孕酮水平对冻融胚胎移植的妊娠结局的影响及其临床应用管理
The Impact of Progesterone Levels on Pregnancy Outcomes in Frozen-Thawed Embryo Transfer and Its Clinical Management Applications
DOI: 10.12677/acm.2025.154932, PDF, HTML, XML,   
作者: 刘 珍, 陈 莹*:重庆医科大学附属第一医院生殖医学中心,重庆
关键词: 孕酮冻融胚胎移植妊娠结局Progesterone Freeze-Thaw Embryo Transfer Pregnancy Outcome
摘要: 冻融胚胎移植(FET)是辅助生殖技术中重要的治疗手段,孕酮作为调节子宫内膜容受性的关键激素,其水平的合理调控对FET周期的成功至关重要。本综述旨在探讨孕酮水平的作用机制、其对FET妊娠结局的影响以及临床策略。文章概述了孕酮的基本机制以及其在不同子宫内膜准备方案中的差异,探讨了孕酮水平对妊娠结局的影响,随后讨论了孕酮的个体化调整,如何根据孕酮水平调整治疗方案,以优化FET的妊娠结局,最后总结了孕酮的临床管理现状。尽管目前已有大量关于孕酮的研究,但在孕酮水平的动态监测、个体化治疗策略及孕酮与其他激素的协同作用等方面仍有待深入探讨。未来的研究应注重大样本、多中心研究的开展,以验证孕酮水平调控在FET妊娠结局中的关键作用,并为临床提供更科学的治疗方案。
Abstract: Frozen-thawed embryo transfer (FET) is a crucial treatment method in assisted reproductive technology. Progesterone, as a key hormone that regulates endometrial receptivity, plays a vital role in the success of FET cycles. This review aims to explore the mechanisms of progesterone action, its impact on FET pregnancy outcomes, and clinical strategies. The article summarizes the basic mechanisms of progesterone and its differences across various endometrial preparation protocols. It discusses the influence of progesterone levels on pregnancy outcomes and follows with a discussion on individualized progesterone adjustments, emphasizing how to modify treatment plans based on progesterone levels to optimize FET pregnancy outcomes. Finally, the current status of progesterone clinical management is summarized. Although there is a wealth of research on progesterone, areas such as dynamic monitoring of progesterone levels, individualized treatment strategies, and the synergistic effects of progesterone with other hormones remain to be further explored. Future research should focus on large-scale, multi-center studies to verify the critical role of progesterone level regulation in FET pregnancy outcomes and provide more scientific treatment strategies for clinical practice.
文章引用:刘珍, 陈莹. 孕酮水平对冻融胚胎移植的妊娠结局的影响及其临床应用管理[J]. 临床医学进展, 2025, 15(4): 293-298. https://doi.org/10.12677/acm.2025.154932

1. 引言

随着胚胎冷冻保存技术的发展[1],冻融胚胎移植(Frozen-thawed embryo transfer, FET)因其显著降低卵巢过度刺激综合征(OHSS)的发生[2]和可行植入前遗传学诊断/筛查[3]等优点逐渐成为了辅助生殖技术(Assisted Reproductive Technology, ART)中不可或缺的一部分。子宫内膜准备在FET中的作用至关重要,子宫内膜的状态直接影响胚胎着床率和妊娠率[4]。为了达到最佳的内膜准备,临床上有多种方法可以选择,主要包括自然周期、人工周期[5]。孕酮(Progesterone, P4)通过与子宫内膜中的孕激素受体结合,启动一系列分子机制,促进子宫内膜的分泌期变化[6],支持胚胎的着床与发育,在子宫内膜准备中起着核心作用。不同子宫内膜准备方案对孕酮的使用和管理存在差异[7] [8],如何优化孕酮水平以提高FET妊娠结局已成为研究重点。近期研究表明,合理补充和调控孕酮对提高FET成功率和降低早期流产率至关重要[9] [10]。因此,本文将探讨孕酮水平在不同子宫内膜准备方案中的作用,并分析其对FET妊娠结局的影响,以期为临床治疗提供理论依据。

