[1]
|
Højen, J.F., Kristensen, M.L.V., McKee, A.S., Wade, M.T., Azam, T., Lunding, L.P., et al. (2019) IL-1R3 Blockade Broadly Attenuates the Functions of Six Members of the IL-1 Family, Revealing Their Contribution to Models of Disease. Nature Immunology, 20, 1138-1149. https://doi.org/10.1038/s41590-019-0467-1
|
[2]
|
Li, X., Commane, M., Jiang, Z. and Stark, G.R. (2001) IL-1-Induced NF-κB and C-Jun N-Terminal Kinase (JNK) Activation Diverge at IL-1 Receptor-Associated Kinase (IRAK). Proceedings of the National Academy of Sciences, 98, 4461-4465. https://doi.org/10.1073/pnas.071054198
|
[3]
|
Fields, J.K., Günther, S. and Sundberg, E.J. (2019) Structural Basis of IL-1 Family Cytokine Signaling. Frontiers in Immunology, 10, Article 1412. https://doi.org/10.3389/fimmu.2019.01412
|
[4]
|
Greenfeder, S.A., Nunes, P., Kwee, L., Labow, M., Chizzonite, R.A. and Ju, G. (1995) Molecular Cloning and Characterization of a Second Subunit of the Interleukin 1 Receptor Complex. Journal of Biological Chemistry, 270, 13757-13765. https://doi.org/10.1074/jbc.270.23.13757
|
[5]
|
Frenay, J., Bellaye, P., Oudot, A., Helbling, A., Petitot, C., Ferrand, C., et al. (2022) IL-1RAP, a Key Therapeutic Target in Cancer. International Journal of Molecular Sciences, 23, Article 14918. https://doi.org/10.3390/ijms232314918
|
[6]
|
Wesche, H., Korherr, C., Kracht, M., Falk, W., Resch, K. and Martin, M.U. (1997) The Interleukin-1 Receptor Accessory Protein (IL-1RACP) Is Essential for IL-1-Induced Activation of Interleukin-1 Receptor-Associated Kinase (IRAK) and Stress-Activated Protein Kinases (SAP Kinases). Journal of Biological Chemistry, 272, 7727-7731. https://doi.org/10.1074/jbc.272.12.7727
|
[7]
|
Jensen, L.E. and Whitehead, A.S. (2003) Expression of Alternatively Spliced Interleukin-1 Receptor Accessory Protein mRNAs Is Differentially Regulated during Inflammation and Apoptosis. Cellular Signalling, 15, 793-802. https://doi.org/10.1016/s0898-6568(03)00039-1
|
[8]
|
Krumm, B., Xiang, Y. and Deng, J. (2014) Structural Biology of the IL-1 Superfamily: Key Cytokines in the Regulation of Immune and Inflammatory Responses. Protein Science, 23, 526-538. https://doi.org/10.1002/pro.2441
|
[9]
|
Casadio, R., Frigimelica, E., Bossù, P., Neumann, D., Martin, M.U., Tagliabue, A., et al. (2001) Model of Interaction of the IL-1 Receptor Accessory Protein IL-1RACP with the IL-1β/IL-1RI Complex. FEBS Letters, 499, 65-68. https://doi.org/10.1016/s0014-5793(01)02515-7
|
[10]
|
Zarezadeh Mehrabadi, A., Aghamohamadi, N., Khoshmirsafa, M., Aghamajidi, A., Pilehforoshha, M., Massoumi, R., et al. (2022) The Roles of Interleukin-1 Receptor Accessory Protein in Certain Inflammatory Conditions. Immunology, 166, 38-46. https://doi.org/10.1111/imm.13462
|
[11]
|
Jensen, L.E., Muzio, M., Mantovani, A. and Whitehead, A.S. (2000) IL-1 Signaling Cascade in Liver Cells and the Involvement of a Soluble Form of the IL-1 Receptor Accessory Protein. The Journal of Immunology, 164, 5277-5286. https://doi.org/10.4049/jimmunol.164.10.5277
|
[12]
|
Yilmaz-Elis, S., Aartsma-Rus, A., Vroon, A., van Deutekom, J., de Kimpe, S., Hoen, P.A.C., et al. (2012) Antisense Oligonucleotide Mediated Exon Skipping as a Potential Strategy for the Treatment of a Variety of Inflammatory Diseases Such as Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 71, i75-i77. https://doi.org/10.1136/annrheumdis-2011-200971
|
[13]
|
Gabay, C., Lamacchia, C. and Palmer, G. (2010) IL-1 Pathways in Inflammation and Human Diseases. Nature Reviews Rheumatology, 6, 232-241. https://doi.org/10.1038/nrrheum.2010.4
