[1]
|
马熙, 聂姣, 罗淋铷, 等. 中医药对类风湿关节炎骨破坏调控作用研究进展[J]. 实用中医内科杂志, 2024, 38(3): 129-132.
|
[2]
|
Ross, E.A., Devitt, A. and Johnson, J.R. (2021) Macrophages: The Good, the Bad, and the Gluttony. Frontiers in Immunology, 12, Article 708186. https://doi.org/10.3389/fimmu.2021.708186
|
[3]
|
Lin, J., Liu, J., Davies, M.L. and Chen, W. (2016) Serum Vitamin D Level and Rheumatoid Arthritis Disease Activity: Review and Meta-Analysis. PLOS ONE, 11, e0146351. https://doi.org/10.1371/journal.pone.0146351
|
[4]
|
Hewison, M. (2010) Vitamin D and the Intracrinology of Innate Immunity. Molecular and Cellular Endocrinology, 321, 103-111. https://doi.org/10.1016/j.mce.2010.02.013
|
[5]
|
Thomas, R., MacDonald, K.P., Pettit, A.R., Cavanagh, L.L., Padmanabha, J. and Zehntner, S. (1999) Dendritic Cells and the Pathogenesis of Rheumatoid Arthritis. Journal of Leukocyte Biology, 66, 286-292. https://doi.org/10.1002/jlb.66.2.286
|
[6]
|
Prendergast, C.T., Patakas, A., Al-Khabouri, S., McIntyre, C.L., McInnes, I.B., Brewer, J.M., et al. (2018) Visualising the Interaction of CD4 T Cells and DCs in the Evolution of Inflammatory Arthritis. Annals of the Rheumatic Diseases, 77, 579-588. https://doi.org/10.1136/annrheumdis-2017-212279
|
[7]
|
Moret, F.M., Hack, C.E., van der Wurff-Jacobs, K.M., de Jager, W., Radstake, T.R., Lafeber, F.P., et al. (2013) Intra-articular CD1c-Expressing Myeloid Dendritic Cells from Rheumatoid Arthritis Patients Express a Unique Set of T Cell-Attracting Chemokines and Spontaneously Induce Th1, Th17 and Th2 Cell Activity. Arthritis Research & Therapy, 15, Article No. R155. https://doi.org/10.1186/ar4338
|
[8]
|
赖兰敏, 彭桉平, 陈曲波. 1,25二羟维生素D3的免疫调节及其在自身免疫性疾病中的研究进展[J]. 中国免疫学杂志, 2019, 35(17): 2169-2173.
|
[9]
|
Canavan, M., Marzaioli, V., Bhargava, V., Nagpal, S., Gallagher, P., Hurson, C., et al. (2021) Functionally Mature CD1c+ Dendritic Cells Preferentially Accumulate in the Inflammatory Arthritis Synovium. Frontiers in Immunology, 12, Article 745226. https://doi.org/10.3389/fimmu.2021.745226
|
[10]
|
Suwa, Y., Nagafuchi, Y., Yamada, S. and Fujio, K. (2023) The Role of Dendritic Cells and Their Immunometabolism in Rheumatoid Arthritis. Frontiers in Immunology, 14, Article 1161148. https://doi.org/10.3389/fimmu.2023.1161148
|
[11]
|
Rhodes, J.W., Tong, O., Harman, A.N. and Turville, S.G. (2019) Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Frontiers in Immunology, 10, Article 1088. https://doi.org/10.3389/fimmu.2019.01088
|
[12]
|
Guilliams, M. and van de Laar, L. (2015) A Hitchhiker’s Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology, 6, Article 406. https://doi.org/10.3389/fimmu.2015.00406
|
[13]
|
Segura, E., Touzot, M., Bohineust, A., Cappuccio, A., Chiocchia, G., Hosmalin, A., et al. (2013) Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation. Immunity, 38, 336-348. https://doi.org/10.1016/j.immuni.2012.10.018
|
[14]
|
Ao, T., Kikuta, J. and Ishii, M. (2021) The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules, 11, Article 1624. https://doi.org/10.3390/biom11111624
|
[15]
|
Charoenngam, N. and Holick, M.F. (2020) Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients, 12, Article 2097. https://doi.org/10.3390/nu12072097
|
[16]
|
Piemonti, L., Monti, P., Sironi, M., Fraticelli, P., Leone, B.E., Dal Cin, E., et al. (2000) Vitamin D3 Affects Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells. The Journal of Immunology, 164, 4443-4451. https://doi.org/10.4049/jimmunol.164.9.4443
|
[17]
|
Adorini, L. and Penna, G. (2009) Induction of Tolerogenic Dendritic Cells by Vitamin D Receptor Agonists. In: Lombardi, G. and Riffo-Vasquez, Y., Eds., Dendritic Cells. Handbook of Experimental Pharmacology, Springer Berlin Heidelberg, 251-273. https://doi.org/10.1007/978-3-540-71029-5_12
