝癌新发病例约86.6万例,死亡病例约75.9万例,分别占全球发病和死亡总数的4.3%和7.8%。在不同肿瘤中,肝癌的发病率居于第六位,死亡率居于第三位[2],而我国肝癌的发病率、死亡率分别居于第五位、第二位[3]。肝癌的死亡率远高于其发病率,这可能与肝癌早期诊断率低相关。肝癌相较于其他肿瘤,隐匿性更强,很多肝癌患者第一次诊断时就已经是中晚期,许多患者错失最佳治疗时机,因此其生存期大大缩短。所以,早期诊断肝癌对于提高肝癌患者的生存率及提高患者的生存质量至关重要。接下来,本文将重点论述肝癌的血清学标志物及其特点,并分析它们在肝癌早期诊断、预测复发及转移方面的价值。

2. 血清标志物

2.1. 甲胎蛋白(AFP)

甲胎蛋白(AFP)是一种糖蛋白,于1956年由Bergstrand和Czar在人类胎儿血清中鉴定出来,胎儿期最初是由卵黄囊产生,从第4周之后,胎儿肝脏和胃肠道开始分泌AFP,AFP的产生持续存在于整个生命周期中[4]。当胎儿娩出后,AFP的表达受到影响,其浓度突然降低,因此在正常成人中,AFP的含量极低。但是,当肝脏发生炎症、损害及癌变时AFP又会大量产生,尤其是在HCC发生以后,AFP的含量骤增,AFP的作用机制主要包括以下几方面:AFP通过结合膜蛋白A2等受体,激活PI3K/AKT和MAKP/EKR通路,促进癌基因表达[5];也可以通过下调TRAIL受体表达,同时上调凋亡蛋白,抑制促凋亡蛋白活性;也会通过基因启动子去甲基化重新激活胚胎期的基因,上调表达[6],所以AFP一经发现便被应用于HCC的诊断。Gary Beale [7]的一项研究发现:HCC 患者中测定的中位AFP值为92.4 ng/ml,ROC曲线下面积为0.71,临界值为15 ng/ml,敏感性为58%,特异性为100%,证实AFP对于HCC具有明确的诊断价值。Tian [8]等通过对145例HCC患者、57例良性肝病患者(BLD)和101例健康对照者(HCs)的血清AFP水平研究发现:HCC中的血清AFP显著高于其他组:HCC组和BLD组相比,AFP的AUC为0.903,最佳临界值为5.6 ng/ml,敏感性为76.6%,特异性为98.2%;HCC组和HCs组相比,AFP的AUC为0.901,最佳临界值为6 ng/ml,敏感性为75.9%,特异性分别为96%。Song [9]等的一项针对1153名研究对象的多中心研究发现:HCC组(550例患者,74.18%为HBV感染) AFP水平显著高于其他4组,ROC显示AFP的最佳截断值为21 ng/mL,灵敏度为68.00%,特异性为93.20%,曲线下面积为0.832,该研究发现对于HBV相关性HCC,AFP同样具有诊断价值。尽管诸多研究表明AFP可用于HCC的诊断,但其诊断效能偏低,并且也有研究表明,在不少HCC患者中AFP含量并未出现明显增加。Ding [10]等通过对2000~2020年在瑞金医院就诊的PLC患者的队列回顾性研究发现:在过去的二十年中,AFP < 20 ng/mL、20 ng/mL ≤ AFP < 400 ng/mL,或AFP ≥ 400 ng/mL的PLC患者分别为840/1691 (49.67%)、403/1691 (23.83%)或448/1691 (26.5%),AFP < 20 ng/mL (AFP阴性)的患者比例从2000~2004年的24.2%逐渐增加到2017~2020年的51.43%,从这一数据可以看出,在HCC患者中有不少人AFP始终保持阴性,并且这一部分群体呈现出增长趋势,如果单纯将AFP作为HCC的筛查指标,可能会使将近二分之一的患者漏诊,这极其不利于HCC的早发现、早诊断、早治疗。所以,尽管AFP作为一个经典的肝癌筛查指标,我们仍然需要去探索新的肿瘤标志物,力争在肿瘤发展的早期将更多的患者识别出来。

2.2. 甲胎蛋白异质体(AFP-L3)

