血清ORM2、CD5L和PCT对急性胰腺炎患者病情严重性的预测价值
The Predictive Value of Serum ORM2, CD5L and PCT for the Severity of Acute Pancreatitis in Patients
DOI: 10.12677/acm.2025.154936, PDF, HTML, XML,    科研立项经费支持
作者: 孙绪松, 李 贺*:安徽医科大学第二附属医院急诊外科,安徽 合肥
关键词: 急性胰腺炎口腔粘蛋白2CD5样分子降钙素原预测Acute Pancreatitis Orosomucoid2 (ORM2) CD5-Like Molecule (CD5L) Procalcitonin (PCT) Prediction
摘要: 目的:探讨急性胰腺炎(AP)患者血清中ORM2、CD5L和PCT的表达水平及其对重症胰腺炎早期预测病情的价值。方法:收集2021年6月~2022年12月间安徽医科大学第二附属医院急诊外科收治的182例AP患者临床资料及入院24小时内血清标本,根据亚特兰大标准(2012),分为重症胰腺炎组(SAP)和非重症胰腺炎组(Non-SAP)。采用ELISA法检测两组患者血清中ORM2、CD5L、PCT的表达水平,并通过Spearman相关性分析和Logistic回归分析其与病情严重度的相关性及预测概率。构建ROC曲线评估预测效能,并与Ranson、CTSI、SOFA评分比较其区分度和校准度。结果:相比非重症急性胰腺炎(Non-SAP)组,重症急性胰腺炎组(SAP)其性别、年龄、收缩压、体重指数等指标无明显差异(P > 0.05)。而Ranson、CTSI及SOFA评分及生物标志物ORM2、CD5L和PCT差异显著(P < 0.01)。Spearman分析揭示ORM2、CD5L、PCT与病情严重性正相关。Logistic回归确认这些标志物为独立预测因子,ROC曲线表明ORM2、CD5L、PCT以及各评分系统均为AP患者病情进展的重要预测因子。当三个血清指标联合应用时,AUC下面积为0.920,优于各传统评分系统及单一指标。结论:AP患者入院24 h内的血清ORM2、CD5L和PCT表达水平检测对AP患者病情严重性的早期预测具有重要意义,联合预测效果最佳。
Abstract: Objective: To investigate the expression levels of ORM2, CD5L and PCT in serum of patients with acute pancreatitis (AP) and their value in early prognosis of severe pancreatitis. Methods: Clinical data and serum samples within 24 hours after admission were collected from 182 AP patients admitted to the emergency surgery Department of the Second Affiliated Hospital of Anhui Medical University from June 2021 to December 2022. The patients were divided into severe pancreatitis group (SAP) and Non-SAP group (Non-SAP) according to the Atlanta standard (2012). Serum biomarkers were detected by ELISA, to compare the differences of ORM2, CD5L, PCT and integrated scores. Spearman correlation analysis and Logistic regression analysis were used to analyze the correlation with the severity of the disease and the prediction probability. ROC curve was constructed to evaluate the prediction efficiency, and its differentiation and calibration were compared with Ranson, CTSI and SOFA scores. Results: Compared with the non-severe acute pancreatitis (Non-SAP) group, there were no significant differences in gender, age, systolic blood pressure and body mass index in the severe acute pancreatitis (SAP) group (P > 0.05), but Ranson, CTSI and SOFA scores and biomarkers ORM2, CD5L and PCT were significantly different (P < 0.01). Spearman analysis revealed that ORM2, CD5L and PCT were positively correlated with the severity of the disease. Logistic regression confirmed these markers as independent predictors, ROC curve showed that ORM2, CD5L, PCT and other scoring systems were important predictors of disease progression in AP patients. When the three serum indexes were combined, the area under AUC was 0.920. It is better than traditional integrated scores and single index. Conclusion: Serum ORM2, CD5L, and PCT within 24 h of admission to AP patients are of great significance for the early prediction of the severity of AP patients, and the combined prediction effect is the best.
文章引用:孙绪松, 李贺. 血清ORM2、CD5L和PCT对急性胰腺炎患者病情严重性的预测价值[J]. 临床医学进展, 2025, 15(4): 319-327. https://doi.org/10.12677/acm.2025.154936