|
[14]
|
Smith, D.E., Lipsky, B.P., Russell, C., Ketchem, R.R., Kirchner, J., Hensley, K., et al. (2009) A Central Nervous System-Restricted Isoform of the Interleukin-1 Receptor Accessory Protein Modulates Neuronal Responses to Interleukin-1. Immunity, 30, 817-831. https://doi.org/10.1016/j.immuni.2009.03.020
|
[15]
|
Acuner Ozbabacan, S.E., Gursoy, A., Nussinov, R. and Keskin, O. (2014) The Structural Pathway of Interleukin 1 (IL-1) Initiated Signaling Reveals Mechanisms of Oncogenic Mutations and SNPS in Inflammation and Cancer. PLOS Computational Biology, 10, e1003470. https://doi.org/10.1371/journal.pcbi.1003470
|
[16]
|
Huang, J., Gao, X., Li, S. and Cao, Z. (1997) Recruitment of IRAK to the Interleukin 1 Receptor Complex Requires Interleukin 1 Receptor Accessory Protein. Proceedings of the National Academy of Sciences, 94, 12829-12832. https://doi.org/10.1073/pnas.94.24.12829
|
[17]
|
Bozaoglu, K., Attard, C., Kulkarni, H., Cummings, N., Diego, V.P., Carless, M.A., et al. (2014) Plasma Levels of Soluble Interleukin 1 Receptor Accessory Protein Are Reduced in Obesity. The Journal of Clinical Endocrinology & Metabolism, 99, 3435-3443. https://doi.org/10.1210/jc.2013-4475
|
[18]
|
Weber, A., Wasiliew, P. and Kracht, M. (2010) Interleukin-1 (IL-1) Pathway. Science Signaling, 3, 1-6. https://doi.org/10.1126/scisignal.3105cm1
|
[19]
|
Towne, J.E., Garka, K.E., Renshaw, B.R., Virca, G.D. and Sims, J.E. (2004) Interleukin (IL)-1F6, IL-1F8, and IL-1F9 Signal through IL-1RRP2 and IL-1RACP to Activate the Pathway Leading to NF-κB and MAPKS. Journal of Biological Chemistry, 279, 13677-13688. https://doi.org/10.1074/jbc.m400117200
|
[20]
|
Drube, S., Heink, S., Walter, S., Löhn, T., Grusser, M., Gerbaulet, A., et al. (2010) The Receptor Tyrosine Kinase C-Kit Controls IL-33 Receptor Signaling in Mast Cells. Blood, 115, 3899-3906. https://doi.org/10.1182/blood-2009-10-247411
|
[21]
|
Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T.K., et al. (2005) IL-33, an Interleukin-1-Like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity, 23, 479-490. https://doi.org/10.1016/j.immuni.2005.09.015
|
[22]
|
Liang, Y., Seymour, R.E. and Sundberg, J.P. (2011) Inhibition of NF-κB Signaling Retards Eosinophilic Dermatitis in Sharpin-Deficient Mice. Journal of Investigative Dermatology, 131, 141-149. https://doi.org/10.1038/jid.2010.259
|
[23]
|
Chen, R., Li, M., Zhang, Y., Zhou, Q. and Shu, H. (2012) The E3 Ubiquitin Ligase MARCH8 Negatively Regulates IL-1β-Induced NF-κB Activation by Targeting the IL1RAP Coreceptor for Ubiquitination and Degradation. Proceedings of the National Academy of Sciences, 109, 14128-14133. https://doi.org/10.1073/pnas.1205246109
|
[24]
|
Kobayashi, K., Hernandez, L.D., Galán, J.E., Janeway, C.A., Medzhitov, R. and Flavell, R.A. (2002) IRAK-M Is a Negative Regulator of Toll-Like Receptor Signaling. Cell, 110, 191-202. https://doi.org/10.1016/s0092-8674(02)00827-9
|
[25]
|
Muzio, M., Ni, J., Feng, P. and Dixit, V.M. (1997) IRAK (Pelle) Family Member IRAK-2 and Myd88 as Proximal Mediators of IL-1 Signaling. Science, 278, 1612-1615. https://doi.org/10.1126/science.278.5343.1612
|
[26]
|
Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R. and Tschopp, J. (2003) Inhibition of Interleukin 1 Receptor/Toll-Like Receptor Signaling through the Alternatively Spliced, Short Form of Myd88 Is Due to Its Failure to Recruit IRAK-4. The Journal of Experimental Medicine, 197, 263-268. https://doi.org/10.1084/jem.20021790
|
[27]
|
