[1]
|
唐媛媛, 牛腾飞, 叶菊, 王如锋. 异戊烯基黄酮的化学结构、药理活性及生物合成研究进展[J]. 分子植物育种, 2023, 21(10): 3319-3329.
|
[2]
|
Mukai, R. (2018) Prenylation Enhances the Biological Activity of Dietary Flavonoids by Altering Their Bioavailability. Bioscience, Biotechnology, and Biochemistry, 82, 207-215. https://doi.org/10.1080/09168451.2017.1415750
|
[3]
|
Lv, H., Wang, Q., Luo, M., Zhu, M., Liang, H., Li, W., et al. (2023) Phytochemistry and Pharmacology of Natural Prenylated Flavonoids. Archives of Pharmacal Research, 46, 207-272. https://doi.org/10.1007/s12272-023-01443-4
|
[4]
|
Zhang, W., Li, N., Du, Z., Zhang, M., Chen, S. and Chen, W. (2021) IGF-1 Receptor Is Involved in the Regulatory Effects of Icariin and Icaritin in Astrocytes under Basal Conditions and after an Inflammatory Challenge. European Journal of Pharmacology, 906, Article ID: 174269. https://doi.org/10.1016/j.ejphar.2021.174269
|
[5]
|
Zheng, Y., Deng, Y., Gao, J., Lv, C., Lang, L., Shi, J., et al. (2019) Icariside II Inhibits Lipopolysaccharide-Induced Inflammation and Amyloid Production in Rat Astrocytes by Regulating IKK/IκB/NF-κB/BACE1 Signaling Pathway. Acta Pharmacologica Sinica, 41, 154-162. https://doi.org/10.1038/s41401-019-0300-2
|
[6]
|
Lee, M.H., Kim, J.Y. and Ryu, J. (2005) Prenylflavones from Psoralea Corylifolia Inhibit Nitric Oxide Synthase Expression through the Inhibition of I-κB-α Degradation in Activated Microglial Cells. Biological and Pharmaceutical Bulletin, 28, 2253-2257. https://doi.org/10.1248/bpb.28.2253
|
[7]
|
Kim, D., Li, H., Han, Y., Jeong, J., Lee, H. and Ryu, J. (2018) Modulation of Inducible Nitric Oxide Synthase Expression in LPS-Stimulated BV-2 Microglia by Prenylated Chalcones from Cullen corylifolium (L.) Medik. through Inhibition of I-κB-α Degradation. Molecules, 23, Article 109. https://doi.org/10.3390/molecules23010109
|
[8]
|
Huang, M., Tu, C., Wang, S., Hung, Y., Su, C., Fang, S., et al. (2018) Corylin Inhibits LPS-Induced Inflammatory Response and Attenuates the Activation of NLRP3 Inflammasome in Microglia. BMC Complementary and Alternative Medicine, 18, Article No. 221. https://doi.org/10.1186/s12906-018-2287-5
|
[9]
|
Chen, J., Wang, J., Lu, Y., Zhao, S., Yu, Q., Wang, X., et al. (2018) Uncovering Potential Anti-Neuroinflammatory Components of Modified Wuziyanzong Prescription through a Target-Directed Molecular Docking Fingerprint Strategy. Journal of Pharmaceutical and Biomedical Analysis, 156, 328-339. https://doi.org/10.1016/j.jpba.2018.05.001
|
[10]
|
Xia, W., Luo, P., Hua, P., Ding, P., Li, C., Xu, J., et al. (2018) Discovery of a New Pterocarpan-Type Antineuroinflammatory Compound from Sophora tonkinensis through Suppression of the TLR4/NFκB/MAPK Signaling Pathway with PU.1 as a Potential Target. ACS Chemical Neuroscience, 10, 295-303. https://doi.org/10.1021/acschemneuro.8b00243
|
[11]
|
Oberbauer, E., Urmann, C., Steffenhagen, C., Bieler, L., Brunner, D., Furtner, T., et al. (2013) Chroman-Like Cyclic Prenylflavonoids Promote Neuronal Differentiation and Neurite Outgrowth and Are Neuroprotective. The Journal of Nutritional Biochemistry, 24, 1953-1962. https://doi.org/10.1016/j.jnutbio.2013.06.005
|
[12]
|
Rahman, S.U., Ali, T., Hao, Q., He, K., Li, W., Ullah, N., et al. (2021) Xanthohumol Attenuates Lipopolysaccharide-Induced Depressive Like Behavior in Mice: Involvement of NF-κB/Nrf2 Signaling Pathways. Neurochemical Research, 46, 3135-3148. https://doi.org/10.1007/s11064-021-03396-w
