[1]
|
Zhao, X., Jia, Q. and Fu, J. (2023) Effectiveness of rb-bFGF Eye Drops for Post-Cataract Surgery Dry Eye and Observation of Changes in Tear Secretion and Corneal Damage in Patients. Alternative Therapies in Health and Medicine, 29, 489-495. https://pubmed.ncbi.nlm.nih.gov/37652420/
|
[2]
|
Huang, D. and Li, Z. (2024) Multidimensional Immunotherapy for Dry Eye Disease: Current Status and Future Directions. Frontiers in Ophthalmology, 4, Article 1449283. https://doi.org/10.3389/fopht.2024.1449283
|
[3]
|
Rastmanesh, R. (2021) Aquaporin5-Targeted Treatment for Dry Eye through Bioactive Compounds and Gut Microbiota. Journal of Ocular Pharmacology and Therapeutics, 37, 464-471. https://doi.org/10.1089/jop.2021.0029
|
[4]
|
He, X., Zhao, Z., Wang, S., Kang, J., Zhang, M., Bu, J., et al. (2020) High-Fat Diet—Induced Functional and Pathologic Changes in Lacrimal Gland. The American Journal of Pathology, 190, 2387-2402. https://doi.org/10.1016/j.ajpath.2020.09.002
|
[5]
|
Jackson, C.J., Naqvi, M., Gundersen, K.G. and Utheim, T.P. (2022) Role of Stem Cells in Regenerative Treatment of Dry Eye Disease Caused by Lacrimal Gland Dysfunction. Acta Ophthalmologica, 101, 360-375. https://doi.org/10.1111/aos.15629
|
[6]
|
Zemanová, M. (2020) Dry Eyes Disease. A Review. Czech and Slovak Ophthalmology, 77, 107-119. https://doi.org/10.31348/2020/29
|
[7]
|
Sheppard, J.D. and Nichols, K.K. (2023) Dry Eye Disease Associated with Meibomian Gland Dysfunction: Focus on Tear Film Characteristics and the Therapeutic Landscape. Ophthalmology and Therapy, 12, 1397-1418. https://doi.org/10.1007/s40123-023-00669-1
|
[8]
|
King-Smith, P.E., Begley, C. and Braun, R.J. (2022) A Perspective on the Use of Fluorescent Imaging to Reveal Mechanisms of Breakup. Current Eye Research, 47, 1355-1361. https://doi.org/10.1080/02713683.2022.2098981
|
[9]
|
Hong, M., Tong, L., Mehta, J.S. and Ong, H.S. (2023) Impact of Exposomes on Ocular Surface Diseases. International Journal of Molecular Sciences, 24, Article 11273. https://doi.org/10.3390/ijms241411273
|
[10]
|
Zhuang, D., Misra, S.L., Mugisho, O.O., Rupenthal, I.D. and Craig, J.P. (2023) NLRP3 Inflammasome as a Potential Therapeutic Target in Dry Eye Disease. International Journal of Molecular Sciences, 24, Article 10866. https://doi.org/10.3390/ijms241310866
|
[11]
|
Rolando, M. and Barabino, S. (2021) The Subtle Role of Para-Inflammation in Modulating the Progression of Dry Eye Disease. Ocular Immunology and Inflammation, 29, 811-816. https://doi.org/10.1080/09273948.2021.1906908
|
[12]
|
Jeencham, R., Sutheerawattananonda, M., Rungchang, S. and Tiyaboonchai, W. (2020) Novel Daily Disposable Therapeutic Contact Lenses Based on Chitosan and Regenerated Silk Fibroin for the Ophthalmic Delivery of Diclofenac Sodium. Drug Delivery, 27, 782-790. https://doi.org/10.1080/10717544.2020.1765432
|
[13]
|
Wang, H., Li, X., Yang, H., Wang, J., Li, Q., Qu, R., et al. (2020) Nanocomplexes Based Polyvinylpyrrolidone K-17PF for Ocular Drug Delivery of Naringenin. International Journal of Pharmaceutics, 578, Article 119133. https://doi.org/10.1016/j.ijpharm.2020.119133
|
[14]
|
Wiesinger, A., Bigger, B., Giugliani, R., Lampe, C., Scarpa, M., Moser, T., et al. (2024) Development of a Novel Tool for Individual Treatment Trials in Mucopolysaccharidosis. Journal of Inherited Metabolic Disease, 48, e12816. https://doi.org/10.1002/jimd.12816
|
[15]
|
Caspar, B., Cocchiara, P., Melet, A., Van Emelen, K., Van der Aa, A., Milligan, G., et al. (2022) CXCR4 as a Novel Target in Immunology: Moving Away from Typical Antagonists. Future Drug Discovery, 4, FDD77. https://doi.org/10.4155/fdd-2022-0007
|
[16]
|
Kletschkus, K., Haralambiev, L., Mustea, A., Bekeschus, S. and Stope, M.B. (2020) Review of Innovative Physical Therapy Methods: Introduction to the Principles of Cold Physical Plasma. In Vivo, 34, 3103-3107. https://doi.org/10.21873/invivo.12143
|
[17]
|
Ferreira, R.M., Martins, P.N., Pimenta, N. and Gonçalves, R.S. (2022) Measuring Evidence-Based Practice in Physical Therapy: A Mix-Methods Study. PeerJ, 9, e12666. https://doi.org/10.7717/peerj.12666
|
[18]
|
Chakrabarty, P., Illath, K., Kar, S., Nagai, M. and Santra, T.S. (2023) Combinatorial Physical Methods for Cellular Therapy: Towards the Future of Cellular Analysis? Journal of Controlled Release, 353, 1084-1095. https://doi.org/10.1016/j.jconrel.2022.12.038
|
[19]
|
Wassinger, C.A., Owens, B., Boynewicz, K. and Williams, D.A. (2021) Flipped Classroom versus Traditional Teaching Methods within Musculoskeletal Physical Therapy: A Case Report. Physiotherapy Theory and Practice, 38, 3169-3179. https://doi.org/10.1080/09593985.2021.1941457
|
[20]
|
Ostasevicius, V., Jurenas, V., Venslauskas, M., Kizauskiene, L., Zigmantaite, V., Stankevicius, E., et al. (2024) Low-Frequency Ultrasound for Pulmonary Hypertension Therapy. Respiratory Research, 25, Article No. 70. https://doi.org/10.1186/s12931-024-02713-5
|
[21]
|
Niu, Z.H., Zhao, C.Y. and Jiang, Y.X. (2020) Synergistic Anti-Tumor Mechanisms of Low-Frequency Ultrasound-Targeted Microbubble Destruction: Mechanisms and Application. Acta Academiae Medicinae Sinicae, 42, 540-545.