AFP是碳水化合物部分的异质分子,不同的AFP亚型可以通过它们对凝集素的亲和力来分离和表征,根据其与晶状体凝集素(LCA)的亲和力从低到高依次为AFP-L1、AFP-L2和AFP-L3 [11]。其中L1亚型通常与肝病的非肝细胞癌炎症有关,而L3亚型对恶性肿瘤具有特异性,因此AFP-L3可以作为诊断HCC的补充指标,AFP-L3与总AFP的比例即AFP-L3%也可用于诊断早期肝细胞癌。研究表明[12],HCC 患者AFP-L3平均值为49.6 +/− 21.6%,显著高于CLD患者(10.7 +/− 4.3%)。当AFP-L3%的临界水平设置为15%时,65例HCC患者的敏感性为96.9%,特异性为92.0%,准确性为95.5%。血清AFP水平与AFP-L3百分比之间没有明确的相关性(r = 0.16)。AFP-L3与HCC结节最大直径之间没有相关性(r = 0.05)。然而,中分化或低分化HCC的平均AFP-L3值高于高分化肿瘤。Choi JY的一项关于168例常规HCC监测患者的研究提示[13]:AFP水平低(<20 ng/mL) HCC患者中的AFP-L3水平高于BLD组。在总共168例患者中,AFP、AFP-L3诊断HCC的ROC曲线下面积分别为0.879、0.887,根据此项研究可以发现AFP-L3的诊断效能并未显著高于AFP,这可能是因为AFP-L3为AFP的异质体。但是,在AFP阴性群体中,AFP-L3%具有更大的诊断价值,截断值为5%的AFP-L3%在AFP水平低的患者中的敏感性为71.1%,特异性为83.8%。除此之外,AFP-L3%也可用于评估HCC的预后及复发情况,Cheng的一项荟萃分析提示[14]:治疗前血清AFP-L3%高意味着HCC的总生存期OS和无病生存期DFS较差,提示患者预后不良。因此,AFP-L3可初步评估HCC患者的预后情况。虽然AFP-L3%可以作为HCC的另一种诊断标志物,但目前其检测手段多需借助于AFP的检验值,故AFP的数值可能会影响其检测,未来需要我们去不断优化该检测方法。

2.3. 异常凝血酶原(DCP)

异常凝血酶原(DCP)最初是在缺乏维生素K或正在接受维生素K拮抗剂的患者的血液中发现的,故又称维生素K缺乏或拮抗诱导蛋白(PIVKAⅡ) [15],由于HCC细胞中维生素K或γ-谷氨酰羧化酶的缺乏,凝血酶原前体中的10个谷氨酸(Glu)残基没有完全羧化为γ-羧化谷氨酸(Gla)残基,留下一些Glu残基留在N末端结构域,这些带有Glu残基的凝血酶原前体称为DCP [16]。1984年,Liebman [17]等人首次报道了HCC患者的血清DCP升高,该研究发现在76名经活检证实的肝细胞癌患者中的69名(91%)的血清中检测到des-γ-羧基凝血酶原,相比之下,慢性活动性肝炎患者(平均每毫升10 ng)或累及肝脏的转移性癌患者(平均每毫升42 ng)的异常凝血酶原水平较低,而在正常受试者中检测不到。这说明对于原发性肝癌,DCP具有较高的诊断效能,但是在转移性肝癌中未出现明显增高,这可以初步鉴别肝脏上的肿瘤究竟是原发于肝脏还是转移性肝癌。Nakao [18]等人的研究也证实了这一观点:38名HCC患者中有36名(94.7%)的DCP水平异常大于0.1任意单位(AU)/ml,2例外周胆管癌患者、5例其他原发性肝恶性肿瘤患者均未出现DCP水平升高,并且10例转移性肝肿瘤患者也没有。这一研究很好的证实了DCP可以作为HCC的早期诊断指标。但也有人觉得该指标并未有如此巨大的诊断价值,Fujiyama [19]等人报告说,他们的120名HCC患者中只有63%的DCP水平高于0.1 AU/ml。Okuda [20]等人报告了他们的52例肝细胞癌患者中DCP水平升高率仅58%。因此,DCP作为一个新的血清学标志物,其在HCC中的诊断价值需要我们继续去探索,得到更多的临床数据来验证这一结论。DCP与细胞间充质–上皮转化因子(c-Met)的结合是一个初始事件,因此通过增加c-Met-Janus激酶1-信号传导和转录途径的激活剂来刺激HCC。DCP通过上调细胞外信号调节的激酶–丝裂原活化蛋白激酶(MAPK)途径激活基质金属蛋白酶,刺激HCC侵袭。DCP通过激活DCP激酶插入结构域受体–磷脂酶C-γ-MAPK通路刺激HCC血管生成[21],这一切对于制定HCC的治疗方法很关键。Nakao [18]等人也探索了DCP值与手术及肝移植的相关性,发现所有病例根治性手术后DCP水平急剧下降,肝移植后3天和肝切除术后3周内DCP水平恢复到0.1 AU/ml 以下,这为HCC的疗效评估及复发情况评估提供了强有力的支持。我国刘智[22]等人的研究发现,DCP在区分AFP阴性HCC患者时表现出较高的临床应用价值,截断值为34.98 ng/m L时,AUC = 0.789,敏感度和特异度分别为61.64%和86.47%,且在AFP阴性的HCC患者中,DCP的阳性率为56.2%,可以作为AFP阴性HCC的另一补充诊断指标。