1. 引言

急性胰腺炎(AP)是一种普遍存在的胰腺炎性疾病,全球患病率逐渐上升[1],根据亚特兰大分类,分为轻度、中度重症及重症急性胰腺炎(SAP) [2]。大多数AP患者呈轻度表现,但约20%可能发展为SAP,死亡率高达20%~40% [3]。目前,临床评估急性胰腺炎严重程度的方法有很多,如Ranson、BISAP和APACHE II,但在预测SAP的早期阶段存在敏感性和特异性的不足[4] [5]问题,而影像学评分系统,例如CTSI和MCTSI,虽然评估局部并发症方面表现良好,但存在滞后性[6],在疾病早期对AP严重程度的预测准确性与临床评分系统相似[7]。血清学指标因其简单、快捷,仍为临床最常使用的方法。因此,寻求可以准确预测急性胰腺炎病情进展的血清指标,将有助于临床医生早期对胰腺炎患者进行干预。

研究表明,在急性胰腺炎病程中,炎症因子在疾病的发生和发展中起着关键作用。已知的炎症因子包括IL-1、IL-6、TNF-α等促炎因子,针对这些因子的研究,为预测急性胰腺炎病情进展及针对炎症因子的靶向治疗研究成为急性胰腺炎治疗的热点。ORM2、CD5L、PCT作为参与炎症反应的重要蛋白,在先前的研究中发现,其血清水平在SAP患者中显著升高。口腔粘蛋白2 (Orosomucoid2, ORM2),又名α-1-酸性糖蛋白2 (Alpha-1-acid glycoprotein2, AGP2),作为急性期蛋白,在炎症早期血清浓度显著升高,可参与免疫调节和细胞激活[8];CD5L是一种主要由巨噬细胞产生的分泌蛋白,通过调节巨噬细胞自噬、细胞极化、脂质代谢等途径,在各种急性和慢性炎症中发挥重要作用[9]。PCT是一种由降钙素(Calcitonin)的前体多肽组成的生物标志物[10]。作为评估全身炎症及感染的重要指标,在严重感染的患者血清中显著升高,SAP作为一种胰酶异常激活导致胰腺自身消化引起的全身炎症反应性疾病[11],PCT可作为评估其病情进展的重要指标。

本项研究采用三种不同的评估指标对急性胰腺炎(AP)患者进行了综合性评估,并对比分析了这些指标在预测AP患者病情严重性方面的效能。此项研究旨在探讨这些指标对于预测急性胰腺炎病情严重性的潜在价值,并为重症急性胰腺炎(SAP)的早期诊断和干预提供科学依据。

2. 资料与方法

2.1. 一般资料

本研究已获得安徽医科大学第二附属医院伦理委员会的正式批准,且遵循了严格的医学伦理准则。所有参与者或其法定代理人均已签署知情同意,以确保研究的合规性。[伦理审批编号:YX2021-046(F1)]。

纳入标准:(1) 符合2012年亚特兰大AP诊断标准,确诊为AP患者。(2) 年龄 ≥ 18岁。(3) 具备完整的临床资料(性别、BMI、Ranson、SOFA和CTSI评分)。(4) 入院24小时内完成血清PCT、ORM2、CD5L检测。(5) 签署知情同意。

排除标准:(1) 妊娠或哺乳期妇女、恶性肿瘤患者、放化疗或免疫抑制治疗患者、慢性心肺肾疾病史患者。(2) 入院前感染、影像学提示慢性胰腺炎。(3) 外院转入超过24小时及资料不完整患者。

2.2. 研究分组

根据2012国际共识修订亚特兰大分类和定义(revision of the Atlanta classification, RAC),结合患者入院48 h内的临床资料,将无器官功能衰竭,也无局部或全身并发症的轻症胰腺炎(MAP)和器官功能衰竭时间 < 48 h,或存在局部或全身并发症的中度重症急性胰腺炎(moderate severe acute pancreatitis, MSAP)划分为Non-SAP组;将具备AP诊断标准,同时伴有持续(>48 h)的器官功能衰竭划分为SAP组。