|
[13]
|
Seo, K., Lee, D., Jeong, R., Lee, D., Kim, Y., Hong, E., et al. (2015) Neuroprotective Effect of Prenylated Arylbenzofuran and Flavonoids from Morus alba Fruits on Glutamate-Induced Oxidative Injury in HT22 Hippocampal Cells. Journal of Medicinal Food, 18, 403-408. https://doi.org/10.1089/jmf.2014.3196
|
[14]
|
Jeong, G., Li, B., Lee, D., Byun, E., An, R., Pae, H., et al. (2008) Lavandulyl Flavanones from Sophora flavescens Protect Mouse Hippocampal Cells against Glutamate-Induced Neurotoxicity via the Induction of Heme Oxygenase-1. Biological and Pharmaceutical Bulletin, 31, 1964-1967. https://doi.org/10.1248/bpb.31.1964
|
[15]
|
Zhao, S., Liao, L., Tu, P., Li, W. and Zeng, K. (2019) Icariin Inhibits Age-Induced Injury in PC12 Cells by Directly Targeting Apoptosis Regulator Bax. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 7940808. https://doi.org/10.1155/2019/7940808
|
[16]
|
Lee, H.J., Lyu, D.H., Koo, U., Nam, K., Hong, S.S., Kim, K.O., et al. (2012) Protection of Prenylated Flavonoids from Mori Cortex Radicis (Moraceae) against Nitric Oxide-Induced Cell Death in Neuroblastoma SH-SY5Y Cells. Archives of Pharmacal Research, 35, 163-170. https://doi.org/10.1007/s12272-012-0118-7
|
[17]
|
Fu, X., Li, S., Zhou, S., Wu, Q., Jin, F. and Shi, J. (2018) Stimulatory Effect of Icariin on the Proliferation of Neural Stem Cells from Rat Hippocampus. BMC Complementary and Alternative Medicine, 18, Article No. 34. https://doi.org/10.1186/s12906-018-2095-y
|
[18]
|
Urmann, C., Oberbauer, E., Couillard-Després, S., Aigner, L. and Riepl, H. (2015) Neurodifferentiating Potential of 8-Prenylnaringenin and Related Compounds in Neural Precursor Cells and Correlation with Estrogen-Like Activity. Planta Medica, 81, 305-311. https://doi.org/10.1055/s-0034-1396243
|
[19]
|
Tung, M., Fung, K., Hsu, H. and Tseng, T. (2021) Discovery of 8-Prenylnaringenin from Hop (Humulus lupulus L.) as a Potent Monoacylglycerol Lipase Inhibitor for Treatments of Neuroinflammation and Alzheimer’s Disease. RSC Advances, 11, 31062-31072. https://doi.org/10.1039/d1ra05311f
|
[20]
|
Wu, G. and Wu, Y. (2023) Neuroprotective Effect of Kurarinone against Corticosterone‐induced Cytotoxicity on Rat Hippocampal Neurons by Targeting bace1 to Activate P13K-AKT Signaling—A Potential Treatment in Insomnia Disorder. Pharmacology Research & Perspectives, 11, e01132. https://doi.org/10.1002/prp2.1132
|
[21]
|
Lee, D., Ko, W., Kim, D., Kim, Y. and Jeong, G. (2014) Cudarflavone B Provides Neuroprotection against Glutamate-Induced Mouse Hippocampal HT22 Cell Damage through the Nrf2 and PI3K/Akt Signaling Pathways. Molecules, 19, 10818-10831. https://doi.org/10.3390/molecules190810818
|
[22]
|
Zhao, Y., Sang, Y., Sun, Y. and Wu, J. (2022) Pomiferin Exerts Antineuroinflammatory Effects through Activating Akt/Nrf2 Pathway and Inhibiting NF-κB Pathway. Mediators of Inflammation, 2022, Article ID: 5824657. https://doi.org/10.1155/2022/5824657
|
[23]
|
Liu, W., He, K., Wu, D., Zhou, L., Li, G., Lin, Z., et al. (2022) Natural Dietary Compound Xanthohumol Regulates the Gut Microbiota and Its Metabolic Profile in a Mouse Model of Alzheimer’s Disease. Molecules, 27, Article 1281. https://doi.org/10.3390/molecules27041281
|
[24]
|
