IL1RAP在恶性肿瘤中作用的研究进展
Research Progress of the Role of IL1RAP in Malignant Tumors
DOI: 10.12677/wjcr.2025.152007, PDF, HTML, XML,   
作者: 张雪鸥, 徐建红:浙江大学医学院附属第四医院麻醉疼痛科,浙江 金华;郁丽娜*:浙江大学医学院附属第二医院麻醉手术部,浙江 杭州
关键词: IL1RAP恶性肿瘤信号通路IL-1IL1RAP Malignant Tumors Signaling Pathway IL-1
摘要: 白介素1受体辅助蛋白(IL1RAP)是白介素1 (IL-1)家族的共受体,通过与白介素1受体(IL-1R)结合形成多聚复合物并激活下游信号通路发挥生物学效应。IL1RAP介导的信号通路在各类恶性肿瘤中表现出促增殖和促侵袭、迁移的特性,包括血液系统肿瘤、消化道肿瘤、乳腺癌、宫颈癌等。本综述旨在阐明IL1RAP介导的信号通路的生物学效应,以及IL1RAP在各类恶性肿瘤中作用机制的研究进展。
Abstract: Interleukin 1 receptor accessory protein (IL1RAP) is a co-receptor of the interleukin 1 (IL-1) family, which exerts biological effects by binding to the interleukin 1 receptor (IL-1R) to form a multimeric complex and activating the downstream signaling pathway. The signaling pathway mediated by IL1RAP shows pro-proliferative, pro-invasive, and migratory properties in various types of malignant tumors, including hematological tumors, gastrointestinal tract tumors, breast cancers, cervical cancer, etc. The aim of this review is to elucidate the biological effects of IL1RAP-mediated signaling pathway and the progress of the research on the mechanism of IL1RAP in various malignant tumors.
文章引用:张雪鸥, 徐建红, 郁丽娜. IL1RAP在恶性肿瘤中作用的研究进展[J]. 世界肿瘤研究, 2025, 15(2): 53-60. https://doi.org/10.12677/wjcr.2025.152007

1. 引言

白介素1受体辅助蛋白(interleukin 1 receptor accessory protein, IL1RAP)是白介素1 (IL-1)家族的共受体,通过与IL-1R、白介素33受体(IL-33R)、白介素36受体(IL-36R)结合形成多聚复合物发挥作用[1]。IL1RAP与IL-1家族受体结合后激活核因子B (NF-κB)和丝裂原活化蛋白激酶MAPKs (p38、c-Jun氨基末端激酶(JNK)、细胞外信号调节激酶1/2 (ERK1/2))途径,导致激活蛋白1 (AP-1)、激活转录因子(ATF)等大量趋化因子、粘附分子和酶(例如环氧化酶和一氧化氮合成酶)的产生,发挥生物学效应[2]。IL-1、IL-33、IL-36通路均有明显促肿瘤活性[3],IL1RAP通过这些通路协助肿瘤组织向远处转移。它已被证实在血液系统肿瘤、骨肉瘤以及消化道肿瘤(胰腺癌、胃癌、结直肠癌)、宫颈癌以及乳腺癌等肿瘤中表达上调。本文旨在综述IL1RAP的作用机制及IL1RAP在相关癌症中的作用。

2. IL1RAP基本介绍

IL1RAP最初是由Greenfeder等人通过一种能够阻断小鼠IL-1β与IL-1R结合的单克隆抗体(mAb)识别得出并命名[4]。IL1RAP是位于染色体3q28上的独立基因[5],其基本结构由三个细胞外Ig结构域、跨膜区和一个细胞内TIR结构域组成[6],分子量约为66 kDa,包含570个氨基酸的跨膜蛋白质[4] [7]。IL1RAP通过胞内TIR结构域和IL-1R的胞内TIR结构域二聚化,形成多聚复合物[8]。IL-1RI的三个Ig样结构域包裹着IL-1β,而IL-1与I型IL-1R (IL-1RI)的结合不足以启动细胞活化,IL1RAP与包裹在IL-1β周围的IL-1RI的背部建立接触后才会触发信号转导[9],故IL1RAP不直接与IL-1结合。

