维生素D在类风湿关节炎中的免疫调节作用
The Immunomodulatory Role of Vitamin D in Rheumatoid Arthritis
DOI: 10.12677/acm.2025.154938, PDF, HTML, XML,   
作者: 韩海彦, 王 烁, 王润莹, 赵 珺, 李仲正:天津中医药大学,天津;姜 楠*:天津中医药大学第二附属医院,天津
关键词: 类风湿关节炎维生素D免疫调节免疫细胞Rheumatoid Arthritis Vitamin D Immune Regulation Immune Cells
摘要: 类风湿关节炎(Rheumatoid Arthritis, RA)是一种慢性免疫性疾病,临床上以持续性对称性关节炎为主要表现。在疾病的治疗过程中,维生素D具有治疗作用,可以通过调节树突细胞、B淋巴细胞、T淋巴细胞、巨噬细胞、NK成纤维样滑膜细胞发挥免疫调节作用,从而证实维生素D是治疗RA的一种辅助手段。本文就维生素D在RA疾病中的免疫调节作用进行总结,以便临床医者进行参考。
Abstract: Rheumatoid Arthritis (RA) is a chronic immune disease clinically characterized by persistent symmetric arthritis. In the course of disease treatment, vitamin D exerts a therapeutic effect by regulating dendritic cells, B lymphocytes, T lymphocytes, macrophages, and NK-like fibroblast-like synoviocytes, thereby confirming its role as an adjunctive therapy for RA. This article summarizes the immunomodulatory effects of vitamin D in RA, providing a reference for clinicians.
文章引用:韩海彦, 王烁, 王润莹, 赵珺, 李仲正, 姜楠. 维生素D在类风湿关节炎中的免疫调节作用[J]. 临床医学进展, 2025, 15(4): 333-339. https://doi.org/10.12677/acm.2025.154938

1. 引言

RA是一种慢性免疫性疾病,主要累及周身小关节,以对症性、侵袭性关节炎症为主要临床表现[1]-[3]。RA可累及全身各个组织和器官,可伴有心包炎、肺纤维化、血管炎等关节外表现。失治误治会加重RA关节炎症,加快疾病进展,严重可出现关节畸形、残疾等影响患者生活质量。在RA的发病中,T淋巴细胞、单核巨噬细胞、树突状细胞等一些免疫活性细胞及其产生的细胞因子起到了关键作用。RA患者血清25(OH)D水平普遍低于正常水平,且血清25(OH)D水平与关节压痛数、关节肿胀数、DAS28评分以及HAQ评分负相关[4]。维生素D除调节钙磷代谢、调节激素水平等功能外,对RA具有显著的免疫调节作用。本文就维生素D在RA疾病中的免疫调节作用进行讨论。

2. 维生素D在人体内的代谢过程

维生素D作为一种脂溶性维生素,在机体内除调节钙、磷代谢,调节激素水平外,还具有免疫调节作用。维生素D在机体内有两种活化形式,其中经由肝脏和肾脏的两次羟基化后生成的1,25(OH)2D3是主要活化形式[5]。人体皮肤中的7-脱氢胆固醇在紫外线作用下产生的维生素D3前体,再以维生素D结合蛋白的形式转运至肝脏,肝脏中的25-羟化酶(CYP2R1)可将维生素D结合蛋白转化为25-羟基维生素D3(25(OH)D3) [6]。25(OH)D3是在人体血液中可以检测的维生素D代谢物,在一定程度上反应人体内维生素D的含量,其血清浓度可作为人体维生素D状况的临床指标。25(OH)D3在肾脏近端小管内1α-羟化酶(CYP27B1)的作用下转化为1,25(OH)2D3 [7]。1,25(OH)2D3通过与维生素D受体(VDR)结合影响免疫细胞的功能以及细胞因子的分泌,进而发挥其免疫调节功能[8]