2. 孕酮在不同子宫内膜准备方案中的作用与差异

孕酮(Progesterone)在胚胎着床、妊娠维持和胚胎发育中起着至关重要的作用。在子宫内膜中,孕酮通过与细胞内孕酮受体(PR)结合,激活一系列基因的转录,诱导子宫内膜腺体的分泌功能,促进内膜的蜕膜准备[11]-[13],为胚胎着床提供合适的环境。在妊娠的初期,孕酮还通过抑制子宫平滑肌的收缩,保持子宫的安静状态,防止早期流产的发生[14] [15]。在孕早期,孕酮能够增加子宫内膜血流量,促进胎盘发育,为胚胎提供必要的氧气和营养[16]。此外,孕酮还在调节免疫反应、维持孕期的免疫耐受状态中起着重要作用,以防止母体免疫系统对胚胎的排斥[17]。此外,孕酮通过调节miRNA的表达参与细胞的代谢、增殖和迁移等生物学过程[18],这对于子宫内膜的成功受精和着床至关重要。在体外受精(IVF)–冻融胚胎移植(FET)过程中,孕酮在不同子宫内膜准备方案中的使用和调控对胚胎着床率和临床妊娠率有着重要的影响。在自然周期中,孕酮的分泌由卵巢黄体提供,人工周期准备通常是在合适的时间通过药物给药,以模拟自然周期中黄体分泌的孕酮作用。研究表明,自然周期中孕酮水平则受到排卵时间和黄体功能的影响,变化自然,但由于周期的不稳定性,孕酮水平可能波动,导致妊娠结局的不确定性[19]

3. 孕酮对妊娠结局的影响以及个体化调整

在冻融胚胎移植(FET)中,孕酮的补充与管理是提高妊娠结局的关键因素之一。适当的孕酮水平可提高胚胎着床率,并降低流产率,已有研究发现胚胎移植当日孕酮水平低可能与较低的妊娠率和较高的流产率相关[20],但也有研究表明胚胎移植当天的孕酮水平与活产并无显著相关[21]。可能是因为两项研究均仅针对胚胎移植当日的孕酮水平进行单次检测,未能实施动态监测以评估其浓度变化趋势。需特别指出的是,后者研究队列选择自然周期冷冻胚胎移植患者,其孕酮完全依赖黄体自身分泌,而黄体功能存在生理性波动特征,单一时点的检测数据无法有效反映黄体支持阶段孕酮的动态变化规律。此外,回顾性研究设计本身可能存在数据采集偏倚及混杂因素控制不足等问题,这可能是导致两项研究结论出现差异的重要方法学因素。也有研究表明移植当天的孕酮水平过高(>20 ng/ml)与持续妊娠率和活产率降低有关[22],孕酮(P)水平异常升高可能通过破坏胚胎发育与子宫内膜容受性间的时空协调性影响妊娠结局。其机制可能涉及:过早升高的P浓度通过负反馈调节干扰黄体功能,导致子宫内膜增殖-分化节律与胚胎发育进程失同步化,进而使着床窗口期显著缩短[23]-[25]。动物实验证实,超生理剂量孕酮可显著抑制着床前LIF/STAT3信号通路活性,下调Ihh、Areg、孕酮受体(PR)及蜕膜化标志物Dtprp等关键因子的表达;同时通过诱发内质网应激通路紊乱,抑制子宫容受态建立和蜕膜化进程[26] [27]。然而目前关于高孕酮血症对妊娠结局的影响尚缺乏大样本临床数据支持,其具体分子机制及安全阈值仍需更多高质量研究进一步验证。

孕酮的补充时机和方式是确保子宫内膜达到最佳容受状态、促进胚胎成功着床的关键。通常,孕酮补充开始的时机取决于子宫内膜的发育情况和胚胎移植的时间。在自然周期中,孕酮主要是排卵后黄体分泌,使子宫内膜进入分泌期并维持足够时间[5],在人工周期中,孕酮的补充通常在雌激素刺激后7~10天开始,以确保内膜达到适宜的厚度和容受性,孕酮的补充时间过晚或过早,均可能影响妊娠率,因此精确掌握补充时机至关重要。孕酮可以通过多种方式补充,包括口服、肌注、阴道给药等,每种方式都有其优缺点,与肌肉注射相比,阴道途径给药简单且无痛[28],临床中根据患者的具体情况选择合适的补充方式。虽然相较于口服和肌注给药,阴道给药子宫局部药物浓度可能更高[29],但目前研究表明孕酮不同补充方式下妊娠结局无显著差异[30]