IL1RAP有四种常见的剪接变异体:1) 膜型式的IL1RAP (mIL1RAP):mIL1RAP的缺失会使IL-1β与IL-1R的亲和力降低70倍[10]。2) 可溶性IL1RAP (sIL1RAP):在人以及小鼠肝脏组织中,IL1RAP表达为sIL1RAP [11]。sIL1RAP是IL-1的活性抑制剂,与IL-1竞争结合IL-1R,可以与IL-1RI直接相互作用而阻断IL-1的细胞信号转导[12]。3) sIL1RAP-β:在人肝癌细胞系HepG2被发现,与sIL1RAP结构类似[7]。4) IL1RAPb:只在中枢神经系统中表达,调节大脑中部分IL-1的活性与相关炎症反应,以IL-1依赖的方式与IL-1RI形成复合物,但不会募集MyD88和IRAKs [13] [14]

3. IL1RAP的信号通路及生物学效应

IL-1的信号传导始于IL-1与IL-1R结合形成IL-1/IL-1R复合物,使IL-1R构象发生变化,随后IL-1R和IL1RAP通过各自胞质部分的TIR结构域结合,形成IL-1/IL-1R/IL1RAP三聚体启动信号级联反应[2] [15]-[17]。该三聚体复合物通过TIR结构域快速组装MyD88、IRAK4等胞内信号蛋白。IL-1RI不能直接结合IRAK4,IL1RAP起到接头作用[16]。IRAK4招募并激活IRAK1和IRAK2使二者磷酸化,磷酸化的IRAK1和IRAK2聚集肿瘤坏死因子相关因子6 (TRAF6),与TRAF6相互作用形成复合物后IRAK家族被释放降解[2] [16] [18]-[20]。转化生长因子-β (TGF-β)活化激酶1 (TAK1)和两个相互作用蛋白TAK1结合蛋白1 (TAB1)和TAK1结合蛋白2/3 (TAB2/3)也参与IL-1信号通路[2]。TRAF6与磷酸化的IRAK1和IRAK2解离后,结合在细胞膜上的TAB2/3转位到细胞质中成为衔接蛋白将TRAF6连接到TAK1上[2],与TAB1共同结合形成复合物。由此,下游信号传递主要通过两条途径:MAP3K-MAPK (JNK、p38、ERK1/2)和IKK-IκB-NF-κB [15]

IL-1/IL-1R/IL1RAP信号轴传导的中心环节为MAPKs (JNK、ERK1/2和p38)和NF-κB途径的激活[21]

在MAP3K-MAPK (JNK、p38、ERK1/2)通路中,信号的传递主要依赖于三重激酶级联:MKK激酶(MKKK)、MAPK激酶(MKK)、MAPKs以及MAPKs的下游蛋白[15]。MAPK信号通路中这些激酶依次磷酸化并相互激活,最终导致调节宿主防御蛋白表达的转录因子激活[15]。MKK激酶与无活性的MKK相互作用形成复合物并使MKK磷酸化激活,随后复合物释放出游离的、有活性的MKK,MKK与无活性的MAPK相互作用形成复合物,从而激活MAPK,MAPK激活后从MKK-MAPK复合物中解离,从而磷酸化其下游靶点[18]。激活的MAPK激酶随后激活MAPK (JNK、ERK1/2和p38) [18],诱导激活下游c-Jun、c-Fos、c-Myc和ATF2等转录因子[15]

NF-κB通路在癌症的发生发展中发挥关键作用,NF-κB在细胞质中通常与抑制因子IκB结合而保持无活性状态[22]。在细胞因子、感染性病原体等刺激下,IκB被磷酸化、泛素化,释放出NF-κB使其转位入核,诱导下游靶基因的转录[23]

4. IL-1/IL-1R/IL1RAP信号轴的调控因子

IRAK家族由两种活性激酶(IRAK1和IRAK4)以及两种非活性激酶(IRAK-M和IRAK2)组成,IRAK-M的表达仅限于单核细胞/巨噬细胞[24]。IRAK-M阻止IRAK4从MyD88上解离以及IRAKs/TRAF6复合物的形成,并下调IL-1/IL-1R/IL1RAP的下游信号[13] [24]。IRAK2显性负性形式IRAK2 (1~96)和IRAK2 (97~590)均能抑制IL-lRs诱导的NF-κB活化,为抑制IL-1/IL-1Rs/IL1RAP轴诱导的疾病提供了额外的治疗靶点[25]

MyD88可以触发IRAK家族磷酸化,IL-1R家族成员发挥生物学效应依赖于MyD88的存在[26]。MyD88具有模块化结构:NH2-末端的相互作用结构域(或DD,为死亡结构域,最初定义于细胞程序性死亡中的蛋白)和COOH-末端的Toll结构域,MyD88的羧基端区域(152~296)可以作为IL-1/IL-1R/IL1RAP轴诱导NF-κB活性的显性负调控因子[25]。缺少中间结构域的选择性剪接的短myD88变体通过阻止IRAK1磷酸化来抑制IL-1R/TLR触发的信号,不激活NF-κB等下游信号通路,负向调节与IL-1R/TLR/IL1RAP有关的先天性免疫应答[13] [26]。MyD88及其剪切异构体通过与IL1RAP相互作用在IL-1R/IL1RAP信号复合物中充当适配器或调节器,调控IL-1诱导的炎症反应保持平衡状态,可充当IL1RAP信号通路中可行的治疗靶点[13] [25] [26]