3. 维生素D的免疫调节作用

3.1. 树突细胞

树突细胞(DC)具有显著的抗原递呈功能,在RA的发病机制中至关重要。研究发现在RA患者滑膜液中存在大量活化的树突细胞,这些细胞可以促进炎症性关节炎的发病[9]。DC有多个不同亚群,常见亚群为常规DC (cDCs)、浆细胞样DC (pDCs)、单核细胞来源的DC (moDC)、单核细胞可产生耐受性DC (tolDC) [10]。其中cDCs和moDC在RA的发病中起到了重要作用。cDCs可以处理并递呈抗原,诱导T细胞活化增值,促进Th1、Th17免疫应答,分泌产生TNF-α、IFNγ、IL-17和IL-4、IL-8、IL-12等多种细胞因子,促进关节炎症[11]。moDC在炎症部位发挥促炎作用[12]。研究发现,moDC呈递自身抗原肽和外源性肽,诱导幼稚CD4T细胞分化为辅助性Th17细胞引起滑膜炎[11]。维生素D可抑制DC分化和成熟,并抑制DC细胞产生细胞因子,进一步调节免疫应答[13]。同时,维生素D促进抗炎细胞因子IL-10表达,从而减轻关节炎症反应[14] [15]。研究发现,1,25(OH)2D3可通过抑制DC分化和成熟为有效的抗原递呈细胞(APC),进而减弱其抗原递呈功能[16]。1,25(OH)2D3还可干扰DC细胞分化和成熟过程,导致耐受性表型[17]

3.2. B淋巴细胞

B淋巴细胞可以通过多种方式参与类风湿性关节炎的发病机制。B淋巴细胞的功能,包括抗原呈递、细胞因子分泌和自身抗体产生,都与RA的发病机制有关[18]。B淋巴细胞是重要的APC,主要向滤泡辅助细胞(Tfh)和外周辅助细胞(Tph)呈递自身抗原,诱导免疫反应[19]。Tfh细胞和Tph细胞可产生IL-21,IL-21在B淋巴细胞的分化和自身抗体的产生中发挥重要作用[20]。RA患者的B淋巴细胞可分泌TNF-α、IFN-γ、IL-6、IL-1β、IL-17和IL-10等多种不同的细胞因子,参与骨破坏[21]。活化的B细胞也会浸润到类风湿滑膜中[22]。RA患者关节中表达Fc受体样4 (FcRL4)的记忆B细胞可分泌RANKL,RANKL可促进单核细胞分化为破骨细胞,导致RA骨损伤[23]。此外,B细胞参与滑膜内三级淋巴组织(TLTs)的形成[24]。B细胞分泌的LTα和LTβ对于维持TLTs中聚集的T细胞和B细胞浸润非常重要[25]。TLTs加重翳和滑膜增生的形成,产生骨破坏。活化的B细胞分化成浆细胞,可产生RF、ACPA和其他自身反应性抗体[22]。RF和ACPA等自身抗体通过多种机制参与RA的发病。RA患者血清中的RF或ACPA的免疫复合物通过激活补体通路,产生C5a和膜攻击复合体,对关节进行伤害[26]。RF和自身抗原形成的免疫复合体通过Fcγ受体(FcγR)诱导破骨细胞分化,从而参与RA患者的骨破坏[27]。研究发现ACPA可与B细胞产生的两性调节蛋白(AREG)结合,进一步诱导破骨细胞分化,加重骨破坏[28]。研究发现,维生素D在维持B细胞稳态中发挥重要作用,在活化的B细胞中,维生素D受体和1-羟化酶的表达上调[29]。此外,维生素D可抑制B细胞增殖,诱导B细胞凋亡,阻断B细胞分化和免疫球蛋白分泌,并可抑制浆细胞和记忆B细胞的产生[30]