2.3. 研究方法

2.3.1. 临床资料收集

① 一般资料包括年龄、性别、SBP、BMI、DBP;② 实验室指标包括PCT、谷丙转氨酶、乳酸脱氢酶、白细胞计数、血糖、血钙等;③ 评分系统包括Ranson评分(入院24小时内完成)、CTSI评分(入院48小时内)和SOFA评分;④ 入院24小时内收集AP静脉血,离心后以ELISA法检测ORM2及CD5L水平。

2.3.2. ELISA检测方法

① 稀释标准品配置标准曲线;② 将样品加入酶标板孵育并洗板;③ 加入生物素化抗体和酶结合物后再次孵育、洗板;④ 加入底物溶液显色后终止反应,测定OD值;⑤ 根据标准曲线计算样本浓度。

2.4. 统计学方法

数据采用SPSS软件29.0版本进行统计分析。(1) 对于符合正态分布的连续变量,数据以均值和标准差的形式呈现,并通过t检验或单因素方差分析进行组间比较。(2) 对于不符合正态分布的连续变量,数据以中位数和四分位距表示,并采用非参数统计方法进行分析。计数数据则以频率和百分比的形式报告,组间差异通过卡方检验来评估。(3) 变量间的相关性分析采用Spearman秩相关系数进行。(4) 通过Logistic回归模型探讨SAP的预测因素,并构建ROC曲线以评估各预测指标的诊断效能。

3. 结果

3.1. 两组患者一般资料比较

本研究将182例患者分为Non-SAP组(118例)和SAP组(64例)。基线特征比较显示,两组在年龄、性别、SBP、DBP、BMI及AMY上未发现显著性差异(P > 0.05)。而Ranson、CTSI和SOFA评分在两组间差异显著(P < 0.01)。见表1

Table 1. Comparison of clinical data between the two patient groups

1. 两组患者临床资料的比较

临床资料

Non-SAP (n = 118)

SAP (n = 64)

t值/x2值/z

P

年龄(岁)

42.62 ± 11.06

46.86 ± 11.06

-

0.385

性别(例,%)

-

0.490

69 (58.5)

34 (53.1)

49 (41.5)

30 (46.9)

SBP (mmHg)

111.0 (104.75, 125.0)

114.0 (103.0, 126.75)

−0.354

0.724

DBP (mmHg)

63.00 (61.00, 71.00)

61.0 (62.0, 74.50)

−1.134

0.257

BMI (kg/m2)

26.11 ± 3.03

26.65 ± 3.07

−1.137

0.257

AMY (U/L)

925.92 (682.67, 1194.73)

909.74 (676.03, 1169.86)

−0.404

0.686

Ranson评分

2.0 (1.0, 2.0)

3.0 (2.0, 5.0)

−8.987

<0.01

CTSI评分

1 (1, 2.0)

2.0 (2.0, 4.0)

−5.803

<0.01

SOFA评分

2 (1.0, 2.0)

3.0 (2.0, 4.0)

−8.667

<0.01

在血清指标方面,两组患者血清中ORM2、CD5L以及PCT水平如表2图1所示,各指标差异均具有统计学意义。

3.2. 血清指标与研究队列AP患者病情严重性的相关性分析

对研究队列当中SAP与Non-SAP组血清ORM2、CD5L及PCT和AP病情的严重程度进行Spearman相关性分析。结果显示CD5L (r = 0.564)与病情严重性相关性最高,PCT (r = 0.344)相关性最低,ORM2 (r = 0.540)与病情严重性的相关性介于两者之间。见表3

Table 2. Comparison of serum indicators between the two patient groups

2. 两组患者血清指标的比较

血清指标

Non-SAP (n = 118)

SAP (n = 64)

z

P

ORM2 (μg/mL)

2069.62 (1927.97, 2234.73)

2357.04 (2199.68, 2545.53)

−7.269

<0.01

CD5L (pg/mL)

957.62 (872.29, 1054.74)

1139.0 (1019.58, 1209.06)

−9.414

<0.01

PCT (ng/mL)

0.30 (0.08, 0.78)

0.99 (0.17, 3.07)

−4.633

<0.01

Figure 1. Comparison of serum ORM2, CD5L, and PCT expression levels between the two patient groups

1. 两组患者血清ORM2、CD5L和PCT表达水平的比较

Table 3. Correlation analysis between serum ORM2, CD5L, PCT and the severity of patients’ condition