由于不同患者的生理状况和激素水平存在差异,因此孕酮的剂量、补充方式及补充时机需要进行个体化调整。某些女性可能因黄体功能不全而需要较高剂量的孕酮,而其他女性则可能只需标准剂量,已有研究发现,低孕酮水平的患者补充额外的孕酮,进行加强黄体支持,其妊娠率比自然孕酮水平较低的女性更高[31] [32]。子宫内膜与胚胎发育同步是成功妊娠的关键因素之一[33],因此孕酮的适时补充对提高内膜容受性、增强胚胎着床的成功率具有至关重要的作用,近年来的研究表明,通过子宫内膜容受性分析(ERA)可以帮助确定最佳的胚胎移植时间[34],改善妊娠结局。

孕酮与其他激素,特别是雌激素之间的协同作用对子宫内膜的准备和胚胎着床至关重要。雌激素在子宫内膜的增生期起着重要作用,通过促进内膜增厚和血流增加,为胚胎的着床提供适宜的环境。孕酮则在此基础上,进一步促进内膜从增生期过渡到分泌期,并维持内膜的分泌功能。研究表明,在人工周期中雌激素提供的内膜增生作用与孕酮促进的分泌期变化相结合[35],两者联合使用能够显著提高胚胎着床率和临床妊娠率。然而,雌激素和孕酮的相互作用也需要精确调整,过量的雌激素可能抑制孕酮的作用[36],影响内膜的适应性。因此,在临床治疗中,医生通常根据患者的个体差异,调整雌激素与孕酮的使用量和比例,以达到最佳的治疗效果。

4. 孕酮水平监测与临床应用

孕酮水平的监测能够帮助临床医生更准确地评估子宫内膜的容受性,并根据其变化及时调整治疗方案,从而优化妊娠结局。尽管孕酮水平的标准在不同医院或地区可能有所不同,但一般认为,在FET周期中,孕酮水平需达到一定的阈值才能保证子宫内膜的容受性和胚胎着床的成功,因此及时监测孕酮水平并根据变化调整治疗,能够有效提高妊娠结局。但是关于孕酮水平的最低临界值仍然有争议,有研究表明孕酮水平低于P < 9.2 ng/ml时激素替代治疗冻融胚胎移植周期的持续妊娠率明显下降[10],另外有研究发现孕酮水平临界值为P < 8.8 ng/ml [20],但也有研究发现孕酮水平并不能预测妊娠结局[37],因此关于孕酮水平对妊娠结局的影响仍有待进一步探索。

孕酮水平的监测通常通过血清孕酮浓度的测定来进行,常用的方法包括酶联免疫吸附试验(ELISA)和放射免疫法(RIA)。在临床中,孕酮水平的监测通常分为两个阶段:胚胎移植前和移植后。在胚胎移植前,通常通过雌激素刺激或自然周期监测卵泡的发育情况或激素替代治疗,补充外源性孕激素,并结合孕酮水平评估内膜的准备情况。而在胚胎移植后,孕酮水平的监测主要用于评估内膜容受性、胚胎着床的情况以及黄体功能是否正常,从而帮助临床医生根据具体情况调整治疗策略,例如增加或减少孕酮补充剂量。另外还需注意的是,除了孕酮外,血清中的雌激素水平也会影响子宫内膜的容受性[36],当孕酮补充不足时,雌激素的作用可能会被削弱,导致内膜发育不良,因此除了增加孕酮剂量外,可能还需要补充适量的雌激素,以确保子宫内膜达到最佳准备状态。

5. 结论与展望

孕酮在冻融胚胎移植(FET)周期中的重要性已得到广泛认可,孕酮水平的适时、适量补充对胚胎着床、妊娠维持和最终的妊娠结局起着至关重要的作用。无论是在自然周期还是人工周期中,孕酮的补充都必须精确、个体化,以确保子宫内膜处于最佳的容受状态。在自然周期中,孕酮水平随排卵后自然升高,补充的孕酮剂量相对较低,但也需根据患者的黄体功能进行个体化调整。自然周期准备的优势在于其较为接近自然的激素环境,但对于黄体功能不全的患者,孕酮水平可能不够理想,影响胚胎着床率和妊娠维持。相对而言,人工周期通过外源性激素(如雌激素和孕酮)来调整子宫内膜的准备状态,能够有效克服黄体功能不全的问题,但人工周期的孕酮补充仍需谨慎管理,避免过量或不足,确保内膜的最佳容受性。尽管关于孕酮水平与FET妊娠结局的关系已有大量研究,但仍存在若干局限性,这些局限性为未来的研究提供了发展空间。未来可进行大样本、多中心研究的前瞻性研究,精准选择研究人群,动态监测孕酮变化,以及充分比较子宫内局部孕酮浓度和血清孕酮浓度,与个体化治疗的结合,探索其最佳剂量和补充时机,以期为临床提供更精确的治疗方案。