3.3. T淋巴细胞

RA炎症的发病过程与CD4+ T细胞亚群密切相关,活化的T细胞可以直接或间接表达破骨细胞分化因子(RANKL)以刺激骨细胞的分化和成熟[31]。CD4+ T细胞分化为Th1、Th2、Th17、Tregs等细胞亚群,其中Th1细胞和Th17在RA的发病中起关键作用。Th1细胞通过分泌如IL-2、IFN-γ、TNF-α和GM-CSF等致炎细胞因子参与免疫应答。其中IFN-γ严重阻碍破骨细胞分化。Th2细胞和Th1细胞之间相互拮抗,主要分泌IL-4、IL-10和IL-13等抗炎因子,作为正反馈因子,参与免疫反应[32]。Th17细胞分为致病性Th17细胞和非致病性Th17细胞。致病性Th17细胞通过分泌炎性细胞因子如IL-17、IL-21、TNF-α和IL-6来促进基质金属蛋白酶的产生和免疫细胞的流入,并在维持炎症反应的同时加重关节破坏[33]。Th17细胞产生的IL-17可以促进滑膜细胞产生RANKL和炎性细胞因子。此外,IL-17还诱导先天免疫系统细胞中炎性细胞因子的表达和成纤维细胞与其他炎性细胞因子的表达,从而形成促进破骨细胞分化的微环境。Treg细胞可以通过分泌IL-10、IL-2、IL-4和转化生长因子-β (TGF-β)等抗炎细胞因子,抑制T细胞和抗原呈递细胞,并且减少促炎细胞因子的分泌,发挥免疫抑制作用。Th17细胞和Tregs细胞两者相互抑制[34]。Th1细胞和Th2细胞,Th1细胞和Treg亚群之间的失衡在RA的发病机制中非常重要。1,25(OH)2D3可以抑制Th17细胞和Th1细胞,同时促进Th2细胞和Treg细胞的分化[35],使平衡向Th2细胞和Treg细胞偏移,减轻炎症反应。

3.4. 巨噬细胞

巨噬细胞作为多功能细胞在机体广泛分布,通过消除侵袭性病原体和衰老细胞,在机体防御、急慢性炎症以及组织重塑和修复等多种生理和病理过程中发挥重要作用。巨噬细胞可分为两个不同的亚群:促炎型巨噬细胞(M1型)和抑炎型巨噬细胞(M2型),两者处于平衡状态。RA患者滑膜中的M1型细胞数量增加,M2型细胞很少或无活性,这种不平衡是造成RA软骨损伤的重要因素。M1型巨噬细胞产生促炎细胞因子(如TNF、IL-6、IL-12、IL-23)、趋化因子和金属蛋白酶,促进破骨细胞生成,侵蚀和进行性关节破坏[36]。研究发现,一种新型脂肪因子—脂肪酸结合蛋白4 (FABP4)在M1型巨噬细胞中的表达上调。FABP4富集在RA滑膜中,具有促进炎性细胞因子产生,破坏软骨细胞稳态,促进滑膜炎,促进血管生成,加剧RA进展的作用[37]。M2型巨噬细胞产生TGF-β和抗炎细胞因子(IL-10、IL-4、IL-13),这些细胞因子通过清除碎片、促进组织修复来减轻RA关节炎症[38]。M1和M2巨噬细胞失衡会加重RA患者骨破坏。在生理浓度的维生素结合蛋白下,巨噬细胞高水平表达CYP27B1,促进1,25(OH)2D3的转化,提高维生素D的生物利用度。此外,在高度炎症的情况下,M1巨噬细胞可以产生足够水平的1,25(OH)2D3调节T细胞反应,通过维生素D介导的负反馈减少T细胞介导的炎症[39]。研究发现,1,25(OH)2D3可以通过诱导巨噬细胞从M1向M2巨噬细胞的转变,减轻组织损伤[40]

3.5. 自然杀伤(NK)细胞

NK细胞是先天免疫细胞,可以影响先天性和适应性免疫反应。NK细胞不表达T细胞和B细胞受体。NK细胞参与RA发病的作用机制可能是以下机制:NK细胞通过产生诱导细胞凋亡的细胞因子,发挥细胞毒性作用参与免疫反应。NK细胞可产生IFN-γ、TNF和粒细胞单核细胞集落刺激因子(GM-CSF)等细胞因子,这些因子都能激活T细胞和其他先天免疫细胞,激发适应性免疫应答。同时,NK细胞还可产生趋化因子,有助于效应细胞迁移到发炎组织中。NK细胞中不同的转录调节因子诱导溶细胞分子和炎性细胞因子的产生[41]。维生素D具有可以调节细胞毒性淋巴细胞的功能,对NK细胞具有明显的活化作用[42]