2.4. 高尔基体糖蛋白73 (Golgi Protein 73, GP73)

高尔基体蛋白73 (GP73)是一种新型的II型高尔基体定位的整合膜蛋白,最初是在成人巨细胞肝炎(GCH)表达蛋白的遗传筛选中发现的[23]。GP73优先在人体组织中的上皮细胞表达,它始终存在于正常肝脏的胆道上皮细胞中,但是,当肝脏出现病理性损伤时,通过与细胞膜受体相互作用,激活MAPK/ERK通路,促进肝癌细胞的增殖和凋亡,也可通过抑制促凋亡蛋白,增强肝癌细胞的存活能力。GP73在患者血清样本中的表达将上调,在肝炎中表达水平较低,在肝硬化中表达水平较高,在HCC中表达水平最高,因此可以用来早期筛查HCC [24]。Marrero [25]研究了352例患者发现,与肝硬化患者相比,HCC患者的血清GP73水平显著升高。GP73在10个相对单位的最佳截断点的敏感性为69%,特异性为75%,ROC曲线下面积为0.79,AFP的ROC曲线下面积为0.61,GP73水平诊断早期HCC的敏感性显著高于AFP。Zhou [26]的一项荟萃分析显示:血清GP73诊断HCC的敏感性76%,异性86%,诊断比值比(DOR) 18.59,ROC曲线下面积0.88,这意味着GP73可以作为一项筛查HCC的指标。除此之外,GP73的水平也会随着HCC治疗情况的变化而变化,可以反应手术和肝动脉化疗栓塞术(TACE)的治疗情况,可以作为疾病进展和预后情况的参考指标[27]。研究证实,血清GP73也是HCC患者分层和预测肝切除术后短期结局的有用指标,血清GP73和术后总体并发症相关的ROC曲线面积为0.763,灵敏度为63.4%,预测总体并发症的特异性为80.0% [28],可以将其作为术后常规监测指标。

2.5. 磷脂酰肌醇蛋白聚糖3 (Glypicans-3, GPC3)

Glypicans是一组细胞表面糖蛋白,其中硫酸乙酰肝素糖胺聚糖链与蛋白质核心共价连接。Glypican基因家族在动物物种中广泛存在,并在生物过程中发挥重要作用[29]。Glypican家族的一些成员,包括glypican 2 (GPC2)和glypican 3 (GPC3),分别在儿童癌症和肝癌中表达[30]。在肝癌中,主要通过激活Wnt/β-catenin通路和Hedgehog (Hh)通路来促进肿瘤细胞增殖。Capurro [31]发现GPC3在72%的HCC中表达,而在正常肝脏和良性肝病的肝细胞中检测不到。Liu [32]的研究也证实了这一结论,他也发现当血清GPC3的临界值设置为300 ng/L时,其对HCC的敏感性和特异性分别为47.0%和93.5%。Xu [33]通过荟萃分析得出:GPC3诊断HCC的敏感性和特异性分别为0.55和0.58,而AFP为0.54和0.83,GPC3 + AFP分别为0.85和0.79。GPC3、AFP和GPC3 +AFP的AUC分别为0.7793、0.7867和0.9366。GPC3的敏感性与AFP几乎相似,而GPC3和AFP的组合比GPC3或AFP产生更好的灵敏度和AUC。因此,可以用二者联合检测来诊断HCC。GPC3作为HCC的一个新兴靶点,不仅可以用来诊断HCC,也有可能给HCC的治疗带来新的可能,Fu,Zheng [34] [35]分别通过对信号通路的研究发现了GPC3衍生的肽、DNA疫苗、单克隆抗体、双特异性抗体等物质,这将有可能在未来成为HCC治疗的新方向。

2.6. 热休克蛋白90α (Heat Shock Proteins, HSP90)