NOTES

*通讯作者。

参考文献

[1] Cobo, A., de los Santos, M.J., Castellò, D., Gámiz, P., Campos, P. and Remohí, J. (2012) Outcomes of Vitrified Early Cleavage-Stage and Blastocyst-Stage Embryos in a Cryopreservation Program: Evaluation of 3,150 Warming Cycles. Fertility and Sterility, 98, 1138-1146.E1.
https://doi.org/10.1016/j.fertnstert.2012.07.1107
[2] Shi, Y.H., Sun, Y., Hao, C.F., Zhang, H.P., Wei, D., Zhang, Y.S., et al. (2018) Transfer of Fresh versus Frozen Embryos in Ovulatory Women. New England Journal of Medicine, 378, 126-136.
https://doi.org/10.1056/nejmoa1705334
[3] Kimelman, D. and Pavone, M.E. (2021) Non-Invasive Prenatal Testing in the Context of IVF and PGT-A. Best Practice & Research Clinical Obstetrics & Gynaecology, 70, 51-62.
https://doi.org/10.1016/j.bpobgyn.2020.07.004
[4] Casper, R.F. (2020) Frozen Embryo Transfer: Evidence-Based Markers for Successful Endometrial Preparation. Fertility and Sterility, 113, 248-251.
https://doi.org/10.1016/j.fertnstert.2019.12.008
[5] Mackens, S., Santos-Ribeiro, S., van de Vijver, A., Racca, A., Van Landuyt, L., Tournaye, H., et al. (2017) Frozen Embryo Transfer: A Review on the Optimal Endometrial Preparation and Timing. Human Reproduction, 32, 2234-2242.
https://doi.org/10.1093/humrep/dex285
[6] Marquardt, R.M., Kim, T.H., Shin, J. and Jeong, J. (2019) Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? International Journal of Molecular Sciences, 20, Article 3822.
https://doi.org/10.3390/ijms20153822
[7] Jiang, Y.B., Wang, L.Y., Shen, H.F., Wang, B., Wu, J.Y., Hu, K.Y., et al. (2023) The Effect of Progesterone Supplementation for Luteal Phase Support in Natural Cycle Frozen Embryo Transfer: A Systematic Review and Meta-Analysis Based on Randomized Controlled Trials. Fertility and Sterility, 119, 597-605.
https://doi.org/10.1016/j.fertnstert.2022.12.035
[8] Yovich, J.L., Conceicao, J.L., Stanger, J.D., Hinchliffe, P.M. and Keane, K.N. (2015) Mid-Luteal Serum Progesterone Concentrations Govern Implantation Rates for Cryopreserved Embryo Transfers Conducted under Hormone Replacement. Reproductive BioMedicine Online, 31, 180-191.
https://doi.org/10.1016/j.rbmo.2015.05.005
[9] González-Foruria, I., Gaggiotti-Marre, S., Álvarez, M., Martínez, F., García, S., Rodríguez, I., et al. (2020) Factors Associated with Serum Progesterone Concentrations the Day before Cryopreserved Embryo Transfer in Artificial Cycles. Reproductive BioMedicine Online, 40, 797-804.
https://doi.org/10.1016/j.rbmo.2020.03.001
[10] Labarta, E., Mariani, G., Holtmann, N., Celada, P., Remohí, J. and Bosch, E. (2017) Low Serum Progesterone on the Day of Embryo Transfer Is Associated with a Diminished Ongoing Pregnancy Rate in Oocyte Donation Cycles after Artificial Endometrial Preparation: A Prospective Study. Human Reproduction, 32, 2437-2442.
https://doi.org/10.1093/humrep/dex316
[11] Retis-Resendiz, A.M., Cid-Cruz, Y., Velázquez-Hernández, D.M., Romero-Reyes, J., León-Juárez, M., García-Gómez, E., et al. (2024) Camp Regulates the Progesterone Receptor Gene Expression through the Protein Kinase a Pathway during Decidualization in Human Immortalized Endometrial Stromal Cells. Steroids, 203, Article 109363.
https://doi.org/10.1016/j.steroids.2024.109363
[12] Zhou, P.Y., Ouyang, L.Q., Jiang, T., Tian, Y.P., Deng, W.B., Wang, H.B., et al. (2023) Progesterone and Camp Synergistically Induce SHP2 Expression via PGR and CREB1 during Uterine Stromal Decidualization. The FEBS Journal, 291, 142-157.