3.6. 成纤维样滑膜细胞

成纤维样滑膜细胞(FLS)是关节组织中主要的细胞,FLS在关节滑膜中的显著增加以及重新分布是RA关节破坏的重要原因。活化的FLS可以产生金属蛋白酶、细胞因子和趋化因子,具有促进炎症反应、血管生成、软骨降解和关节损伤的作用。FLS分层堆叠形成的具有侵蚀性的炎性肉芽组织—血管翳,可以通过产生细胞外基质降解酶来造成组织损伤[43]。蛋白酶在血管翳和软骨之间的界面处过度产生并参与软骨破坏。血管翳还可以产生RANKL和Wnt5a,两者都可以促进破骨细胞分化,导致骨关节破坏。此外,活化的FLS产生的细胞因子可以增加流入滑膜的血细胞引发恶性循环,加重炎症和进一步促进破骨细胞分化[44]。研究发现维生素D可以抑制FLS的侵袭特性。同时,还增加FLS中VDR的表达,使FLS对VDR激动活性更敏感。VDR能够降低细胞侵袭性,从而减轻关节炎症[45]

4. 讨论

RA是一种慢性免疫性疾病,VD具有显著的免疫调节作用,减轻关节炎症,延缓疾病进展。VD可抑制DC产生细胞因子,抑制DC分化和成熟,减弱其抗原递呈功能,此外抑制浆细胞及记忆B细胞的产生,发挥免疫调节作用。VD在类风湿关节炎中还可抑制T淋巴细胞分化、减少促炎因子的分泌及增加抗炎因子的释放,进行免疫调节。1,25(OH)2D3对Th17细胞和Th1细胞具有抑制作用,同时可促进Th2细胞和Treg细胞的分化,减轻炎症反应。维生素D通过抑制Th17细胞的分化和促炎因子分泌,同时促进Treg细胞的分化和功能,恢复Th17/Treg平衡,从而减轻炎症反应和关节破坏,缓解RA症状[46]

类风湿关节炎的患者大都伴有不同程度的血清1,25(OH)2D3水平的降低,这可能是RA疾病发生发展的因素之一。在RA的治疗中,补充维生素D可作为一种辅助手段,减轻RA关节炎症,但仍然需要大规模的临床实验加以证实。随着对研究的深入,我们会进一步加深RA和维生素D之间相关性的认识。