热休克蛋白90 (HSP90)是一种进化上高度保守的细胞内分子伴侣,通常在细胞应激下诱导,它有助于一系列蛋白质的成熟。HSP90家族由四个主要成员组成:HSP90α、HSP90β、Grp94和TRAP1。HSP90α 和HSP90β主要位于细胞质中,其他两种蛋白分别主要位于内质网和线粒体基质中。由于其在调节信号传导中的关键作用,尤其是在肿瘤细胞中,HSP90α已成为研究热点[36]。Liu [37]通过交叉验证试验发现,将最佳诊断临界值设为69.19 ng/mL时,测试队列中的ROC曲线下面积为0.895,灵敏度为81.33%,特异性为81.65%;验证队列中的ROC曲线下面积为0.893,灵敏度为81.72%,特异性为81.03%,证实了HSP90α在肝癌中的诊断价值。一项多中心研究也发现[38]:在入组的3家医院1647例患者中,ROC曲线显示血浆HSP90α可以区分肝癌,敏感性为92.7%,特异性为91.3%,与非肝癌对照区分开来。在检测早期肝癌方面也发现了类似的结果,敏感性为91.4%,特异性为91.3%。该研究也发现手术后血浆HSP90α水平显著降低,这些发现不仅强调血浆HSP90α可以作为诊断肝癌的生物标志物,同时也可将其用于评价肝癌患者接受手术或介入治疗的治疗效果。

2.7. 骨桥蛋白(Osteopontin, OPN)

骨桥蛋白(OPN)于1986年首次被发现,是一种由多种细胞类型在细胞内和细胞外分泌的多功能蛋白,在建康人体肾脏、骨骼中少量表达,当发生肿瘤时,则高度表达[39] [40]。在生理水平上,肝细胞来源的OPN通过调节对二乙基亚硝胺的急性反应和癌症干细胞的存在来充当肿瘤抑制因子[41]。研究发现OPN在肝癌细胞中诱导DTL表达,也可以通过PI3K/AKT信号传导增加DTL的表达。总之,本研究证明OPN作为一种细胞外基质蛋白,能够通过PI3K/AKT信号通路刺激DTL的表达,促进肝癌细胞的生长和侵袭,因此可以作为一种新型的肝癌筛查方法[42]。Ponta发现[43],OPN对HCC的诊断敏感性和特异性分别为87%和82%,ROC曲线下面积为0.898,大于AFP的0.745和DCP的0.578,表明OPN的诊断准确性更高。血浆OPN水平也会随着肝脏Child-Pugh分级和肿瘤分期的推进而显著升高。Li [44]对84例肝硬化相关肝癌患者的分析中发现,当OPN的临界值为47.7 pg/mL时,其诊断HCC的灵敏度为93.82%,特异度为88.0%,ROC曲线下面积为0.902。尽管OPN在HCC中高度表达,但其在肺癌、结直肠癌、胃癌、乳腺癌中也会高度表达[45]-[48]。所以,仅用这一指标的升高并不能很好地诊断肝癌的发生,也无法区分是原发性肝癌所致升高还是转移性肝癌,但当OPN过度表达时,可以作为一个警示信号,让我们加强对患者肿瘤相关疾病的筛查与排除。

2.8. 循环游离DNA (Circulating Cell-Free DNA, cfDNA)

循环游离DNA (cfDNA)是存在于血浆或血清的DNA片段,和循环肿瘤细胞(CTC)、外泌体等统称为液体活检[49]。cfDNA由濒临死亡的非恶性宿主细胞释放,也可能由淋巴细胞主动分泌[50],而ctDNA则来源于凋亡和坏死的肿瘤细胞,这些细胞将其片段化的DNA释放到循环中[51],因此可以通过检测cfDNA来进行肿瘤的诊断。Xu [52]通过对1098名HCC患者的研究证实了这一观点。Hlady [53]的一项基于cfDNA的全基因组甲基化测序的研究,通过结合高甲基化和低甲基化CpG位点建立了一个面板,并验证该面板可以区分HCC和肝硬化,诊断HCC的曲线下面积为0.956。Xiong [54]的一项小样本研究得出:无论甲胎蛋白状态如何,cfDNA诊断HCC的ROC曲线下面积可达到0.92,敏感性为65%,特异性为100%。cfDNA结合AFP检测,可以表现出更好的诊断性能,对AFP阴性患者的AUC为0.96,敏感性为73%,特异性为100%。其诊断效能极高,如果通过多中心、大样本的研究证实了该数据,将会为HCC的诊断率做出不小的贡献。但也有人认为其诊断价值并不乐观,Tan [55]发现,血浆cfDNA水平与肝脏炎症程度、体质量指数和甲胎蛋白水平相关,这意味着,当在HCC患者血浆中检出高浓度cfDNA时,不一定是肿瘤细胞产生的,也有可能是肝脏炎症所致的,并且在AFP阴性HCC患者中的诊断效能可能达不到预期。作为一种新型的标志物,cfDNA虽然有其优越性,但这种优越性能还需要更多样本的支持,并且其检测价格昂贵,在经济条件普通的患者以及HCC高危患者筛查中的推广情况可能也会面临一定的挑战,还需要我们继续去探索与改进。