https://doi.org/10.1111/febs.16966
[13] Sang, Y.F., Li, Y.H., Xu, L., Li, D.J. and Du, M.R. (2019) Regulatory Mechanisms of Endometrial Decidualization and Pregnancy-Related Diseases. Acta Biochimica et Biophysica Sinica, 52, 105-115.
https://doi.org/10.1093/abbs/gmz146
[14] Teraoka, Y., Sugimoto, J., Konishi, H., Miyoshi, H., Furusho, H., Miyauchi, M., et al. (2022) Progesterone Suppresses Uterine Contraction by Reducing Odontogenic Porphyromonas gingivalis Induced Chronic Inflammation in Mice. Biomolecules, 12, Article 1029.
https://doi.org/10.3390/biom12081029
[15] Shynlova, O., Nadeem, L. and Lye, S. (2023) Progesterone Control of Myometrial Contractility. The Journal of Steroid Biochemistry and Molecular Biology, 234, Article 106397.
https://doi.org/10.1016/j.jsbmb.2023.106397
[16] Cindrova-Davies, T. and Sferruzzi-Perri, A.N. (2022) Human Placental Development and Function. Seminars in Cell & Developmental Biology, 131, 66-77.
https://doi.org/10.1016/j.semcdb.2022.03.039
[17] Lissauer, D., Eldershaw, S.A., Inman, C.F., Coomarasamy, A., Moss, P.A.H. and Kilby, M.D. (2015) Progesterone Promotes Maternal-Fetal Tolerance by Reducing Human Maternal T‐Cell Polyfunctionality and Inducing a Specific Cytokine Profile. European Journal of Immunology, 45, 2858-2872.
https://doi.org/10.1002/eji.201445404
[18] Wang, Y.M., Ji, Z.X., Yao, N., Hu, X.M., Zhou, R., Wang, X., et al. (2024) The Role of Micrornas in the Regulation of Critical Genes and Signalling Pathways That Determine Endometrial Receptivity. Zygote, 32, 261-270.
https://doi.org/10.1017/s0967199424000297
[19] Mumusoglu, S., Erden, M., Ozbek, I.Y., Ince, O., Esteves, S.C., Humaidan, P., et al. (2023) The True Natural Cycle Frozen Embryo Transfer-Impact of Patient and Follicular Phase Characteristics on Serum Progesterone Levels One Day Prior to Warmed Blastocyst Transfer. Reproductive Biology and Endocrinology, 21, Article No. 86.
https://doi.org/10.1186/s12958-023-01136-z
[20] Labarta, E., Mariani, G., Paolelli, S., Rodriguez-Varela, C., Vidal, C., Giles, J., et al. (2020) Impact of Low Serum Progesterone Levels on the Day of Embryo Transfer on Pregnancy Outcome: A Prospective Cohort Study in Artificial Cycles with Vaginal Progesterone. Human Reproduction, 36, 683-692.
https://doi.org/10.1093/humrep/deaa322
[21] Chen, W.J., Xu, Y.Y., Liu, X.Y., Pan, J.F., Cai, B., Zhou, C.Q., et al. (2024) Serum Progesterone Level on the Day of Embryo Transfer Is Not a Reliable Predictor for Frozen-Thawed Embryo Transfer Outcomes with Euploid Blastocyst Transfer: A Retrospective Cohort Study. BJOG: An International Journal of Obstetrics & Gynaecology.
https://doi.org/10.1111/1471-0528.18045
[22] Kofinas, J.D., Blakemore, J., McCulloh, D.H. and Grifo, J. (2015) Serum Progesterone Levels Greater than 20 ng/dl on Day of Embryo Transfer Are Associated with Lower Live Birth and Higher Pregnancy Loss Rates. Journal of Assisted Reproduction and Genetics, 32, 1395-1399.
https://doi.org/10.1007/s10815-015-0546-7
[23] Lawrenz, B., Melado, L. and Fatemi, H. (2018) Premature Progesterone Rise in ART-Cycles. Reproductive Biology, 18, 1-4.
https://doi.org/10.1016/j.repbio.2018.01.001
[24] Xu, J.N., Zhang, C.L., Wang, S.N. and Zhang, S.D. (2023) Impact of Progesterone Concentration on Human Chorionic Gonadotropin Trigger Day on Clinical Outcomes with One Top-Quality Cleavage-Stage Embryo or Blastocyst Transfer in Fresh in Vitro Fertilization Cycles. Frontiers in Endocrinology, 14, Article 1085287.