3. 血清ORM2、CD5L及PCT与患者病情严重性的相关性分析

血清指标

r

P

ORM2

0.540

<0.01

CD5L

0.564

<0.01

PCT

0.344

<0.01

采用Logistic回归分析方法,以SAP的发生与否作为因变量,将non-SAP及SAP组中血清ORM2、CD5L和PCT的表达水平作为自变量,结果如表4所示,ORM2、CD5L和PCT均为患者发展为SAP的独立预测因素。

Table 4. Logistic regression analysis of independent risk factors predicting the occurrence of SAP in AP patients

4. 预测AP患者发生SAP独立危险因素的Logistic回归分析

血清指标

SE

Wald

P

OR值

95% CI

ORM2 (μg/L)

0.001

14.181

0.000

1.005

1.002~1.007

PCT (ng/mL)

0.257

5.712

0.017

1.848

1.117~3.058

CD5L (pg/ml)

0.002

24.119

0.000

1.011

1.007~1.016

3.3. 各项指标对AP患者病情严重性的预测价值

对SAP患者的血清ORM2、CD5L和PCT水平进行ROC分析。结果如表4图2显示,这些指标的最佳阈值分别为2307.230 μg/mL、1107.350 pg/mL、和1.030 ng/mL,AUC值分别为0.827、0.841和0.708,其中CD5L的预测性最佳。三项指标联合应用时,预测效能更佳,AUC为0.920。

在综合评分系统的效能评估中,Ranson评分(AUC = 0.891)和SOFA评分(AUC = 0.880)均显示出对AP患者病情严重性的预测能力较强,详见表5。然而,当多个血清指标联合应用于预测模型时,其预测效能超越了单一评分系统。

Figure 2. ROC curves of various scoring systems and indicators for predicting the severity of AP

2. 各评分系统及指标预测AP严重程度的ROC曲线

Table 5. ROC curve results of various scoring systems and indicators for predicting the severity of AP

5. 各评分系统及指标预测AP严重程度的ROC曲线结果

预测指标

灵敏度(%)

特异度(%)

AUC

最佳阈值

95%CI

Ranson评分

73

87

0.891

2.000

0.845~0.937

CTSI评分

81

57

0.745

1.000

0.669~0.821

SOFA评分

91

67

0.880

1.000

0.832~0.928

ORM2

63

88

0.827

2307.230

0.764~0.889

CD5L

59

94

0.841

1107.350

0.783~0.899

PCT

50

83

0.708

1.030

0.628~0.788

多项指标联合

0.875

0.805

0.920

-

0.882~0.957

4. 讨论

急性胰腺炎(Acute Pancreatitis, AP)是一种由胰酶过早激活引发的胰腺自身消化的疾病。其胰腺局部炎症可能进一步演变为持续性全身炎症反应综合征(SIRS),并最终导致多器官功能障碍综合征(MODS) [12] [13]。目前针对SAP的治疗手段有限,早期准确预测急性胰腺炎(AP)患者的病情进展对于评估疾病严重程度和采取及时的干预措施具有重要意义,这不仅能够优化治疗方案,还可能有效降低重症急性胰腺炎(SAP)的发生率及其相关并发症的风险,从而改善患者的预后。本研究纳入182例AP患者,并按RAC标准分为Non-SAP组和SAP组。利用ELISA法检测患者血清中ORM2、CD5L、PCT表达水平,同时收集临床资料完成各项评分。结果发现相比于Non-SAP组,SAP组患者血清中ORM2、CD5L、PCT水平显著升高,且与病情严重性密切相关。ROC曲线分析显示三者联合预测效能优于单一指标,预测性能优于传统评分系统。

传统评分系统在评估急性胰腺炎(AP)时存在局限。本研究Ranson AUC值为0.827,灵敏度为73%,特异度为87%,预测价值在评分系统中位居第一。但Ranson评分需48小时内完成,缺乏早期评估能力[14],且未整合影像学资料,不适用于儿童[15]。SOFA在预测SAP发生上虽较为准确,但其与Ranson评分一样步骤复杂,不利于早期预测,且SOFA评分主要用于器官功能障碍描述[16],在SAP的早期预测方面不够突出。CTSI评分虽简便,但受早期影像学延迟限制[17],改良CTSI评分虽提高敏感性,特异性不足[18]。因此,开发新的预测模型对于改善AP预后至关重要。