|
[18]
|
Wu, F., Gao, J., Kang, J., Wang, X., Niu, Q., Liu, J., et al. (2021) B Cells in Rheumatoid Arthritis: Pathogenic Mechanisms and Treatment Prospects. Frontiers in Immunology, 12, Article 750753. https://doi.org/10.3389/fimmu.2021.750753
|
[19]
|
Lucas, C., Perdriger, A. and Amé, P. (2020) Definition of B Cell Helper T Cells in Rheumatoid Arthritis and Their Behavior during Treatment. Seminars in Arthritis and Rheumatism, 50, 867-872. https://doi.org/10.1016/j.semarthrit.2020.06.021
|
[20]
|
Shoda, H., Nagafuchi, Y., Tsuchida, Y., Sakurai, K., Sumitomo, S., Fujio, K., et al. (2017) Increased Serum Concentrations of IL-1 Beta, IL-21 and Th17 Cells in Overweight Patients with Rheumatoid Arthritis. Arthritis Research & Therapy, 19, Article No. 111. https://doi.org/10.1186/s13075-017-1308-y
|
[21]
|
Yanaba, K., Bouaziz, J., Haas, K.M., Poe, J.C., Fujimoto, M. and Tedder, T.F. (2008) A Regulatory B Cell Subset with a Unique CD1dhiCD5+ Phenotype Controls T Cell-Dependent Inflammatory Responses. Immunity, 28, 639-650. https://doi.org/10.1016/j.immuni.2008.03.017
|
[22]
|
Wang, J., Shan, Y., Jiang, Z., Feng, J., Li, C., Ma, L., et al. (2013) High Frequencies of Activated B Cells and T Follicular Helper Cells Are Correlated with Disease Activity in Patients with New-Onset Rheumatoid Arthritis. Clinical and Experimental Immunology, 174, 212-220. https://doi.org/10.1111/cei.12162
|
[23]
|
Meednu, N., Zhang, H., Owen, T., Sun, W., Wang, V., Cistrone, C., et al. (2016) Production of RANKL by Memory B Cells: A Link between B Cells and Bone Erosion in Rheumatoid Arthritis. Arthritis & Rheumatology, 68, 805-816. https://doi.org/10.1002/art.39489
|
[24]
|
Marston, B., Palanichamy, A. and Anolik, J.H. (2010) B Cells in the Pathogenesis and Treatment of Rheumatoid Arthritis. Current Opinion in Rheumatology, 22, 307-315. https://doi.org/10.1097/bor.0b013e3283369cb8
|
[25]
|
Duddy, M.E., Alter, A. and Bar-Or, A. (2004) Distinct Profiles of Human B Cell Effector Cytokines: A Role in Immune Regulation? The Journal of Immunology, 172, 3422-3427. https://doi.org/10.4049/jimmunol.172.6.3422
|
[26]
|
Laurent, L., Anquetil, F., Clavel, C., Ndongo-Thiam, N., Offer, G., Miossec, P., et al. (2015) IgM Rheumatoid Factor Amplifies the Inflammatory Response of Macrophages Induced by the Rheumatoid Arthritis-Specific Immune Complexes Containing Anticitrullinated Protein Antibodies. Annals of the Rheumatic Diseases, 74, 1425-1431. https://doi.org/10.1136/annrheumdis-2013-204543
|
[27]
|
Harre, U., Lang, S.C., Pfeifle, R., Rombouts, Y., Frühbeißer, S., Amara, K., et al. (2015) Glycosylation of Immunoglobulin G Determines Osteoclast Differentiation and Bone Loss. Nature Communications, 6, Article No. 6651. https://doi.org/10.1038/ncomms7651
|
[28]
|
Mahendra, A., Yang, X., Abnouf, S., Adolacion, J.R.T., Park, D., Soomro, S., et al. (2019) Beyond Autoantibodies: Biologic Roles of Human Autoreactive B Cells in Rheumatoid Arthritis Revealed by RNA‐Sequencing. Arthritis & Rheumatology, 71, 529-541. https://doi.org/10.1002/art.40772
|
[29]
|
Heine, G., Niesner, U., Chang, H., Steinmeyer, A., Zügel, U., Zuberbier, T., et al. (2008) 1,25‐Dihydroxyvitamin D3 Promotes IL‐10 Production in Human B Cells. European Journal of Immunology, 38, 2210-2218. https://doi.org/10.1002/eji.200838216
|
[30]
|
Chen, S., Sims, G.P., Chen, X.X., Gu, Y.Y., Chen, S. and Lipsky, P.E. (2007) Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. The Journal of Immunology, 179, 1634-1647. https://doi.org/10.4049/jimmunol.179.3.1634
|
[31]
|