Koeppel, M., van Heeringen, S.J., Kramer, D., Smeenk, L., Janssen-Megens, E., Hartmann, M., et al. (2011) Crosstalk between C-Jun and Tap73α/β Contributes to the Apoptosis-Survival Balance. Nucleic Acids Research, 39, 6069-6085. https://doi.org/10.1093/nar/gkr028
|
[28]
|
Lockett, A., Goebl, M.G. and Harrington, M.A. (2008) Transient Membrane Recruitment of IRAK-1 in Response to LPS and IL-1β Requires TNF R1. American Journal of Physiology-Cell Physiology, 295, C313-C323. https://doi.org/10.1152/ajpcell.00500.2007
|
[29]
|
Ågerstam, H., Lilljebjörn, H., Rissler, M., Sandén, C. and Fioretos, T. (2022) IL1RAP Is Expressed in Several Subtypes of Pediatric Acute Lymphoblastic Leukemia and Can Be Used as a Target to Eliminate ETV6::RUNX1-Positive Leukemia Cells in Preclinical Models. Haematologica, 108, 599-604. https://doi.org/10.3324/haematol.2022.281059
|
[30]
|
Eisenwort, G., Sadovnik, I., Keller, A., Ivanov, D., Peter, B., Berger, D., et al. (2021) Phenotypic Characterization of Leukemia-Initiating Stem Cells in Chronic Myelomonocytic Leukemia. Leukemia, 35, 3176-3187. https://doi.org/10.1038/s41375-021-01227-z
|
[31]
|
Mitchell, K., Barreyro, L., Todorova, T.I., Taylor, S.J., Antony-Debré, I., Narayanagari, S., et al. (2018) IL1RAP Potentiates Multiple Oncogenic Signaling Pathways in Aml. Journal of Experimental Medicine, 215, 1709-1727. https://doi.org/10.1084/jem.20180147
|
[32]
|
De Boer, B., Sheveleva, S., Apelt, K., Vellenga, E., Mulder, A.B., Huls, G., et al. (2020) The IL1-IL1RAP Axis Plays an Important Role in the Inflammatory Leukemic Niche That Favors Acute Myeloid Leukemia Proliferation over Normal Hematopoiesis. Haematologica, 106, 3067-3078. https://doi.org/10.3324/haematol.2020.254987
|
[33]
|
Herrmann, H., Sadovnik, I., Cerny-Reiterer, S., Rülicke, T., Stefanzl, G., Willmann, M., et al. (2014) Dipeptidylpeptidase IV (CD26) Defines Leukemic Stem Cells (LSC) in Chronic Myeloid Leukemia. Blood, 123, 3951-3962. https://doi.org/10.1182/blood-2013-10-536078
|
[34]
|
Järås, M., Johnels, P., Hansen, N., Ågerstam, H., Tsapogas, P., Rissler, M., et al. (2010) Isolation and Killing of Candidate Chronic Myeloid Leukemia Stem Cells by Antibody Targeting of IL-1 Receptor Accessory Protein. Proceedings of the National Academy of Sciences, 107, 16280-16285. https://doi.org/10.1073/pnas.1004408107
|
[35]
|
Ågerstam, H., Hansen, N., von Palffy, S., Sandén, C., Reckzeh, K., Karlsson, C., et al. (2016) IL1RAP Antibodies Block IL-1-Induced Expansion of Candidate CML Stem Cells and Mediate Cell Killing in Xenograft Models. Blood, 128, 2683-2693. https://doi.org/10.1182/blood-2015-11-679985
|
[36]
|
Landberg, N., Hansen, N., Askmyr, M., Ågerstam, H., Lassen, C., Rissler, M., et al. (2015) IL1RAP Expression as a Measure of Leukemic Stem Cell Burden at Diagnosis of Chronic Myeloid Leukemia Predicts Therapy Outcome. Leukemia, 30, 255-258. https://doi.org/10.1038/leu.2015.135
|
[37]
|
Robbrecht, D., Jungels, C., Sorensen, M.M., Spanggaard, I., Eskens, F., Fretland, S.Ø., et al. (2021) First-in-Human Phase 1 Dose-Escalation Study of CAN04, a First-In-Class Interleukin-1 Receptor Accessory Protein (IL1RAP) Antibody in Patients with Solid Tumours. British Journal of Cancer, 126, 1010-1017. https://doi.org/10.1038/s41416-021-01657-7
|
[38]
|
Zhang, Y., Chen, X., Wang, H., Gordon-Mitchell, S., Sahu, S., Bhagat, T.D., et al. (2022) Innate Immune Mediator, Interleukin-1 Receptor Accessory Protein (IL1RAP), Is Expressed and Pro-Tumorigenic in Pancreatic Cancer. Journal of Hematology & Oncology, 15, Article No. 70. https://doi.org/10.1186/s13045-022-01286-4