在先前的研究中发现,ORM2在SAP中表达上升。其作为α1-酸性糖蛋白家族的一种亚型,是由肝脏细胞在炎性因子的刺激下分泌入血,在炎症反应、免疫调节和疾病进程中发挥重要作用。其通过抑制T细胞的增殖、减少巨噬细胞的活性以及调节细胞因子的释放,抑制过度的免疫反应。还可以通过与炎症因子(如TNF-α、IL-1β)相互作用,抑制炎症信号通路,发挥抗炎作用[19]。血浆中ORM2的含量在感染、炎症、肿瘤及组织损伤等病理条件下显著升高,被认为是可用于临床的生物标志物[20]。通过对血清ORM2水平的监测,有望对AP患者的病情进展做出准确预测。本研究显示ORM2是预测SAP发生的独立因子,其AUC值为0.827,灵敏度为63%,特异度为88%,其预测准确度仅次于Ranson、SOFA评分及CD5L因子。

CD5L是一种分泌性糖蛋白,分子量约为50~55 kDa,主要由巨噬细胞和某些T细胞亚群分泌。在炎症和免疫反应中,CD5L通过CD36受体调控巨噬细胞的自噬,从而阻断TLR (Toll样受体)介导的促炎反应,同时减少促炎因子:如TNF-α和IL-1β的分泌[21]。CD5L与p19形成异二聚体复合物(p19/CD5L),激活STAT5信号通路,增强GM-CSF (粒细胞–巨噬细胞集落刺激因子)的表达,从而调节炎症和免疫反应[22]。CD5L可作为炎症性疾病(如动脉粥样硬化、脂肪肝、自身免疫病等)的潜在生物标志物,用于评估炎症和疾病活动度[23] [24]。在本研究中,Logistic回归分析显示CD5L为SAP发生的独立因子,其AUC值为0.841,灵敏度为59%,特异度为94%,在选取的单一指标中,其预测性能最佳,仅次于Ranson评分及SOFA评分。

PCT是降钙素原前体,在健康人体内,PCT由甲状腺C细胞分泌,其浓度极低(通常<0.01 ng/mL) [25],几乎不可检测。在炎症和感染中,PCT不再仅由甲状腺分泌,而是由全身多种组织(如肝脏和肺)在炎症因子(如IL-6、TNF-α、IL-1β)刺激下产生[26]。在感染的诊断和抗生素选择中扮演了重要角色[27]。本研究显示,其AUC值为0.708,灵敏度为50%,特异度为83%。

本研究使用ORM2、CD5L及PCT联合预测SAP的发生,其预测效能超越了传统评分系统以及单一指标。操作简单便捷,具有更高的临床获益。然而本研究依旧存在一些局限性。首先,数据采集时间窗局限于患者入院24小时内的基线血清样本及临床参数,受限于缺乏纵向监测数据和长期预后随访资料,制约了研究指标在病程演变过程中的动态评估效能及其对远期预后的预测价值验证。其次,在预测效能验证环节,虽与Ranson、CTSI、SOFA等临床评分系统进行了对比分析,但未涵盖IL-6、IL-8、CRP等已确立的炎症相关生物标志物,可能影响新型标志物临床应用优势的客观判断。此外,尽管初步发现目标标志物与炎症反应存在显著相关性,但对其分子调控机制仍待深入探讨,特别是在SAP病理进程中具体作用靶点、信号转导通路及多因子交互网络等方面仍需后续实验研究加以阐明。