Azizieh, F.Y., Shehab, D., Al Jarallah, K., Mojiminiyi, O., Gupta, R. and Raghupathy, R. (2019) circulatory Pattern of Cytokines, Adipokines and Bone Markers in Postmenopausal Women with Low BMD. Journal of Inflammation Research, 12, 99-108. https://doi.org/10.2147/jir.s203590
|
[32]
|
Ruterbusch, M., Pruner, K.B., Shehata, L. and Pepper, M. (2020) In Vivo CD4+ T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annual Review of Immunology, 38, 705-725. https://doi.org/10.1146/annurev-immunol-103019-085803
|
[33]
|
Lee, Y., Awasthi, A., Yosef, N., Quintana, F.J., Xiao, S., Peters, A., et al. (2012) Induction and Molecular Signature of Pathogenic TH17 Cells. Nature Immunology, 13, 991-999. https://doi.org/10.1038/ni.2416
|
[34]
|
Saxena, Y., Routh, S. and Mukhopadhaya, A. (2021) Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Frontiers in Immunology, 12, Article 687037. https://doi.org/10.3389/fimmu.2021.687037
|
[35]
|
Fletcher, J., Bishop, E.L., Harrison, S.R., Swift, A., Cooper, S.C., Dimeloe, S.K., et al. (2022) Autoimmune Disease and Interconnections with Vitamin D. Endocrine Connections, 11, e210554. https://doi.org/10.1530/ec-21-0554
|
[36]
|
Cutolo, M., Campitiello, R., Gotelli, E. and Soldano, S. (2022) The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology, 13, Article 867260. https://doi.org/10.3389/fimmu.2022.867260
|
[37]
|
Guo, D., Lin, C., Lu, Y., Guan, H., Qi, W., Zhang, H., et al. (2023) Correction: FABP4 Secreted by M1-Polarized Macrophages Promotes Synovitis and Angiogenesis to Exacerbate Rheumatoid Arthritis. Bone Research, 11, Article No. 41. https://doi.org/10.1038/s41413-023-00271-y
|
[38]
|
Tardito, S., Martinelli, G., Soldano, S., Paolino, S., Pacini, G., Patane, M., et al. (2019) Macrophage M1/M2 Polarization and Rheumatoid Arthritis: A Systematic Review. Autoimmunity Reviews, 18, Article 102397. https://doi.org/10.1016/j.autrev.2019.102397
|
[39]
|
Lopez, D.V., Al-Jaberi, F.A.H., Woetmann, A., Ødum, N., Bonefeld, C.M., Kongsbak-Wismann, M., et al. (2021) Macrophages Control the Bioavailability of Vitamin D and Vitamin D-Regulated T Cell Responses. Frontiers in Immunology, 12, Article 722806. https://doi.org/10.3389/fimmu.2021.722806
|
[40]
|
Rao Muvva, J., Parasa, V.R., Lerm, M., Svensson, M. and Brighenti, S. (2020) Polarization of Human Monocyte-Derived Cells with Vitamin D Promotes Control of Mycobacterium tuberculosis Infection. Frontiers in Immunology, 10, Article 3157. https://doi.org/10.3389/fimmu.2019.03157
|
[41]
|
Kucuksezer, U.C., Aktas Cetin, E., Esen, F., Tahrali, I., Akdeniz, N., Gelmez, M.Y., et al. (2021) The Role of Natural Killer Cells in Autoimmune Diseases. Frontiers in Immunology, 12, Article 622306. https://doi.org/10.3389/fimmu.2021.622306
|
[42]
|
Oh, S., Chun, S., Hwang, S., Kim, J., Cho, Y., Lee, J., et al. (2021) Vitamin D and Exercise Are Major Determinants of Natural Killer Cell Activity, Which Is Age-and Gender-Specific. Frontiers in Immunology, 12, Article 594356. https://doi.org/10.3389/fimmu.2021.594356
|
[43]
|
Falconer, J., Murphy, A.N., Young, S.P., Clark, A.R., Tiziani, S., Guma, M., et al. (2018) Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis. Arthritis & Rheumatology, 70, 984-999. https://doi.org/10.1002/art.40504
|
[44]
|
Maeda, K., Yoshida, K., Nishizawa, T., Otani, K., Yamashita, Y., Okabe, H., et al. (2022) Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. International Journal of Molecular Sciences, 23, Article 2871. https://doi.org/10.3390/ijms23052871
|
[45]
|
Laragione, T., Shah, A. and Gulko, P.S. (2012) The Vitamin D Receptor Regulates Rheumatoid Arthritis Synovial Fibroblast Invasion and Morphology. Molecular Medicine, 18, 194-200. https://doi.org/10.2119/molmed.2011.00410
|
[46]
|
董杨逗. 维生素D通过β-catenin通路调控Treg细胞免疫反应的机制研究[D]: [硕士学位论文]. 太原: 山西医科大学, 2023.
|