3. 总结与展望

对原发性肝癌的早期诊断是提高其生存率的关键。从现有的血清学标注物来看,AFP虽是经典的筛查指标,但其敏感性差,因此在HCC的诊断中具有一定的局限性。所以临床上在不断探索价格低廉、检测方便、伤害性小、结果准确的新型肝癌标志物。我们逐渐发现了诸如甲胎蛋白异质体、异常凝血酶原、磷脂酰肌醇蛋白聚糖3、骨桥蛋白、循环游离DNA等一系列新的标志物,虽然研究发现了许多新的标志物,但临床中将这些指标单独用于HCC检测,依旧存在一定的局限性,或许在未来的工作中,我们需要不断优化这些指标的检测方法,同时也应该考虑将多种指标联合检测来诊断HCC,在工作中努力去探索综合价格低廉、诊断率高的联合检测方式,也期待未来会有更多优越性能的新型标志物被发现,为肝癌患者的早期诊断带来更多的希望。

NOTES

*通讯作者。

参考文献

[1] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版) [J]. 协和医学杂志, 2024, 15(3): 532-558.
[2] 王裕新, 潘凯枫, 李文庆. 2022全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2024, 10(3): 1-16.
[3] 滕熠, 张晓丹, 夏昌发, 等. 中国与全球癌症发病、死亡和患病对比及其预测分析: GLOBOCAN 2022数据解读[J]. 中华肿瘤防治杂志, 2024, 31(23): 1413-1420.
[4] Gitlin, D. (1971) Sites of α-Fetoprotein Synthesis. The New England Journal of Medicine, 285, 1436-1437.
[5] Hetz, C. (2012) The Unfolded Protein Response: Controlling Cell Fate Decisions under ER Stress and Beyond. Nature Reviews Molecular Cell Biology, 13, 89-102.
https://doi.org/10.1038/nrm3270
[6] Jäger, R., Bertrand, M.J.M., Gorman, A.M., Vandenabeele, P. and Samali, A. (2012) The Unfolded Protein Response at the Crossroads of Cellular Life and Death during Endoplasmic Reticulum Stress. Biology of the Cell, 104, 259-270.
https://doi.org/10.1111/boc.201100055
[7] Beale, G., Chattopadhyay, D., Gray, J., Stewart, S., Hudson, M., Day, C., et al. (2008) AFP, PIVKAII, GP3, SCCA-1 and Follisatin as Surveillance Biomarkers for Hepatocellular Cancer in Non-Alcoholic and Alcoholic Fatty Liver Disease. BMC Cancer, 8, Article No. 200.
https://doi.org/10.1186/1471-2407-8-200
[8] Tian, S., Chen, Y., Zhang, Y. and Xu, X. (2022) Clinical Value of Serum AFP and PIVKA‐II for Diagnosis, Treatment and Prognosis of Hepatocellular Carcinoma. Journal of Clinical Laboratory Analysis, 37, e24823.
https://doi.org/10.1002/jcla.24823
[9] Song, P., Feng, X., Inagaki, Y., Song, T., Zhang, K., Wang, Z., et al. (2014) Clinical Utility of Simultaneous Measurement of α-Fetoprotein and Des-γ-Carboxy Prothrombin for Diagnosis of Patients with Hepatocellular Carcinoma in China: A Multi-Center Case-Controlled Study of 1,153 Subjects. BioScience Trends, 8, 266-273.
https://doi.org/10.5582/bst.2014.01116
[10] Ding, Y., Feng, M., Ma, D., Zhao, G., Wang, X., An, B., et al. (2023) The 20 Years Transition of Clinical Characteristics and Metabolic Risk Factors in Primary Liver Cancer Patients from China. Frontiers in Oncology, 13, Article 1109980.
https://doi.org/10.3389/fonc.2023.1109980
[11] Seregni, E., Botti, C. and Bombardieri, E. (1995) Biochemical Characteristics and Clinical Applications of α-Fetoprotein Isoforms. Anticancer Research, 15, 1491-1499.
[12] Khien, V.V., Mao, H.V., Chinh, T.T., Ha, P.T., Bang, M.H., Lac, B.V., et al. (2001) Clinical Evaluation of Lentil Lectin-Reactive α-Fetoprotein-L3 in Histology-Proven Hepatocellular Carcinoma. The International Journal of Biological Markers, 16, 105-111.
https://doi.org/10.1177/172460080101600204
[13] Choi, J.Y. (2013) Diagnostic Value of AFP-L3 and PIVKA-II in Hepatocellular Carcinoma According to Total-AFP. World Journal of Gastroenterology, 19, 339-346.
https://doi.org/10.3748/wjg.v19.i3.339
[14] Cheng, J., Wang, W., Zhang, Y., Liu, X., Li, M., Wu, Z., et al. (2014) Prognostic Role of Pre-Treatment Serum AFP-L3% in Hepatocellular Carcinoma: Systematic Review and Meta-Analysis. PLOS ONE, 9, e87011.