Li, W., Li, H., Wang, J., Liu, R. and Wang, X. (2024) Abnormal Protein Post-Translational Modifications Induces Aggregation and Abnormal Deposition of Protein, Mediating Neurodegenerative Diseases. Cell & Bioscience, 14, Article No. 22. https://doi.org/10.1186/s13578-023-01189-y
|
[25]
|
Zhang, M., Wu, Q., Zhao, R., Yao, X., Du, X., Liu, Q., et al. (2021) Isobavachalcone Ameliorates Cognitive Deficits, and Aβ and Tau Pathologies in Triple-Transgenic Mice with Alzheimer’s Disease. Food & Function, 12, 7749-7761. https://doi.org/10.1039/d1fo01306h
|
[26]
|
Chai, X., Zhang, Y. and Kong, W. (2018) Compound of Icariin, Astragalus, and Puerarin Mitigates Iron Overload in the Cerebral Cortex of Alzheimer’s Disease Mice. Neural Regeneration Research, 13, 731-736. https://doi.org/10.4103/1673-5374.230302
|
[27]
|
Yang, Y., Fu, Y., Qin, Z., Pei, H., Zhai, L., Guan, Q., et al. (2023) Icariin Improves Cognitive Impairment by Inhibiting Ferroptosis of Nerve Cells. Aging, 15, 11546-11553. https://doi.org/10.18632/aging.205144
|
[28]
|
Yu, H., Shi, J., Lin, Y., Zhang, Y., Luo, Q., Huang, S., et al. (2022) Icariin Ameliorates Alzheimer’s Disease Pathology by Alleviating Myelin Injury in 3 × Tg-Ad Mice. Neurochemical Research, 47, 1049-1059. https://doi.org/10.1007/s11064-021-03507-7
|
[29]
|
Syed, Z., Shal, B., Azhar, A., Amanat, S., Khan, A., Ali, H., et al. (2022) Pharmacological Mechanism of Xanthoangelol Underlying Nrf-2/TRPV1 and Anti-Apoptotic Pathway against Scopolamine-Induced Amnesia in Mice. Biomedicine & Pharmacotherapy, 150, Article ID: 113073. https://doi.org/10.1016/j.biopha.2022.113073
|
[30]
|
Niu, S., Tong, Z., Lv, T., Wu, J., Yu, Y., Tian, J., et al. (2021) Prenylated Isoflavones from the Roots of Flemingia philippinensis as Potential Inhibitors of β-Amyloid Aggregation. Fitoterapia, 155, Article ID: 105060. https://doi.org/10.1016/j.fitote.2021.105060
|
[31]
|
Abourashed, E.A., Abraha, A., Khan, S.I., McCants, T. and Awan, S. (2015) Potential of Horse Apple Isoflavones in Targeting Inflammation and Tau Protein Fibrillization. Natural Product Communications, 10. https://doi.org/10.1177/1934578x1501000923
|
[32]
|
Hwang, E.M., Ryu, Y.B., Kim, H.Y., Kim, D., Hong, S., Lee, J.H., et al. (2008) BACE1 Inhibitory Effects of Lavandulyl Flavanones from Sophora flavescens. Bioorganic & Medicinal Chemistry, 16, 6669-6674. https://doi.org/10.1016/j.bmc.2008.05.080
|
[33]
|
Eggers, C., Fujitani, M., Kato, R. and Smid, S. (2019) Novel Cannabis Flavonoid, Cannflavin a Displays Both a Hormetic and Neuroprotective Profile against Amyloid Β-Mediated Neurotoxicity in PC12 Cells: Comparison with Geranylated Flavonoids, Mimulone and Diplacone. Biochemical Pharmacology, 169, Article ID: 113609. https://doi.org/10.1016/j.bcp.2019.08.011
|
[34]
|
Zhang, M., Hu, Z., Dong, X. and Chen, W. (2022) Epimedin B Exerts Neuroprotective Effect against MPTP-Induced Mouse Model of Parkinson’s Disease: GPER as a Potential Target. Biomedicine & Pharmacotherapy, 156, Article ID: 113955. https://doi.org/10.1016/j.biopha.2022.113955
|
[35]
|
Sun, C., Zhou, J., Yu, Z., Huo, X., Zhang, J., Morisseau, C., et al. (2022) Kurarinone Alleviated Parkinson’s Disease via Stabilization of Epoxyeicosatrienoic Acids in Animal Model. Proceedings of the National Academy of Sciences of the United States of America, 119, e2118818119. https://doi.org/10.1073/pnas.2118818119
|
[36]
|
赵焱, 卢祖能. 光甘草定对MPTP致帕金森病小鼠海马区ERK信号通路的影响[J]. 中华医学杂志, 2017, 97(26): 2050-2054.