研究发现,E3泛素连接酶膜相关的RING-CH (MARCH8)可以作为IL-1β诱导激活NF-κB和MAPKs通路的特异性抑制剂,其作用靶点是IL1RAP,主要机制为MARCH8靶向介导IL1RAP Lys512进行K48连接的多聚泛素化和降解,下调IL1RAP表达[23]。有研究证实,p53家族成员p73在细胞生长发育过程中的多种信号通路中发挥作用,具有肿瘤抑制特性,TAp73α为p73的羧基末端异构体,可以特异性上调IL1RAP,诱导抗凋亡因子的表达[27]。细菌脂多糖(LPS)刺激产生IL-1和肿瘤坏死因子(TNF),并且可以与IL-1、1型TNF受体(TNF-R1)转录因子一同刺激IRAK1的瞬时膜招募[28]。TNF-R1不是IRAK1泛素化所必需的,但有助于IRAK4的稳态[28]

5. IL1RAP在恶性肿瘤中的研究

近年来,很多研究证实IL1RAP在癌基因的激活、抑癌基因的失活、诱导癌细胞增殖和侵袭迁移中发挥重要作用。IL1RAP在众多恶性肿瘤细胞中高度表达,包括血液系统肿瘤、消化道肿瘤、骨肉瘤等,这其中研究最多的是血液系统肿瘤。

5.1. IL1RAP与血液系统肿瘤

IL1RAP在急性髓系白血病(AML)和慢性髓系白血病(CML)细胞表面表达上调[29] [30]。Mitchell等人在7号染色体单体或长臂缺失(7/7q-)的AML细胞中发现存在IL1RAP基因失调,且抑制IL1RAP表达后AML细胞体外生长和增殖能力显著降低,且IL1RAP高表达与AML患者的总生存期恶化有相关性[31] [32]。IL1RAP的作用并不局限于IL-1受体途径,也可以通过与c-Kit相互作用来介导信号传导和促进AML细胞增殖[31]

CML的遗传学特征是由9号和22号染色体相互易位形成的费城染色体(Ph)以及含有BCR/ABL1癌基因,故CML的治疗策略是尽量彻底根除Ph染色体阳性(Ph+)的CML干细胞[33] [34]。IL1RAP在CML细胞表面明显上调,IL1RAP抗体可以抑制IL-1的信号传导以及CML干细胞的增殖[34] [35]。CD34+CD38细胞中IL1RAP和BCR/ABL1的表达水平呈正相关,几乎所有BCR/ABL1阳性细胞都表达IL1RAP [36]。IL1RAP可以前瞻性分离正常细胞与白血病(Ph+)细胞,是区分Ph+和Ph候选CML干细胞的独特细胞表面生物标志物,可以作为CML细胞的靶点,诱导抗体依赖的细胞介导的细胞毒作用[34]

5.2. IL1RAP与消化道肿瘤

IL1RAP在胰腺癌、胃癌以及结直肠癌等消化道肿瘤中表达明显上调,且在肿瘤间质也能观察到IL1RAP的表达[37]。研究证实,IL1RAP在胰腺导管腺癌(PDAC)中过度表达,与较差的总生存期相关,敲低IL1RAP以及抑制IRAK4可以降低胰腺癌细胞的活力、增殖和侵袭[38] [39]。IL1RAP可以促进胃癌的转移与侵袭[40],在胃癌细胞系中敲低IL1RAP可以抑制细胞生长、迁移和侵袭,因此IL1RAP可以作为胃癌免疫治疗的潜在候选生物标志物[41]。IL1RAP在结直肠癌细胞中高表达,CAN04是一种新型的、耐受性良好的IL1RAP阻断抗体,具有增强的ADCC特性,可用来发展作为治疗结直肠癌的新手段之一[37]