基金项目

安徽省转化医学研究院科研基金项目(2022zhyx-C56)。

NOTES

*通讯作者。

参考文献

[1] Lankisch, P.G., Apte, M. and Banks, P.A. (2015) Acute Pancreatitis. The Lancet, 386, 85-96.
https://doi.org/10.1016/s0140-6736(14)60649-8
[2] Banks, P.A., Bollen, T.L., Dervenis, C., Gooszen, H.G., Johnson, C.D., Sarr, M.G., et al. (2012) Classification of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut, 62, 102-111.
https://doi.org/10.1136/gutjnl-2012-302779
[3] Garg, P.K. and Singh, V.P. (2019) Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology, 156, 2008-2023.
https://doi.org/10.1053/j.gastro.2018.12.041
[4] Yang, L., Liu, J., Xing, Y., Du, L., Chen, J., Liu, X., et al. (2016) Comparison of BISAP, Ranson, MCTSI, and APACHE II in Predicting Severity and Prognoses of Hyperlipidemic Acute Pancreatitis in Chinese Patients. Gastroenterology Research and Practice, 2016, Article ID: 1834256.
https://doi.org/10.1155/2016/1834256
[5] Teng, T.Z.J., Tan, J.K.T., Baey, S., Gunasekaran, S.K., Junnarkar, S.P., Low, J.K., et al. (2021) Sequential Organ Failure Assessment Score Is Superior to Other Prognostic Indices in Acute Pancreatitis. World Journal of Critical Care Medicine, 10, 355-368.
https://doi.org/10.5492/wjccm.v10.i6.355
[6] Sahu, B., Abbey, P., Anand, R., Kumar, A., Tomer, S. and Malik, E. (2017) Severity Assessment of Acute Pancreatitis Using CT Severity Index and Modified CT Severity Index: Correlation with Clinical Outcomes and Severity Grading as per the Revised Atlanta Classification. Indian Journal of Radiology and Imaging, 27, 152-160.
https://doi.org/10.4103/ijri.ijri_300_16
[7] Bollen, T.L., Singh, V.K., Maurer, R., Repas, K., van Es, H.W., Banks, P.A., et al. (2012) A Comparative Evaluation of Radiologic and Clinical Scoring Systems in the Early Prediction of Severity in Acute Pancreatitis. American Journal of Gastroenterology, 107, 612-619.
https://doi.org/10.1038/ajg.2011.438
[8] Luo, Z., Lei, H., Sun, Y., Liu, X. and Su, D. (2015) Orosomucoid, an Acute Response Protein with Multiple Modulating Activities. Journal of Physiology and Biochemistry, 71, 329-340.
https://doi.org/10.1007/s13105-015-0389-9
[9] Sanchez-Moral, L., Ràfols, N., Martori, C., Paul, T., Téllez, É. and Sarrias, M. (2021) Multifaceted Roles of CD5L in Infectious and Sterile Inflammation. International Journal of Molecular Sciences, 22, Article 4076.
https://doi.org/10.3390/ijms22084076
[10] Tarján, D., Szalai, E., Lipp, M., Verbói, M., Kói, T., Erőss, B., et al. (2024) Persistently High Procalcitonin and C-Reactive Protein Are Good Predictors of Infection in Acute Necrotizing Pancreatitis: A Systematic Review and Meta-analysis. International Journal of Molecular Sciences, 25, Article 1273.
https://doi.org/10.3390/ijms25021273
[11] Liu, Y., Cui, H., Mei, C., Cui, M., He, Q., Wang, Q., et al. (2023) Sirtuin4 Alleviates Severe Acute Pancreatitis by Regulating HIF-1α/HO-1 Mediated Ferroptosis. Cell Death & Disease, 14, Article No. 694.
https://doi.org/10.1038/s41419-023-06216-x
[12] Machicado, J.D., Gougol, A., Tan, X., Gao, X., Paragomi, P., Pothoulakis, I., et al. (2021) Mortality in Acute Pancreatitis with Persistent Organ Failure Is Determined by the Number, Type, and Sequence of Organ Systems Affected. United European Gastroenterology Journal, 9, 139-149.
https://doi.org/10.1002/ueg2.12057
[13] de-Madaria, E., Buxbaum, J.L., Maisonneuve, P., García García de Paredes, A., Zapater, P., Guilabert, L., et al. (2022) Aggressive or Moderate Fluid Resuscitation in Acute Pancreatitis. New England Journal of Medicine, 387, 989-1000.
https://doi.org/10.1056/nejmoa2202884