|
[37]
|
Cao, W., Dong, Y., Zhao, W., Lu, X. and Sun, L. (2019) Mulberrin Attenuates 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced Parkinson’s Disease by Promoting Wnt/β-Catenin Signaling Pathway. Journal of Chemical Neuroanatomy, 98, 63-70. https://doi.org/10.1016/j.jchemneu.2019.04.003
|
[38]
|
Guo, Y., Cai, Y. and Zhang, X. (2020) Icariin Ameliorates the Cognitive Function in an Epilepsy Neonatal Rat Model by Blocking the Glur2/ERK I/II Pathway. Folia Neuropathologica, 58, 245-252. https://doi.org/10.5114/fn.2020.100067
|
[39]
|
Pan, B., Xu, L., Weng, J., Wang, Y., Ji, H., Han, B., et al. (2022) Effects of Icariin on Alleviating Schizophrenia-Like Symptoms by Regulating the miR-144-3p/ATP1B2/mTOR Signalling Pathway. Neuroscience Letters, 791, Article ID: 136918. https://doi.org/10.1016/j.neulet.2022.136918
|
[40]
|
Cong, H., Zhang, M., Chang, H., Du, L., Zhang, X. and Yin, L. (2020) Icariin Ameliorates the Progression of Experimental Autoimmune Encephalomyelitis by Down-Regulating the Major Inflammatory Signal Pathways in a Mouse Relapse-Remission Model of Multiple Sclerosis. European Journal of Pharmacology, 885, Article ID: 173523. https://doi.org/10.1016/j.ejphar.2020.173523
|
[41]
|
Gao, D., Zheng, C., Hao, J., Yang, C. and Hu, C. (2023) Icariin Ameliorates Behavioral Deficits and Neuropathology in a Mouse Model of Multiple Sclerosis. Brain Research, 1804, Article ID: 148267. https://doi.org/10.1016/j.brainres.2023.148267
|
[42]
|
Jiang, P., Zhou, L., Du, Z., Zhao, L., Tang, Y., Fei, X., et al. (2023) Icariin Alleviates Autistic-Like Behavior, Hippocampal Inflammation and vGlut1 Expression in Adult BTBR Mice. Behavioural Brain Research, 445, Article ID: 114384. https://doi.org/10.1016/j.bbr.2023.114384
|
[43]
|
Ali, M.Y., Gadotti, V.M., Huang, S., Garcia-Caballero, A., Antunes, F.T.T., Jung, H.A., et al. (2023) Icariside II, a Prenyl-Flavonol, Alleviates Inflammatory and Neuropathic Pain by Inhibiting T-Type Calcium Channels and USP5-Cav3.2 Interactions. ACS Chemical Neuroscience, 14, 1859-1869. https://doi.org/10.1021/acschemneuro.3c00083
|
[44]
|
Wang, H., Tong, Y., Xiao, D. and Xia, B. (2020) Involvement of mTOR‐Related Signaling in Antidepressant Effects of Sophoraflavanone G on Chronically Stressed Mice. Phytotherapy Research, 34, 2246-2257. https://doi.org/10.1002/ptr.6675
|
[45]
|
Li, L.R., Sethi, G., Zhang, X., Liu, C.L., Huang, Y., Liu, Q., et al. (2022) The Neuroprotective Effects of Icariin on Ageing, Various Neurological, Neuropsychiatric Disorders, and Brain Injury Induced by Radiation Exposure. Aging, 14, 1562-1588. https://doi.org/10.18632/aging.203893
|
[46]
|
Zhang, Z., Wang, X., Zai, J., Sun, C. and Yan, B. (2018) Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation. Chinese Journal of Integrative Medicine, 24, 366-371. https://doi.org/10.1007/s11655-018-2823-z
|
[47]
|
Yan, C., Wu, L., Zeng, N., Li, H., Wang, H., Liu, K., et al. (2022) Exploration of the Mechanism by Which Icariin Modulates Hippocampal Neurogenesis in a Rat Model of Depression. Neural Regeneration Research, 17, 632-642. https://doi.org/10.4103/1673-5374.320993