5.3. IL1RAP与宫颈癌

宫颈癌的主要病因是高危人类乳头瘤病毒癌蛋白E6和E7 [42] [43]。但E6和E7的致癌活性不足以导致宫颈癌的恶性转化,在这里还有一个关键的促癌因素——选择性剪切(AS) [44]。失调的AS是癌症的分子特征之一,主要归因于异常的剪接因子的水平和活性,癌细胞中蛋白的变化可以异常调节剪切因子的活性和表达[45]。E6和E7可以通过转录因子E2F1激活剪接因子SRSF10的表达,促进宫颈肿瘤的发生。SRSF10通过调节IL1RAP的剪切过程(调节IL1RAP外显子13的交替终止子)增加mIL1RAP的产生。SRSF10-mIL1RAP轴通过促进IL-1β诱导的NF-κB激活,上调CD47的转录表达,抑制巨噬细胞的吞噬作用,使癌细胞可以通过SRSF10-mIL1RAP-CD47轴避免被巨噬细胞吞噬清除,实现免疫逃逸[42],表明SRSF10-mIL1RAP-CD47轴可能是治疗宫颈癌的一个新的潜力治疗靶点。

5.4. IL1RAP与尤文肉瘤

失巢凋亡即癌细胞在脱离细胞外后诱导的细胞凋亡或死亡,癌细胞具有失巢凋亡抗性,使癌细胞能够在不依赖于胞外基质的条件下存活[46]。转移性扩散是尤文肉瘤预后不良的有利预测因子[47]。研究发现,IL1RAP是尤文肉瘤转移的关键驱动因素。IL1RAP由高转移性儿童肉瘤尤文肉瘤的致癌性融合直接诱导产生,在儿童和成人正常组织中低表达,IL1RAP的失活触发失巢凋亡,并阻碍尤文肉瘤细胞的转移扩散,在尤文肉瘤中是一个有前途的靶点[48]

5.5. IL1RAP与胶质瘤

胶质瘤是一种常见的致命性脑肿瘤,严重影响大脑和脊髓中枢神经系统的正常功能[49]。PTPRD是蛋白酪氨酸磷酸酶家族的成员,参与多种生理功能,PRPRD蛋白通过调节IL1RAP影响神经元突触和神经元分化的发展,从而促进胶质瘤的进展,表明PRPRD可用作为治疗胶质瘤的潜在生物标志物[50]。在sIL1RAP过表达的细胞中,IL-1促进的细胞增殖明显被抑制,儿童低级别胶质瘤中sIL1RAP水平显著高于成人,且儿童低级别胶质瘤患者的肿瘤生长能力明显低于成年患者,因此SIL1RAP的表达水平可以作为判断低级别胶质瘤预后的潜在指标之一[51]

5.6. IL1RAP与乳腺癌

IL1RAP在三阴性乳腺癌(TNBC)细胞中表达升高,且与较短的无复发生存期(RFS)相关。Zheng等人建立了拮抗IL1RAP的单链抗体scFv 12H7,发现scFv 12H7是一种高亲和力和高特异性的IL1RAP结合蛋白,通过与IL1RAP的D1-D2结构域相互作用可以抑制TNBC细胞的生长活性,显著抑制NF-κB通路,为TNBC的治疗提供了良好的候选药物[52]

6. 总结

IL1RAP在多种癌症中发挥重要作用,包括血液肿瘤(即髓母细胞和淋巴细胞白血病)、骨肉瘤以及消化道肿瘤(胰腺癌、胃癌、结直肠癌)、宫颈癌以及乳腺癌等。IL1RAP介导的异常信号传导在癌症发病机制中的作用十分关键,靶向其信号通路对恶性肿瘤治疗价值巨大。目前,两种靶向IL1RAP的疗法正在临床试验,分别是嵌合抗原受体T细胞(CAR-T)疗法和使用抗体激活抗体依赖的细胞介导的细胞毒作用(ADCC)或直接阻断IL1RAP的免疫治疗。而IL1RAP治疗也存在一定的局限性。从临床应用来看,虽然有两种靶向疗法正在临床试验,但仍处于探索阶段,距离广泛应用还有距离,治疗效果及安全性还需大量研究验证。除此之外,相关抗体在实际应用中的长期疗效和潜在副作用尚不明确,限制了IL1RAP治疗的发展。本文就IL1RAP的信号通路以及生物学效应、在癌症中的作用进行综述。基于目前的研究以及临床应用,浅谈目前基于IL1RAP靶向治疗的新治疗方法的应用情况,我们相信IL1RAP的相关信号通路以及其异常表达可以作为针对恶性肿瘤的一种有发展前景的免疫治疗策略。