NOTES

*通讯作者。

参考文献

[1] 马熙, 聂姣, 罗淋铷, 等. 中医药对类风湿关节炎骨破坏调控作用研究进展[J]. 实用中医内科杂志, 2024, 38(3): 129-132.
[2] Ross, E.A., Devitt, A. and Johnson, J.R. (2021) Macrophages: The Good, the Bad, and the Gluttony. Frontiers in Immunology, 12, Article 708186.
https://doi.org/10.3389/fimmu.2021.708186
[3] Lin, J., Liu, J., Davies, M.L. and Chen, W. (2016) Serum Vitamin D Level and Rheumatoid Arthritis Disease Activity: Review and Meta-Analysis. PLOS ONE, 11, e0146351.
https://doi.org/10.1371/journal.pone.0146351
[4] Hewison, M. (2010) Vitamin D and the Intracrinology of Innate Immunity. Molecular and Cellular Endocrinology, 321, 103-111.
https://doi.org/10.1016/j.mce.2010.02.013
[5] Thomas, R., MacDonald, K.P., Pettit, A.R., Cavanagh, L.L., Padmanabha, J. and Zehntner, S. (1999) Dendritic Cells and the Pathogenesis of Rheumatoid Arthritis. Journal of Leukocyte Biology, 66, 286-292.
https://doi.org/10.1002/jlb.66.2.286
[6] Prendergast, C.T., Patakas, A., Al-Khabouri, S., McIntyre, C.L., McInnes, I.B., Brewer, J.M., et al. (2018) Visualising the Interaction of CD4 T Cells and DCs in the Evolution of Inflammatory Arthritis. Annals of the Rheumatic Diseases, 77, 579-588.
https://doi.org/10.1136/annrheumdis-2017-212279
[7] Moret, F.M., Hack, C.E., van der Wurff-Jacobs, K.M., de Jager, W., Radstake, T.R., Lafeber, F.P., et al. (2013) Intra-articular CD1c-Expressing Myeloid Dendritic Cells from Rheumatoid Arthritis Patients Express a Unique Set of T Cell-Attracting Chemokines and Spontaneously Induce Th1, Th17 and Th2 Cell Activity. Arthritis Research & Therapy, 15, Article No. R155.
https://doi.org/10.1186/ar4338
[8] 赖兰敏, 彭桉平, 陈曲波. 1,25二羟维生素D3的免疫调节及其在自身免疫性疾病中的研究进展[J]. 中国免疫学杂志, 2019, 35(17): 2169-2173.
[9] Canavan, M., Marzaioli, V., Bhargava, V., Nagpal, S., Gallagher, P., Hurson, C., et al. (2021) Functionally Mature CD1c+ Dendritic Cells Preferentially Accumulate in the Inflammatory Arthritis Synovium. Frontiers in Immunology, 12, Article 745226.
https://doi.org/10.3389/fimmu.2021.745226
[10] Suwa, Y., Nagafuchi, Y., Yamada, S. and Fujio, K. (2023) The Role of Dendritic Cells and Their Immunometabolism in Rheumatoid Arthritis. Frontiers in Immunology, 14, Article 1161148.
https://doi.org/10.3389/fimmu.2023.1161148
[11] Rhodes, J.W., Tong, O., Harman, A.N. and Turville, S.G. (2019) Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Frontiers in Immunology, 10, Article 1088.
https://doi.org/10.3389/fimmu.2019.01088
[12] Guilliams, M. and van de Laar, L. (2015) A Hitchhiker’s Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology, 6, Article 406.
https://doi.org/10.3389/fimmu.2015.00406
[13] Segura, E., Touzot, M., Bohineust, A., Cappuccio, A., Chiocchia, G., Hosmalin, A., et al. (2013) Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation. Immunity, 38, 336-348.
https://doi.org/10.1016/j.immuni.2012.10.018
[14] Ao, T., Kikuta, J. and Ishii, M. (2021) The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules, 11, Article 1624.
https://doi.org/10.3390/biom11111624
[15] Charoenngam, N. and Holick, M.F. (2020) Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients, 12, Article 2097.
https://doi.org/10.3390/nu12072097
[16] Piemonti, L., Monti, P., Sironi, M., Fraticelli, P., Leone, B.E., Dal Cin, E., et al. (2000) Vitamin D3 Affects Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells. The Journal of Immunology, 164, 4443-4451.
https://doi.org/10.4049/jimmunol.164.9.4443
[17] Adorini, L. and Penna, G. (2009) Induction of Tolerogenic Dendritic Cells by Vitamin D Receptor Agonists. In: Lombardi, G. and Riffo-Vasquez, Y., Eds., Dendritic Cells. Handbook of Experimental Pharmacology, Springer Berlin Heidelberg, 251-273.