https://doi.org/10.3389/fendo.2023.1085287
[25] Healy, M., Patounakis, G., Zanelotti, A., Devine, K., DeCherney, A., Levy, M., et al. (2017) Does Premature Elevated Progesterone on the Day of Trigger Increase Spontaneous Abortion Rates in Fresh and Subsequent Frozen Embryo Transfers? Gynecological Endocrinology, 33, 472-475.
https://doi.org/10.1080/09513590.2017.1291612
[26] 黄品秀, 曾定元. 孕酮受体在人子宫内膜基质细胞蜕膜化过程中的作用机制研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(2): 245-248.
[27] 梁宇翔. 过量孕酮对子宫接受态和蜕膜化的影响[D]: [博士学位论文]. 广州: 华南农业大学, 2018.
[28] Levine, H. (2000) Luteal Support in IVF Using the Novel Vaginal Progesterone Gel Crinone 8%: Results of an Open-Label Trial in 1184 Women from 16 U.S. Centers. Fertility and Sterility, 74, 836-837.
https://doi.org/10.1016/s0015-0282(00)01497-7
[29] Miles, R.A., Paulson, R.J., Lobo, R.A., Press, M.F., Dahmoush, L. and Sauer, M.V. (1994) Pharmacokinetics and Endometrial Tissue Levels of Progesterone after Administration by Intramuscular and Vaginal Routes: A Comparative Study. Fertility and Sterility, 62, 485-490.
https://doi.org/10.1016/s0015-0282(16)56935-0
[30] Shapiro, D.B., Pappadakis, J.A., Ellsworth, N.M., Hait, H.I. and Nagy, Z.P. (2014) Progesterone Replacement with Vaginal Gel versus I.M. Injection: Cycle and Pregnancy Outcomes in IVF Patients Receiving Vitrified Blastocysts. Human Reproduction, 29, 1706-1711.
https://doi.org/10.1093/humrep/deu121
[31] Labarta, E., Mariani, G., Rodríguez-Varela, C. and Bosch, E. (2022) Individualized Luteal Phase Support Normalizes Live Birth Rate in Women with Low Progesterone Levels on the Day of Embryo Transfer in Artificial Endometrial Preparation Cycles. Fertility and Sterility, 117, 96-103.
https://doi.org/10.1016/j.fertnstert.2021.08.040
[32] Álvarez, M., Gaggiotti-Marre, S., Martínez, F., Coll, L., García, S., González-Foruria, I., et al. (2021) Individualised Luteal Phase Support in Artificially Prepared Frozen Embryo Transfer Cycles Based on Serum Progesterone Levels: A Prospective Cohort Study. Human Reproduction, 36, 1552-1560.
https://doi.org/10.1093/humrep/deab031
[33] Teh, W.-T., McBain, J. and Rogers, P. (2016) What Is the Contribution of Embryo-Endometrial Asynchrony to Implantation Failure? Journal of Assisted Reproduction and Genetics, 33, 1419-1430.
https://doi.org/10.1007/s10815-016-0773-6
[34] Ruiz-Alonso, M., Valbuena, D., Gomez, C., Cuzzi, J. and Simon, C. (2021) Endometrial Receptivity Analysis (ERA): Data versus Opinions. Human Reproduction Open, 2021, hoab011.
https://doi.org/10.1093/hropen/hoab011
[35] Young, S.L. (2013) Oestrogen and Progesterone Action on Endometrium: A Translational Approach to Understanding Endometrial Receptivity. Reproductive BioMedicine Online, 27, 497-505.
https://doi.org/10.1016/j.rbmo.2013.06.010
[36] Parisi, F., Fenizia, C., Introini, A., Zavatta, A., Scaccabarozzi, C., Biasin, M., et al. (2023) The Pathophysiological Role of Estrogens in the Initial Stages of Pregnancy: Molecular Mechanisms and Clinical Implications for Pregnancy Outcome from the Periconceptional Period to End of the First Trimester. Human Reproduction Update, 29, 699-720.
https://doi.org/10.1093/humupd/dmad016
[37] Lawrenz, B., Ata, B., Kalafat, E., Melado, L., ElKhatib, I., Del Gallego, R., et al. (2023) Are Systemic Progesterone Levels in True Natural Cycle Euploid Frozen Embryo Transfers with Luteal Phase Support Predictive for Ongoing Pregnancy Rates? Human Reproduction, 38, 1318-1324.
https://doi.org/10.1093/humrep/dead104