NOTES

*通讯作者。

参考文献

[1] Højen, J.F., Kristensen, M.L.V., McKee, A.S., Wade, M.T., Azam, T., Lunding, L.P., et al. (2019) IL-1R3 Blockade Broadly Attenuates the Functions of Six Members of the IL-1 Family, Revealing Their Contribution to Models of Disease. Nature Immunology, 20, 1138-1149.
https://doi.org/10.1038/s41590-019-0467-1
[2] Li, X., Commane, M., Jiang, Z. and Stark, G.R. (2001) IL-1-Induced NF-κB and C-Jun N-Terminal Kinase (JNK) Activation Diverge at IL-1 Receptor-Associated Kinase (IRAK). Proceedings of the National Academy of Sciences, 98, 4461-4465.
https://doi.org/10.1073/pnas.071054198
[3] Fields, J.K., Günther, S. and Sundberg, E.J. (2019) Structural Basis of IL-1 Family Cytokine Signaling. Frontiers in Immunology, 10, Article 1412.
https://doi.org/10.3389/fimmu.2019.01412
[4] Greenfeder, S.A., Nunes, P., Kwee, L., Labow, M., Chizzonite, R.A. and Ju, G. (1995) Molecular Cloning and Characterization of a Second Subunit of the Interleukin 1 Receptor Complex. Journal of Biological Chemistry, 270, 13757-13765.
https://doi.org/10.1074/jbc.270.23.13757
[5] Frenay, J., Bellaye, P., Oudot, A., Helbling, A., Petitot, C., Ferrand, C., et al. (2022) IL-1RAP, a Key Therapeutic Target in Cancer. International Journal of Molecular Sciences, 23, Article 14918.
https://doi.org/10.3390/ijms232314918
[6] Wesche, H., Korherr, C., Kracht, M., Falk, W., Resch, K. and Martin, M.U. (1997) The Interleukin-1 Receptor Accessory Protein (IL-1RACP) Is Essential for IL-1-Induced Activation of Interleukin-1 Receptor-Associated Kinase (IRAK) and Stress-Activated Protein Kinases (SAP Kinases). Journal of Biological Chemistry, 272, 7727-7731.
https://doi.org/10.1074/jbc.272.12.7727
[7] Jensen, L.E. and Whitehead, A.S. (2003) Expression of Alternatively Spliced Interleukin-1 Receptor Accessory Protein mRNAs Is Differentially Regulated during Inflammation and Apoptosis. Cellular Signalling, 15, 793-802.
https://doi.org/10.1016/s0898-6568(03)00039-1
[8] Krumm, B., Xiang, Y. and Deng, J. (2014) Structural Biology of the IL-1 Superfamily: Key Cytokines in the Regulation of Immune and Inflammatory Responses. Protein Science, 23, 526-538.
https://doi.org/10.1002/pro.2441
[9] Casadio, R., Frigimelica, E., Bossù, P., Neumann, D., Martin, M.U., Tagliabue, A., et al. (2001) Model of Interaction of the IL-1 Receptor Accessory Protein IL-1RACP with the IL-1β/IL-1RI Complex. FEBS Letters, 499, 65-68.
https://doi.org/10.1016/s0014-5793(01)02515-7
[10] Zarezadeh Mehrabadi, A., Aghamohamadi, N., Khoshmirsafa, M., Aghamajidi, A., Pilehforoshha, M., Massoumi, R., et al. (2022) The Roles of Interleukin-1 Receptor Accessory Protein in Certain Inflammatory Conditions. Immunology, 166, 38-46.
https://doi.org/10.1111/imm.13462
[11] Jensen, L.E., Muzio, M., Mantovani, A. and Whitehead, A.S. (2000) IL-1 Signaling Cascade in Liver Cells and the Involvement of a Soluble Form of the IL-1 Receptor Accessory Protein. The Journal of Immunology, 164, 5277-5286.
https://doi.org/10.4049/jimmunol.164.10.5277
[12] Yilmaz-Elis, S., Aartsma-Rus, A., Vroon, A., van Deutekom, J., de Kimpe, S., Hoen, P.A.C., et al. (2012) Antisense Oligonucleotide Mediated Exon Skipping as a Potential Strategy for the Treatment of a Variety of Inflammatory Diseases Such as Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 71, i75-i77.
https://doi.org/10.1136/annrheumdis-2011-200971
[13] Gabay, C., Lamacchia, C. and Palmer, G. (2010) IL-1 Pathways in Inflammation and Human Diseases. Nature Reviews Rheumatology, 6, 232-241.