https://doi.org/10.1007/978-3-540-71029-5_12
[18] Wu, F., Gao, J., Kang, J., Wang, X., Niu, Q., Liu, J., et al. (2021) B Cells in Rheumatoid Arthritis: Pathogenic Mechanisms and Treatment Prospects. Frontiers in Immunology, 12, Article 750753.
https://doi.org/10.3389/fimmu.2021.750753
[19] Lucas, C., Perdriger, A. and Amé, P. (2020) Definition of B Cell Helper T Cells in Rheumatoid Arthritis and Their Behavior during Treatment. Seminars in Arthritis and Rheumatism, 50, 867-872.
https://doi.org/10.1016/j.semarthrit.2020.06.021
[20] Shoda, H., Nagafuchi, Y., Tsuchida, Y., Sakurai, K., Sumitomo, S., Fujio, K., et al. (2017) Increased Serum Concentrations of IL-1 Beta, IL-21 and Th17 Cells in Overweight Patients with Rheumatoid Arthritis. Arthritis Research & Therapy, 19, Article No. 111.
https://doi.org/10.1186/s13075-017-1308-y
[21] Yanaba, K., Bouaziz, J., Haas, K.M., Poe, J.C., Fujimoto, M. and Tedder, T.F. (2008) A Regulatory B Cell Subset with a Unique CD1dhiCD5+ Phenotype Controls T Cell-Dependent Inflammatory Responses. Immunity, 28, 639-650.
https://doi.org/10.1016/j.immuni.2008.03.017
[22] Wang, J., Shan, Y., Jiang, Z., Feng, J., Li, C., Ma, L., et al. (2013) High Frequencies of Activated B Cells and T Follicular Helper Cells Are Correlated with Disease Activity in Patients with New-Onset Rheumatoid Arthritis. Clinical and Experimental Immunology, 174, 212-220.
https://doi.org/10.1111/cei.12162
[23] Meednu, N., Zhang, H., Owen, T., Sun, W., Wang, V., Cistrone, C., et al. (2016) Production of RANKL by Memory B Cells: A Link between B Cells and Bone Erosion in Rheumatoid Arthritis. Arthritis & Rheumatology, 68, 805-816.
https://doi.org/10.1002/art.39489
[24] Marston, B., Palanichamy, A. and Anolik, J.H. (2010) B Cells in the Pathogenesis and Treatment of Rheumatoid Arthritis. Current Opinion in Rheumatology, 22, 307-315.
https://doi.org/10.1097/bor.0b013e3283369cb8
[25] Duddy, M.E., Alter, A. and Bar-Or, A. (2004) Distinct Profiles of Human B Cell Effector Cytokines: A Role in Immune Regulation? The Journal of Immunology, 172, 3422-3427.
https://doi.org/10.4049/jimmunol.172.6.3422
[26] Laurent, L., Anquetil, F., Clavel, C., Ndongo-Thiam, N., Offer, G., Miossec, P., et al. (2015) IgM Rheumatoid Factor Amplifies the Inflammatory Response of Macrophages Induced by the Rheumatoid Arthritis-Specific Immune Complexes Containing Anticitrullinated Protein Antibodies. Annals of the Rheumatic Diseases, 74, 1425-1431.
https://doi.org/10.1136/annrheumdis-2013-204543
[27] Harre, U., Lang, S.C., Pfeifle, R., Rombouts, Y., Frühbeißer, S., Amara, K., et al. (2015) Glycosylation of Immunoglobulin G Determines Osteoclast Differentiation and Bone Loss. Nature Communications, 6, Article No. 6651.
https://doi.org/10.1038/ncomms7651
[28] Mahendra, A., Yang, X., Abnouf, S., Adolacion, J.R.T., Park, D., Soomro, S., et al. (2019) Beyond Autoantibodies: Biologic Roles of Human Autoreactive B Cells in Rheumatoid Arthritis Revealed by RNA‐Sequencing. Arthritis & Rheumatology, 71, 529-541.
https://doi.org/10.1002/art.40772
[29] Heine, G., Niesner, U., Chang, H., Steinmeyer, A., Zügel, U., Zuberbier, T., et al. (2008) 1,25‐Dihydroxyvitamin D3 Promotes IL‐10 Production in Human B Cells. European Journal of Immunology, 38, 2210-2218.
https://doi.org/10.1002/eji.200838216
[30] Chen, S., Sims, G.P., Chen, X.X., Gu, Y.Y., Chen, S. and Lipsky, P.E. (2007) Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. The Journal of Immunology, 179, 1634-1647.
https://doi.org/10.4049/jimmunol.179.3.1634