https://doi.org/10.1371/journal.pone.0087011
[15] Stenflo, J. and Suttie, J.W. (1977) Vitamin K-Dependent Formation of γ-Carboxyglutamic Acid. Annual Review of Biochemistry, 46, 157-172.
https://doi.org/10.1146/annurev.bi.46.070177.001105
[16] Zhang, Y., Chu, J., Cui, S., Song, Z. and Qu, X. (2014) Des-γ-Carboxy Prothrombin (DCP) as a Potential Autologous Growth Factor for the Development of Hepatocellular Carcinoma. Cellular Physiology and Biochemistry, 34, 903-915.
https://doi.org/10.1159/000366308
[17] Liebman, H.A., Furie, B.C., Tong, M.J., Blanchard, R.A., Lo, K., Lee, S., et al. (1984) Des-γ-Carboxy (Abnormal) Prothrombin as a Serum Marker of Primary Hepatocellular Carcinoma. New England Journal of Medicine, 310, 1427-1431.
https://doi.org/10.1056/nejm198405313102204
[18] Nakao, A., Virji, A., Iwaki, Y., et al. (1991) Abnormal Prothrombin (DES-γ-Carboxy Prothrombin) in Hepatocellular Carcinoma. Hepatogastroenterology, 38, 450-453.
[19] Fujiyama, S., Morishita, T., Hashiguchi, O. and Sato, T. (1988) Plasma Abnormal Prothrombin (Des-γ-Carboxy Prothrombin) as a Marker of Hepatocellular Carcinoma. Cancer, 61, 1621-1628.
https://doi.org/10.1002/1097-0142(19880415)61:8<1621::aid-cncr2820610820>3.0.co;2-c
[20] Okuda, H., Obata, H., Nakanishi, T., Furukawa, R. and Hashimoto, E. (1987) Production of Abnormal Prothrombin (Des-γ-Carboxy Prothrombin) by Hepatocellular Carcinoma. Journal of Hepatology, 4, 357-363.
https://doi.org/10.1016/s0168-8278(87)80546-9
[21] Cui, S., Yu, X. and Qu, X. (2016) Roles and Signaling Pathways of Des-γ-Carboxyprothrombin in the Progression of Hepatocellular Carcinoma. Cancer Investigation, 34, 459-464.
https://doi.org/10.1080/07357907.2016.1227445
[22] 刘智, 杜晓宏, 柴文刚. 异常凝血酶原对肝细胞癌的诊断效能及其与肿瘤临床特征的相关性分析[J]. 临床肝胆病杂志, 2024, 40(10): 2014-2018.
[23] Kladney, R.D., Bulla, G.A., Guo, L., Mason, A.L., Tollefson, A.E., Simon, D.J., et al. (2000) GP73, a Novel Golgi-Localized Protein Upregulated by Viral Infection. Gene, 249, 53-65.
https://doi.org/10.1016/s0378-1119(00)00136-0
[24] Kladney, R.D., Cui, X., Bulla, G.A., Brunt, E.M. and Fimmel, C.J. (2002) Expression of GP73, a Resident Golgi Membrane Protein, in Viral and Nonviral Liver Disease. Hepatology, 35, 1431-1440.
https://doi.org/10.1053/jhep.2002.32525
[25] Marrero, J.A., Romano, P.R., Nikolaeva, O., Steel, L., Mehta, A., Fimmel, C.J., et al. (2005) GP73, a Resident Golgi Glycoprotein, Is a Novel Serum Marker for Hepatocellular Carcinoma. Journal of Hepatology, 43, 1007-1012.
https://doi.org/10.1016/j.jhep.2005.05.028
[26] Zhou, Y., Yin, X., Ying, J. and Zhang, B. (2012) Golgi Protein 73 versus α-Fetoprotein as a Biomarker for Hepatocellular Carcinoma: A Diagnostic Meta-Analysis. BMC Cancer, 12, Article No. 17.
https://doi.org/10.1186/1471-2407-12-17
[27] Ai, N., Liu, W., Li, Z., Ji, H., Li, B. and Yang, G. (2017) High Expression of GP73 in Primary Hepatocellular Carcinoma and Its Function in the Assessment of Transcatheter Arterial Chemoembolization. Oncology Letters, 14, 3953-3958.
https://doi.org/10.3892/ol.2017.6697
[28] Ke, M., Wu, X., Zhang, Y., Wang, S., Lv, Y. and Dong, J. (2019) Serum GP73 Predicts Posthepatectomy Outcomes in Patients with Hepatocellular Carcinoma. Journal of Translational Medicine, 17, Article No. 140.