https://doi.org/10.1038/nrrheum.2010.4
[14] Smith, D.E., Lipsky, B.P., Russell, C., Ketchem, R.R., Kirchner, J., Hensley, K., et al. (2009) A Central Nervous System-Restricted Isoform of the Interleukin-1 Receptor Accessory Protein Modulates Neuronal Responses to Interleukin-1. Immunity, 30, 817-831.
https://doi.org/10.1016/j.immuni.2009.03.020
[15] Acuner Ozbabacan, S.E., Gursoy, A., Nussinov, R. and Keskin, O. (2014) The Structural Pathway of Interleukin 1 (IL-1) Initiated Signaling Reveals Mechanisms of Oncogenic Mutations and SNPS in Inflammation and Cancer. PLOS Computational Biology, 10, e1003470.
https://doi.org/10.1371/journal.pcbi.1003470
[16] Huang, J., Gao, X., Li, S. and Cao, Z. (1997) Recruitment of IRAK to the Interleukin 1 Receptor Complex Requires Interleukin 1 Receptor Accessory Protein. Proceedings of the National Academy of Sciences, 94, 12829-12832.
https://doi.org/10.1073/pnas.94.24.12829
[17] Bozaoglu, K., Attard, C., Kulkarni, H., Cummings, N., Diego, V.P., Carless, M.A., et al. (2014) Plasma Levels of Soluble Interleukin 1 Receptor Accessory Protein Are Reduced in Obesity. The Journal of Clinical Endocrinology & Metabolism, 99, 3435-3443.
https://doi.org/10.1210/jc.2013-4475
[18] Weber, A., Wasiliew, P. and Kracht, M. (2010) Interleukin-1 (IL-1) Pathway. Science Signaling, 3, 1-6.
https://doi.org/10.1126/scisignal.3105cm1
[19] Towne, J.E., Garka, K.E., Renshaw, B.R., Virca, G.D. and Sims, J.E. (2004) Interleukin (IL)-1F6, IL-1F8, and IL-1F9 Signal through IL-1RRP2 and IL-1RACP to Activate the Pathway Leading to NF-κB and MAPKS. Journal of Biological Chemistry, 279, 13677-13688.
https://doi.org/10.1074/jbc.m400117200
[20] Drube, S., Heink, S., Walter, S., Löhn, T., Grusser, M., Gerbaulet, A., et al. (2010) The Receptor Tyrosine Kinase C-Kit Controls IL-33 Receptor Signaling in Mast Cells. Blood, 115, 3899-3906.
https://doi.org/10.1182/blood-2009-10-247411
[21] Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T.K., et al. (2005) IL-33, an Interleukin-1-Like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity, 23, 479-490.
https://doi.org/10.1016/j.immuni.2005.09.015
[22] Liang, Y., Seymour, R.E. and Sundberg, J.P. (2011) Inhibition of NF-κB Signaling Retards Eosinophilic Dermatitis in Sharpin-Deficient Mice. Journal of Investigative Dermatology, 131, 141-149.
https://doi.org/10.1038/jid.2010.259
[23] Chen, R., Li, M., Zhang, Y., Zhou, Q. and Shu, H. (2012) The E3 Ubiquitin Ligase MARCH8 Negatively Regulates IL-1β-Induced NF-κB Activation by Targeting the IL1RAP Coreceptor for Ubiquitination and Degradation. Proceedings of the National Academy of Sciences, 109, 14128-14133.
https://doi.org/10.1073/pnas.1205246109
[24] Kobayashi, K., Hernandez, L.D., Galán, J.E., Janeway, C.A., Medzhitov, R. and Flavell, R.A. (2002) IRAK-M Is a Negative Regulator of Toll-Like Receptor Signaling. Cell, 110, 191-202.
https://doi.org/10.1016/s0092-8674(02)00827-9
[25] Muzio, M., Ni, J., Feng, P. and Dixit, V.M. (1997) IRAK (Pelle) Family Member IRAK-2 and Myd88 as Proximal Mediators of IL-1 Signaling. Science, 278, 1612-1615.
https://doi.org/10.1126/science.278.5343.1612
[26] Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R. and Tschopp, J. (2003) Inhibition of Interleukin 1 Receptor/Toll-Like Receptor Signaling through the Alternatively Spliced, Short Form of Myd88 Is Due to Its Failure to Recruit IRAK-4. The Journal of Experimental Medicine, 197, 263-268.
https://doi.org/10.1084/jem.20021790