[14] Luo, X., Wang, J., Wu, Q., Peng, P., Liao, G., Liang, C., et al. (2023) A Modified Ranson Score to Predict Disease Severity, Organ Failure, Pancreatic Necrosis, and Pancreatic Infection in Patients with Acute Pancreatitis. Frontiers in Medicine, 10, ARTICLE 1145471.
https://doi.org/10.3389/fmed.2023.1145471
[15] Ong, Y. and Shelat, V.G. (2021) Ranson Score to Stratify Severity in Acute Pancreatitis Remains Valid—Old Is Gold. Expert Review of Gastroenterology & Hepatology, 15, 865-877.
https://doi.org/10.1080/17474124.2021.1924058
[16] Moreno, R., Rhodes, A., Piquilloud, L., Hernandez, G., Takala, J., Gershengorn, H.B., et al. (2023) The Sequential Organ Failure Assessment (SOFA) Score: Has the Time Come for an Update? Critical Care, 27, Article No. 15.
https://doi.org/10.1186/s13054-022-04290-9
[17] Harshit Kumar, A. and Singh Griwan, M. (2017) A Comparison of APACHE II, BISAP, Ranson’s Score and Modified CTSI in Predicting the Severity of Acute Pancreatitis Based on the 2012 Revised Atlanta Classification. Gastroenterology Report, 6, 127-131.
https://doi.org/10.1093/gastro/gox029
[18] Karagöz, A., Ünlüer, E.E., Oyar, O., Topal, F.E. and Topal, F. (2016) The Ability of Emergency Physicians to Diagnose and Score Acute Pancreatitis on Computed Tomography. European Journal of Trauma and Emergency Surgery, 43, 287-292.
https://doi.org/10.1007/s00068-016-0743-9
[19] Hochepied, T., Berger, F.G., Baumann, H. and Libert, C. (2003) Α1-Acid Glycoprotein: An Acute Phase Protein with Inflammatory and Immunomodulating Properties. Cytokine & Growth Factor Reviews, 14, 25-34.
https://doi.org/10.1016/s1359-6101(02)00054-0
[20] Fournier, T., Medjoubi-N, N. and Porquet, D. (2000) α-1-Acid glycoprotein. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology, 1482, 157-171.
https://doi.org/10.1016/s0167-4838(00)00153-9
[21] Sanjurjo, L., Amézaga, N., Aran, G., Naranjo-Gómez, M., Arias, L., Armengol, C., et al. (2015) The Human CD5L/AIM-CD36 Axis: A Novel Autophagy Inducer in Macrophages That Modulates Inflammatory Responses. Autophagy, 11, 487-502.
https://doi.org/10.1080/15548627.2015.1017183
[22] Hasegawa, H., Mizoguchi, I., Orii, N., Inoue, S., Katahira, Y., Yoneto, T., et al. (2021) Il-23p19 and CD5 Antigen-Like Form a Possible Novel Heterodimeric Cytokine and Contribute to Experimental Autoimmune Encephalomyelitis Development. Scientific Reports, 11, Article No. 5266.
https://doi.org/10.1038/s41598-021-84624-9
[23] Chen, T., Duan, J., Li, M., Wu, X. and Cao, J. (2020) Assessment of Serum CD5L as a Biomarker to Distinguish Etiology and Predict Mortality in Adults with Pneumonia. Journal of Infection, 80, 469-496.
https://doi.org/10.1016/j.jinf.2019.12.003
[24] Gao, X., Liu, Y., Xu, F., Lin, S., Song, Z., Duan, J., et al. (2019) Assessment of Apoptosis Inhibitor of Macrophage/CD5L as a Biomarker to Predict Mortality in the Critically Ill with Sepsis. Chest, 156, 696-705.
https://doi.org/10.1016/j.chest.2019.04.134
[25] Hamade, B. and Huang, D.T. (2020) Procalcitonin: Where Are We Now? Critical Care Clinics, 36, 23-40.
https://doi.org/10.1016/j.ccc.2019.08.003
[26] Gogos, C.A., Drosou, E., Bassaris, H.P. and Skoutelis, A. (2000) Pro‐ versus Anti‐Inflammatory Cytokine Profile in Patients with Severe Sepsis: A Marker for Prognosis and Future Therapeutic Options. The Journal of Infectious Diseases, 181, 176-180.
https://doi.org/10.1086/315214
[27] Schuetz, P., Albrich, W. and Mueller, B. (2011) Procalcitonin for Diagnosis of Infection and Guide to Antibiotic Decisions: Past, Present and Future. BMC Medicine, 9, Article No. 107.
https://doi.org/10.1186/1741-7015-9-107