https://doi.org/10.1186/s12967-019-1889-0
[29] Li, N., Gao, W., Zhang, Y. and Ho, M. (2018) Glypicans as Cancer Therapeutic Targets. Trends in Cancer, 4, 741-754.
https://doi.org/10.1016/j.trecan.2018.09.004
[30] Baumhoer, D., Tornillo, L., Stadlmann, S., Roncalli, M., Diamantis, E.K. and Terracciano, L.M. (2008) Glypican 3 Expression in Human Nonneoplastic, Preneoplastic, and Neoplastic Tissues: A Tissue Microarray Analysis of 4,387 Tissue Samples. American Journal of Clinical Pathology, 129, 899-906.
https://doi.org/10.1309/hcqwpwd50xhd2dw6
[31] Capurro, M., Wanless, I.R., Sherman, M., Deboer, G., Shi, W., Miyoshi, E., et al. (2003) Glypican-3: A Novel Serum and Histochemical Marker for Hepatocellular Carcinoma. Gastroenterology, 125, 89-97.
https://doi.org/10.1016/s0016-5085(03)00689-9
[32] Liu, H. (2010) Diagnostic Value of Glypican-3 in Serum and Liver for Primary Hepatocellular Carcinoma. World Journal of Gastroenterology, 16, 4410-4415.
https://doi.org/10.3748/wjg.v16.i35.4410
[33] Xu, D., Su, C., Sun, L., Gao, Y. and Li, Y. (2019) Performance of Serum Glypican 3 in Diagnosis of Hepatocellular Carcinoma: A Meta-Analysis. Annals of Hepatology, 18, 58-67.
https://doi.org/10.5604/01.3001.0012.7863
[34] Zheng, X., Liu, X., Lei, Y., Wang, G. and Liu, M. (2022) Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Frontiers in Oncology, 12, Article 824208.
https://doi.org/10.3389/fonc.2022.824208
[35] Fu, Y., Urban, D.J., Nani, R.R., Zhang, Y., Li, N., Fu, H., et al. (2019) Glypican‐3‐Specific Antibody Drug Conjugates Targeting Hepatocellular Carcinoma. Hepatology, 70, 563-576.
https://doi.org/10.1002/hep.30326
[36] Wei, W., Liu, M., Ning, S., Wei, J., Zhong, J., Li, J., et al. (2020) Diagnostic Value of Plasma Hsp90α Levels for Detection of Hepatocellular Carcinoma. BMC Cancer, 20, Article No. 6.
https://doi.org/10.1186/s12885-019-6489-0
[37] Liu, W., Li, J., Zhang, P., Hou, Q., Feng, S., Liu, L., et al. (2019) A Novel Pan‐Cancer Biomarker Plasma Heat Shock Protein 90α and Its Diagnosis Determinants in Clinic. Cancer Science, 110, 2941-2959.
https://doi.org/10.1111/cas.14143
[38] Fu, Y., Xu, X., Huang, D., Cui, D., Liu, L., Liu, J., et al. (2017) Plasma Heat Shock Protein 90α as a Biomarker for the Diagnosis of Liver Cancer: An Official, Large-Scale, and Multicenter Clinical Trial. EBioMedicine, 24, 56-63.
https://doi.org/10.1016/j.ebiom.2017.09.007
[39] Prince, C.W., Oosawa, T., Butler, W.T., Tomana, M., Bhown, A.S., Bhown, M., et al. (1987) Isolation, Characterization, and Biosynthesis of a Phosphorylated Glycoprotein from Rat Bone. Journal of Biological Chemistry, 262, 2900-2907.
https://doi.org/10.1016/s0021-9258(18)61592-3
[40] Senger, D.R., Wirth, D.F. and Hynes, R.O. (1979) Transformed Mammalian Cells Secrete Specific Proteins and Phosphoproteins. Cell, 16, 885-893.
https://doi.org/10.1016/0092-8674(79)90103-x
[41] Desert, R., Ge, X., Song, Z., Han, H., Lantvit, D., Chen, W., et al. (2021) Role of Hepatocyte‐Derived Osteopontin in Liver Carcinogenesis. Hepatology Communications, 6, 692-709.
https://doi.org/10.1002/hep4.1845