[27] Koeppel, M., van Heeringen, S.J., Kramer, D., Smeenk, L., Janssen-Megens, E., Hartmann, M., et al. (2011) Crosstalk between C-Jun and Tap73α/β Contributes to the Apoptosis-Survival Balance. Nucleic Acids Research, 39, 6069-6085.
https://doi.org/10.1093/nar/gkr028
[28] Lockett, A., Goebl, M.G. and Harrington, M.A. (2008) Transient Membrane Recruitment of IRAK-1 in Response to LPS and IL-1β Requires TNF R1. American Journal of Physiology-Cell Physiology, 295, C313-C323.
https://doi.org/10.1152/ajpcell.00500.2007
[29] Ågerstam, H., Lilljebjörn, H., Rissler, M., Sandén, C. and Fioretos, T. (2022) IL1RAP Is Expressed in Several Subtypes of Pediatric Acute Lymphoblastic Leukemia and Can Be Used as a Target to Eliminate ETV6::RUNX1-Positive Leukemia Cells in Preclinical Models. Haematologica, 108, 599-604.
https://doi.org/10.3324/haematol.2022.281059
[30] Eisenwort, G., Sadovnik, I., Keller, A., Ivanov, D., Peter, B., Berger, D., et al. (2021) Phenotypic Characterization of Leukemia-Initiating Stem Cells in Chronic Myelomonocytic Leukemia. Leukemia, 35, 3176-3187.
https://doi.org/10.1038/s41375-021-01227-z
[31] Mitchell, K., Barreyro, L., Todorova, T.I., Taylor, S.J., Antony-Debré, I., Narayanagari, S., et al. (2018) IL1RAP Potentiates Multiple Oncogenic Signaling Pathways in Aml. Journal of Experimental Medicine, 215, 1709-1727.
https://doi.org/10.1084/jem.20180147
[32] De Boer, B., Sheveleva, S., Apelt, K., Vellenga, E., Mulder, A.B., Huls, G., et al. (2020) The IL1-IL1RAP Axis Plays an Important Role in the Inflammatory Leukemic Niche That Favors Acute Myeloid Leukemia Proliferation over Normal Hematopoiesis. Haematologica, 106, 3067-3078.
https://doi.org/10.3324/haematol.2020.254987
[33] Herrmann, H., Sadovnik, I., Cerny-Reiterer, S., Rülicke, T., Stefanzl, G., Willmann, M., et al. (2014) Dipeptidylpeptidase IV (CD26) Defines Leukemic Stem Cells (LSC) in Chronic Myeloid Leukemia. Blood, 123, 3951-3962.
https://doi.org/10.1182/blood-2013-10-536078
[34] Järås, M., Johnels, P., Hansen, N., Ågerstam, H., Tsapogas, P., Rissler, M., et al. (2010) Isolation and Killing of Candidate Chronic Myeloid Leukemia Stem Cells by Antibody Targeting of IL-1 Receptor Accessory Protein. Proceedings of the National Academy of Sciences, 107, 16280-16285.
https://doi.org/10.1073/pnas.1004408107
[35] Ågerstam, H., Hansen, N., von Palffy, S., Sandén, C., Reckzeh, K., Karlsson, C., et al. (2016) IL1RAP Antibodies Block IL-1-Induced Expansion of Candidate CML Stem Cells and Mediate Cell Killing in Xenograft Models. Blood, 128, 2683-2693.
https://doi.org/10.1182/blood-2015-11-679985
[36] Landberg, N., Hansen, N., Askmyr, M., Ågerstam, H., Lassen, C., Rissler, M., et al. (2015) IL1RAP Expression as a Measure of Leukemic Stem Cell Burden at Diagnosis of Chronic Myeloid Leukemia Predicts Therapy Outcome. Leukemia, 30, 255-258.
https://doi.org/10.1038/leu.2015.135
[37] Robbrecht, D., Jungels, C., Sorensen, M.M., Spanggaard, I., Eskens, F., Fretland, S.Ø., et al. (2021) First-in-Human Phase 1 Dose-Escalation Study of CAN04, a First-In-Class Interleukin-1 Receptor Accessory Protein (IL1RAP) Antibody in Patients with Solid Tumours. British Journal of Cancer, 126, 1010-1017.
https://doi.org/10.1038/s41416-021-01657-7
[38] Zhang, Y., Chen, X., Wang, H., Gordon-Mitchell, S., Sahu, S., Bhagat, T.D., et al. (2022) Innate Immune Mediator, Interleukin-1 Receptor Accessory Protein (IL1RAP), Is Expressed and Pro-Tumorigenic in Pancreatic Cancer. Journal of Hematology & Oncology, 15, Article No. 70.
https://doi.org/10.1186/s13045-022-01286-4