|
[22]
|
Mukherjee, S., Yadav, G. and Kumar, R. (2021) Recent Trends in Stem Cell-Based Therapies and Applications of Artificial Intelligence in Regenerative Medicine. World Journal of Stem Cells, 13, 521-541. https://doi.org/10.4252/wjsc.v13.i6.521
|
[23]
|
Hu, J. and Wang, J. (2019) From Embryonic Stem Cells to Induced Pluripotent Stem Cells—Ready for Clinical Therapy? Clinical Transplantation, 33, e13573. https://doi.org/10.1111/ctr.13573
|
[24]
|
Qiu, C., Ge, Z., Cui, W., Yu, L. and Li, J. (2020) Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. International Journal of Molecular Sciences, 21, Article 7730. https://doi.org/10.3390/ijms21207730
|
[25]
|
Rahmani-Moghadam, E., Zarrin, V., Mahmoodzadeh, A., Owrang, M. and Talaei-Khozani, T. (2022) Comparison of the Characteristics of Breast Milk-Derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Current Stem Cell Research & Therapy, 17, 71-90. https://doi.org/10.2174/1574888x16666210622125309
|
[26]
|
Jaffet, J., Singh, V., Schrader, S. and Mertsch, S. (2024) The Potential Role of Exosomes in Ocular Surface and Lacrimal Gland Regeneration. Current Eye Research, 1-14. https://doi.org/10.1080/02713683.2024.2424265
|
[27]
|
Khorrami-Nejad, M., Hashemian, H., Majdi, A., Jadidi, K., Aghamollaei, H. and Hadi, A. (2025) Application of Stem Cell-Derived Exosomes in Anterior Segment Eye Diseases: A Comprehensive Update Review. The Ocular Surface, 36, 209-219. https://doi.org/10.1016/j.jtos.2025.01.012
|
[28]
|
Zhao, D., Zhao, H., He, Y. and Zhang, M. (2024) BMSC Alleviates Dry Eye by Inhibiting the ROS-NLRP3-IL-1β Signaling Axis by Reducing Inflammation Levels. Current Eye Research, 49, 698-707. https://doi.org/10.1080/02713683.2024.2324434
|
[29]
|
Kobal, N., Marzidovšek, M., Schollmayer, P., Maličev, E., Hawlina, M. and Marzidovšek, Z.L. (2024) Molecular and Cellular Mechanisms of the Therapeutic Effect of Mesenchymal Stem Cells and Extracellular Vesicles in Corneal Regeneration. International Journal of Molecular Sciences, 25, Article 11121.
|
[30]
|
Witt, J., Møller-Hansen, M., Borrelli, M., Holtmann, C., Heegaard, S. and Geerling, G. (2022) Jenseits von Ästhetik—regenerative medizin bei schweren erkrankungen der okulären adnexe. Die Ophthalmologie, 119, 878-890. https://doi.org/10.1007/s00347-022-01643-1
|
[31]
|
Loo, V.C., Kim, S., Johnson, L.M., Kay, H., Yi, A., Chen, J., et al. (2023) Preventing Potential Patient Harm through Clinical Content Interventions during Oncology Clinical Trial Implementation. Journal of Patient Safety, 19, 460-464. https://doi.org/10.1097/pts.0000000000001154
|
[32]
|
Møller-Hansen, M., Larsen, A., Wiencke, A.K., Terslev, L., Siersma, V., Andersen, T.T., et al. (2024) Allogeneic Mesenchymal Stem Cell Therapy for Dry Eye Disease in Patients with Sjögren’s Syndrome: A Randomized Clinical Trial. The Ocular Surface, 31, 1-8. https://doi.org/10.1016/j.jtos.2023.11.007
|
[33]
|
Singh, S. and Basu, S. (2020) The Human Lacrimal Gland: Historical Perspectives, Current Understanding, and Recent Advances. Current Eye Research, 45, 1188-1198. https://doi.org/10.1080/02713683.2020.1774065
|
[34]
|
Rodboon, T., Yodmuang, S., Chaisuparat, R. and Ferreira, J.N. (2022) Development of High-Throughput Lacrimal Gland Organoid Platforms for Drug Discovery in Dry Eye Disease. SLAS Discovery, 27, 151-158. https://doi.org/10.1016/j.slasd.2021.11.002
|