[42] Liu, Z., Yang, G., Yi, X., Zhang, S., Feng, Z., Cui, X., et al. (2023) Osteopontin Regulates the Growth and Invasion of Liver Cancer Cells via DTL. Oncology Letters, 26, Article No. 476.
https://doi.org/10.3892/ol.2023.14064
[43] Kim, J., Ki, S.S., Lee, S.D., Han, C.J., Kim, Y.C., Park, S.H., et al. (2006) Elevated Plasma Osteopontin Levels in Patients with Hepatocellular Carcinoma. The American Journal of Gastroenterology, 101, 2051-2059.
https://doi.org/10.1111/j.1572-0241.2006.00679.x
[44] Li, G. (2024) Expression and Diagnostic Value of Abnormal Prothrombin and Osteopontin in Hepatocellular Carcinoma with Cirrhosis. American Journal of Translational Research, 16, 4688-4695.
https://doi.org/10.62347/lhsf1117
[45] Hu, J., Li, G., Zhang, P., Zhuang, X. and Hu, G. (2017) A CD44v+ Subpopulation of Breast Cancer Stem-Like Cells with Enhanced Lung Metastasis Capacity. Cell Death & Disease, 8, e2679-e2679.
https://doi.org/10.1038/cddis.2017.72
[46] Ponta, H., Sherman, L. and Herrlich, P.A. (2003) CD44: From Adhesion Molecules to Signalling Regulators. Nature Reviews Molecular Cell Biology, 4, 33-45.
https://doi.org/10.1038/nrm1004
[47] Yu, T., Han, Z., Shan, L., Tao, J., Zhang, T., Yuan, S., et al. (2014) Expression of Osteopontin in Non-Small Cell Lung Cancer and Correlative Relation with Microvascular Density. Asian Pacific Journal of Cancer Prevention, 15, 29-32.
https://doi.org/10.7314/apjcp.2014.15.1.29
[48] Kim, J.Y., Bae, B., Kim, K.S., Shin, E. and Park, K. (2009) Osteopontin, CD44, and NFκB Expression in Gastric Adenocarcinoma. Cancer Research and Treatment, 41, 29-35.
https://doi.org/10.4143/crt.2009.41.1.29
[49] Ye, Q., Ling, S., Zheng, S. and Xu, X. (2019) Liquid Biopsy in Hepatocellular Carcinoma: Circulating Tumor Cells and Circulating Tumor DNA. Molecular Cancer, 18, Article No. 114.
https://doi.org/10.1186/s12943-019-1043-x
[50] van der Vaart, M. and Pretorius, P.J. (2007) The Origin of Circulating Free DNA. Clinical Chemistry, 53, 2215-2215.
https://doi.org/10.1373/clinchem.2007.092734
[51] Crowley, E., Di Nicolantonio, F., Loupakis, F. and Bardelli, A. (2013) Liquid Biopsy: Monitoring Cancer-Genetics in the Blood. Nature Reviews Clinical Oncology, 10, 472-484.
https://doi.org/10.1038/nrclinonc.2013.110
[52] Xu, R., Wei, W., Krawczyk, M., Wang, W., Luo, H., Flagg, K., et al. (2017) Circulating Tumour DNA Methylation Markers for Diagnosis and Prognosis of Hepatocellular Carcinoma. Nature Materials, 16, 1155-1161.
https://doi.org/10.1038/nmat4997
[53] Hlady, R.A., Zhao, X., Pan, X., Yang, J.D., Ahmed, F., Antwi, S.O., et al. (2019) Genome-Wide Discovery and Validation of Diagnostic DNA Methylation-Based Biomarkers for Hepatocellular Cancer Detection in Circulating Cell Free Dna. Theranostics, 9, 7239-7250.
https://doi.org/10.7150/thno.35573
[54] Xiong, Y., Xie, C., Zhang, S., Chen, J. and Yin, Z. (2019) detection of a Novel Panel of Somatic Mutations in Plasma Cell-Free DNA and Its Diagnostic Value in Hepatocellular Carcinoma. Cancer Management and Research, 11, 5745-5756.
https://doi.org/10.2147/cmar.s197455
[55] Yan, L., Chen, Y., Zhou, J., Zhao, H., Zhang, H. and Wang, G. (2018) Diagnostic Value of Circulating Cell-Free DNA Levels for Hepatocellular Carcinoma. International Journal of Infectious Diseases, 67, 92-97.
https://doi.org/10.1016/j.ijid.2017.12.002