[31] Azizieh, F.Y., Shehab, D., Al Jarallah, K., Mojiminiyi, O., Gupta, R. and Raghupathy, R. (2019) circulatory Pattern of Cytokines, Adipokines and Bone Markers in Postmenopausal Women with Low BMD. Journal of Inflammation Research, 12, 99-108.
https://doi.org/10.2147/jir.s203590
[32] Ruterbusch, M., Pruner, K.B., Shehata, L. and Pepper, M. (2020) In Vivo CD4+ T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annual Review of Immunology, 38, 705-725.
https://doi.org/10.1146/annurev-immunol-103019-085803
[33] Lee, Y., Awasthi, A., Yosef, N., Quintana, F.J., Xiao, S., Peters, A., et al. (2012) Induction and Molecular Signature of Pathogenic TH17 Cells. Nature Immunology, 13, 991-999.
https://doi.org/10.1038/ni.2416
[34] Saxena, Y., Routh, S. and Mukhopadhaya, A. (2021) Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Frontiers in Immunology, 12, Article 687037.
https://doi.org/10.3389/fimmu.2021.687037
[35] Fletcher, J., Bishop, E.L., Harrison, S.R., Swift, A., Cooper, S.C., Dimeloe, S.K., et al. (2022) Autoimmune Disease and Interconnections with Vitamin D. Endocrine Connections, 11, e210554.
https://doi.org/10.1530/ec-21-0554
[36] Cutolo, M., Campitiello, R., Gotelli, E. and Soldano, S. (2022) The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology, 13, Article 867260.
https://doi.org/10.3389/fimmu.2022.867260
[37] Guo, D., Lin, C., Lu, Y., Guan, H., Qi, W., Zhang, H., et al. (2023) Correction: FABP4 Secreted by M1-Polarized Macrophages Promotes Synovitis and Angiogenesis to Exacerbate Rheumatoid Arthritis. Bone Research, 11, Article No. 41.
https://doi.org/10.1038/s41413-023-00271-y
[38] Tardito, S., Martinelli, G., Soldano, S., Paolino, S., Pacini, G., Patane, M., et al. (2019) Macrophage M1/M2 Polarization and Rheumatoid Arthritis: A Systematic Review. Autoimmunity Reviews, 18, Article 102397.
https://doi.org/10.1016/j.autrev.2019.102397
[39] Lopez, D.V., Al-Jaberi, F.A.H., Woetmann, A., Ødum, N., Bonefeld, C.M., Kongsbak-Wismann, M., et al. (2021) Macrophages Control the Bioavailability of Vitamin D and Vitamin D-Regulated T Cell Responses. Frontiers in Immunology, 12, Article 722806.
https://doi.org/10.3389/fimmu.2021.722806
[40] Rao Muvva, J., Parasa, V.R., Lerm, M., Svensson, M. and Brighenti, S. (2020) Polarization of Human Monocyte-Derived Cells with Vitamin D Promotes Control of Mycobacterium tuberculosis Infection. Frontiers in Immunology, 10, Article 3157.
https://doi.org/10.3389/fimmu.2019.03157
[41] Kucuksezer, U.C., Aktas Cetin, E., Esen, F., Tahrali, I., Akdeniz, N., Gelmez, M.Y., et al. (2021) The Role of Natural Killer Cells in Autoimmune Diseases. Frontiers in Immunology, 12, Article 622306.
https://doi.org/10.3389/fimmu.2021.622306
[42] Oh, S., Chun, S., Hwang, S., Kim, J., Cho, Y., Lee, J., et al. (2021) Vitamin D and Exercise Are Major Determinants of Natural Killer Cell Activity, Which Is Age-and Gender-Specific. Frontiers in Immunology, 12, Article 594356.
https://doi.org/10.3389/fimmu.2021.594356
[43] Falconer, J., Murphy, A.N., Young, S.P., Clark, A.R., Tiziani, S., Guma, M., et al. (2018) Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis. Arthritis & Rheumatology, 70, 984-999.
https://doi.org/10.1002/art.40504
[44] Maeda, K., Yoshida, K., Nishizawa, T., Otani, K., Yamashita, Y., Okabe, H., et al. (2022) Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. International Journal of Molecular Sciences, 23, Article 2871.
https://doi.org/10.3390/ijms23052871
[45] Laragione, T., Shah, A. and Gulko, P.S. (2012) The Vitamin D Receptor Regulates Rheumatoid Arthritis Synovial Fibroblast Invasion and Morphology. Molecular Medicine, 18, 194-200.
https://doi.org/10.2119/molmed.2011.00410
[46] 董杨逗. 维生素D通过β-catenin通路调控Treg细胞免疫反应的机制研究[D]: [硕士学位论文]. 太原: 山西医科大学, 2023.