|
[48]
|
Wang, L., Peng, G., Chen, L., Guo, M., Wang, B., Zhang, Y., et al. (2023) Icariin Reduces Cognitive Dysfunction Induced by Surgical Trauma in Aged Rats by Inhibiting Hippocampal Neuroinflammation. Frontiers in Behavioral Neuroscience, 17, Article 1162009. https://doi.org/10.3389/fnbeh.2023.1162009
|
[49]
|
Omar, E.M., Elatrebi, S., Soliman, N.A.H., Omar, A.M. and Allam, E.A. (2022) Effect of Icariin in a Rat Model of Colchicine-Induced Cognitive Deficit: Role of β-Amyloid Proteolytic Enzymes. Nutritional Neuroscience, 26, 1172-1182. https://doi.org/10.1080/1028415x.2022.2140395
|
[50]
|
Li, F., Zhang, Y., Lu, X., Shi, J. and Gong, Q. (2019) Icariin Improves the Cognitive Function of APP/PS1 Mice via Suppressing Endoplasmic Reticulum Stress. Life Sciences, 234, Article ID: 116739. https://doi.org/10.1016/j.lfs.2019.116739
|
[51]
|
Wang, X., Chen, W., Yuan, P. and Xu, H. (2023) RAGE Acted as a New Anti-Inflammatory Target for Icariin’s Treatment against Vascular Dementia Based on Network Pharmacology-Directed Verification. Journal of Biomolecular Structure and Dynamics, 42, 10189-10209. https://doi.org/10.1080/07391102.2023.2256409
|
[52]
|
Li, W., Deng, Y., Li, F., Liu, B., Liu, H., Shi, J., et al. (2015) Icariin, a Major Constituent of Flavonoids from Epimedium brevicornum, Protects against Cognitive Deficits Induced by Chronic Brain Hypoperfusion via Its Anti-Amyloidogenic Effect in Rats. Pharmacology Biochemistry and Behavior, 138, 40-48. https://doi.org/10.1016/j.pbb.2015.09.001
|
[53]
|
Wu, J., Qu, J., Zhou, Y., Zhou, Y., Li, Y., Huang, N., et al. (2020) Icariin Improves Cognitive Deficits by Reducing the Deposition of β-Amyloid Peptide and Inhibition of Neurons Apoptosis in SAMP8 Mice. NeuroReport, 31, 663-671. https://doi.org/10.1097/wnr.0000000000001466
|
[54]
|
Chen, F., Liu, B., Wu, Q., Liu, J., Xu, Y., Zhou, S., et al. (2019) Icariin Delays Brain Aging in Senescence-Accelerated Mouse Prone 8 (SAMP8) Model via Inhibiting Autophagy. The Journal of Pharmacology and Experimental Therapeutics, 369, 121-128. https://doi.org/10.1124/jpet.118.253310
|
[55]
|
Gupta, G., Chellappan, D.K., Agarwal, M., Ashwathanarayana, M., Nammi, S., Pabreja, K., et al. (2017) Pharmacological Evaluation of the Recuperative Effect of Morusin against Aluminium Trichloride (ALCL3)-Induced Memory Impairment in Rats. Central Nervous System Agents in Medicinal Chemistry, 17, 196-200. https://doi.org/10.2174/1871524917666161111095335
|
[56]
|
He, L., Deng, Y., Gao, J., Zeng, L. and Gong, Q. (2018) Icariside II Ameliorates Ibotenic Acid-Induced Cognitive Impairment and Apoptotic Response via Modulation of MAPK Pathway in Rats. Phytomedicine, 41, 74-81. https://doi.org/10.1016/j.phymed.2018.01.025
|
[57]
|
Cui, Y., Ao, M., Li, W. and Yu, L. (2008) Effect of Glabridin from Glycyrrhiza glabra on Learning and Memory in Mice. Planta Medica, 74, 377-380. https://doi.org/10.1055/s-2008-1034319
|
[58]
|