|
[39]
|
Herremans, K.M., Szymkiewicz, D.D., Riner, A.N., Bohan, R.P., Tushoski, G.W., Davidson, A.M., et al. (2022) The Interleukin-1 Axis and the Tumor Immune Microenvironment in Pancreatic Ductal Adenocarcinoma. Neoplasia, 28, Article ID: 100789. https://doi.org/10.1016/j.neo.2022.100789
|
[40]
|
Lv, Q., Xia, Q., Li, A. and Wang, Z. (2021) The Potential Role of IL1RAP on Tumor Microenvironment-Related Inflammatory Factors in Stomach Adenocarcinoma. Technology in Cancer Research & Treatment, 20, 1-11. https://doi.org/10.1177/1533033821995282
|
[41]
|
Rehman, A., Olsson, P.O., Akhtar, A., Padhiar, A.A., Liu, H., Dai, Y., et al. (2022) Systematic Molecular Analysis of the Human Secretome and Membrane Proteome in Gastrointestinal Adenocarcinomas. Journal of Cellular and Molecular Medicine, 26, 3329-3342. https://doi.org/10.1111/jcmm.17338
|
[42]
|
Liu, F., Dai, M., Xu, Q., Zhu, X., Zhou, Y., Jiang, S., et al. (2018) SRSF10-Mediated IL1RAP Alternative Splicing Regulates Cervical Cancer Oncogenesis via mIL1RAP-NF-κB-Cd47 Axis. Oncogene, 37, 2394-2409. https://doi.org/10.1038/s41388-017-0119-6
|
[43]
|
Ghittoni, R., Accardi, R., Hasan, U., Gheit, T., Sylla, B. and Tommasino, M. (2009) The Biological Properties of E6 and E7 Oncoproteins from Human Papillomaviruses. Virus Genes, 40, 1-13. https://doi.org/10.1007/s11262-009-0412-8
|
[44]
|
Kozlovski, I., Siegfried, Z., Amar-Schwartz, A. and Karni, R. (2017) The Role of RNA Alternative Splicing in Regulating Cancer Metabolism. Human Genetics, 136, 1113-1127. https://doi.org/10.1007/s00439-017-1803-x
|
[45]
|
Venables, J.P., Klinck, R., Koh, C., Gervais-Bird, J., Bramard, A., Inkel, L., et al. (2009) Cancer-Associated Regulation of Alternative Splicing. Nature Structural & Molecular Biology, 16, 670-676. https://doi.org/10.1038/nsmb.1608
|
[46]
|
Wang, Y., Cheng, S., Fleishman, J.S., Chen, J., Tang, H., Chen, Z., et al. (2024) Targeting Anoikis Resistance as a Strategy for Cancer Therapy. Drug Resistance Updates, 75, Article ID: 101099. https://doi.org/10.1016/j.drup.2024.101099
|
[47]
|
Mendoza-Naranjo, A., El-Naggar, A., Wai, D.H., Mistry, P., Lazic, N., Ayala, F.R.R., et al. (2013) ERBB4 Confers Metastatic Capacity in Ewing Sarcoma. EMBO Molecular Medicine, 5, 1087-1102. https://doi.org/10.1002/emmm.201202343
|
[48]
|
Zhang, H., Hughes, C.S., Li, W., He, J., Surdez, D., El-Naggar, A.M., et al. (2021) Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discovery, 11, 2884-2903. https://doi.org/10.1158/2159-8290.cd-20-1690
|
[49]
|
Alcantara Llaguno, S.R. and Parada, L.F. (2016) Cell of Origin of Glioma: Biological and Clinical Implications. British Journal of Cancer, 115, 1445-1450. https://doi.org/10.1038/bjc.2016.354
|
[50]
|
Li, F., Zhang, W., Wang, M. and Jia, P. (2020) IL1RAP Regulated by PRPRD Promotes Gliomas Progression via Inducing Neuronal Synapse Development and Neuron Differentiation in Vitro. Pathology—Research and Practice, 216, Article ID: 153141. https://doi.org/10.1016/j.prp.2020.153141
|
[51]
|
He, J., Li, X., Zhu, W., Yu, Y. and Gong, J. (2017) Research of Differential Expression of Sil1rap in Low-Grade Gliomas between Children and Adults. Brain Tumor Pathology, 35, 19-28. https://doi.org/10.1007/s10014-017-0304-x
|
[52]
|
Zheng, P., Zhang, Y., Zhang, B., Wang, Y., Wang, Y. and Yang, L. (2018) Synthetic Human Monoclonal Antibody Targets Hil1 Receptor Accessory Protein Chain with Therapeutic Potential in Triple-Negative Breast Cancer. Biomedicine & Pharmacotherapy, 107, 1064-1073. https://doi.org/10.1016/j.biopha.2018.07.099
|