[39] Herremans, K.M., Szymkiewicz, D.D., Riner, A.N., Bohan, R.P., Tushoski, G.W., Davidson, A.M., et al. (2022) The Interleukin-1 Axis and the Tumor Immune Microenvironment in Pancreatic Ductal Adenocarcinoma. Neoplasia, 28, Article ID: 100789.
https://doi.org/10.1016/j.neo.2022.100789
[40] Lv, Q., Xia, Q., Li, A. and Wang, Z. (2021) The Potential Role of IL1RAP on Tumor Microenvironment-Related Inflammatory Factors in Stomach Adenocarcinoma. Technology in Cancer Research & Treatment, 20, 1-11.
https://doi.org/10.1177/1533033821995282
[41] Rehman, A., Olsson, P.O., Akhtar, A., Padhiar, A.A., Liu, H., Dai, Y., et al. (2022) Systematic Molecular Analysis of the Human Secretome and Membrane Proteome in Gastrointestinal Adenocarcinomas. Journal of Cellular and Molecular Medicine, 26, 3329-3342.
https://doi.org/10.1111/jcmm.17338
[42] Liu, F., Dai, M., Xu, Q., Zhu, X., Zhou, Y., Jiang, S., et al. (2018) SRSF10-Mediated IL1RAP Alternative Splicing Regulates Cervical Cancer Oncogenesis via mIL1RAP-NF-κB-Cd47 Axis. Oncogene, 37, 2394-2409.
https://doi.org/10.1038/s41388-017-0119-6
[43] Ghittoni, R., Accardi, R., Hasan, U., Gheit, T., Sylla, B. and Tommasino, M. (2009) The Biological Properties of E6 and E7 Oncoproteins from Human Papillomaviruses. Virus Genes, 40, 1-13.
https://doi.org/10.1007/s11262-009-0412-8
[44] Kozlovski, I., Siegfried, Z., Amar-Schwartz, A. and Karni, R. (2017) The Role of RNA Alternative Splicing in Regulating Cancer Metabolism. Human Genetics, 136, 1113-1127.
https://doi.org/10.1007/s00439-017-1803-x
[45] Venables, J.P., Klinck, R., Koh, C., Gervais-Bird, J., Bramard, A., Inkel, L., et al. (2009) Cancer-Associated Regulation of Alternative Splicing. Nature Structural & Molecular Biology, 16, 670-676.
https://doi.org/10.1038/nsmb.1608
[46] Wang, Y., Cheng, S., Fleishman, J.S., Chen, J., Tang, H., Chen, Z., et al. (2024) Targeting Anoikis Resistance as a Strategy for Cancer Therapy. Drug Resistance Updates, 75, Article ID: 101099.
https://doi.org/10.1016/j.drup.2024.101099
[47] Mendoza-Naranjo, A., El-Naggar, A., Wai, D.H., Mistry, P., Lazic, N., Ayala, F.R.R., et al. (2013) ERBB4 Confers Metastatic Capacity in Ewing Sarcoma. EMBO Molecular Medicine, 5, 1087-1102.
https://doi.org/10.1002/emmm.201202343
[48] Zhang, H., Hughes, C.S., Li, W., He, J., Surdez, D., El-Naggar, A.M., et al. (2021) Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discovery, 11, 2884-2903.
https://doi.org/10.1158/2159-8290.cd-20-1690
[49] Alcantara Llaguno, S.R. and Parada, L.F. (2016) Cell of Origin of Glioma: Biological and Clinical Implications. British Journal of Cancer, 115, 1445-1450.
https://doi.org/10.1038/bjc.2016.354
[50] Li, F., Zhang, W., Wang, M. and Jia, P. (2020) IL1RAP Regulated by PRPRD Promotes Gliomas Progression via Inducing Neuronal Synapse Development and Neuron Differentiation in Vitro. PathologyResearch and Practice, 216, Article ID: 153141.
https://doi.org/10.1016/j.prp.2020.153141
[51] He, J., Li, X., Zhu, W., Yu, Y. and Gong, J. (2017) Research of Differential Expression of Sil1rap in Low-Grade Gliomas between Children and Adults. Brain Tumor Pathology, 35, 19-28.
https://doi.org/10.1007/s10014-017-0304-x
[52] Zheng, P., Zhang, Y., Zhang, B., Wang, Y., Wang, Y. and Yang, L. (2018) Synthetic Human Monoclonal Antibody Targets Hil1 Receptor Accessory Protein Chain with Therapeutic Potential in Triple-Negative Breast Cancer. Biomedicine & Pharmacotherapy, 107, 1064-1073.
https://doi.org/10.1016/j.biopha.2018.07.099