Kim, J., Kim, J., Shim, J., Lee, S., Kim, J., Lim, S.S., et al. (2013) Licorice-Derived Dehydroglyasperin C Increases MKP-1 Expression and Suppresses Inflammation-Mediated Neurodegeneration. Neurochemistry International, 63, 732-740. https://doi.org/10.1016/j.neuint.2013.09.013
|
[59]
|
Paraiso, I.L., Revel, J.S., Choi, J., Miranda, C.L., Lak, P., Kioussi, C., et al. (2020) Targeting the Liver‐Brain Axis with Hop‐Derived Flavonoids Improves Lipid Metabolism and Cognitive Performance in Mice. Molecular Nutrition & Food Research, 64, Article ID: 2000341. https://doi.org/10.1002/mnfr.202000341
|
[60]
|
Miranda, C.L., Johnson, L.A., de Montgolfier, O., Elias, V.D., Ullrich, L.S., Hay, J.J., et al. (2018) Non-Estrogenic Xanthohumol Derivatives Mitigate Insulin Resistance and Cognitive Impairment in High-Fat Diet-Induced Obese Mice. Scientific Reports, 8, Article No. 613. https://doi.org/10.1038/s41598-017-18992-6
|
[61]
|
Zamzow, D.R., Elias, V., Legette, L.L., Choi, J., Stevens, J.F. and Magnusson, K.R. (2014) Xanthohumol Improved Cognitive Flexibility in Young Mice. Behavioural Brain Research, 275, 1-10. https://doi.org/10.1016/j.bbr.2014.08.045
|
[62]
|
Dai, M., Chen, B., Wang, X., Gao, C. and Yu, H. (2021) Icariin Enhance Mild Hypothermia-Induced Neuroprotection via Inhibiting the Activation of NF-κB in Experimental Ischemic Stroke. Metabolic Brain Disease, 36, 1779-1790. https://doi.org/10.1007/s11011-021-00731-6
|
[63]
|
Wang, M., Yang, X., Zhou, Q., Guo, Y., Chen, Y., Song, L., Yang, J., Li, L. and Luo, L. (2022) Neuroprotective Mech-anism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 1330928.
|
[64]
|
Wu, C., Yang, T., Chen, M., Guan, S., Chen, C. and Liu, S. (2022) Therapeutic Effect of Icaritin on Cerebral Ischemia-Reperfusion-Induced Senescence and Apoptosis in an Acute Ischemic Stroke Mouse Model. Molecules, 27, Article 5783. https://doi.org/10.3390/molecules27185783
|
[65]
|
Gao, J., Ma, C., Xia, D., Chen, N., Zhang, J., Xu, F., et al. (2022) Icariside II Preconditioning Evokes Robust Neuroprotection against Ischaemic Stroke, by Targeting Nrf2 and the OXPHOS/NF‐κB/ferroptosis Pathway. British Journal of Pharmacology, 180, 308-329. https://doi.org/10.1111/bph.15961
|
[66]
|
Liu, T., He, F., Yan, J., Kuang, W. and Yu, C. (2019). Icariside II Affects Hippocampal Neuron Axon Regeneration and Improves Learning and Memory in a Chronic Cerebral Hypoperfusion Rat Model. International Journal of Clinical and Experimental Pathology, 12, 826-834.
|
[67]
|
Yen, T., Hsu, C., Lu, W., Hsieh, C., Hsiao, G., Chou, D., et al. (2012) Neuroprotective Effects of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus), in Ischemic Stroke of Rats. Journal of Agricultural and Food Chemistry, 60, 1937-1944. https://doi.org/10.1021/jf204909p
|
[68]
|
Park, S.J., Nam, K.W., Lee, H.J., Cho, E.Y., Koo, U. and Mar, W. (2009) Neuroprotective Effects of an Alkaloid-Free Ethyl Acetate Extract from the Root of Sophora flavescens Ait. against Focal Cerebral Ischemia in Rats. Phytomedicine, 16, 1042-1051. https://doi.org/10.1016/j.phymed.2009.03.017
|
[69]
|
Yu, X., Xue, C.C., Zhou, Z., Li, C., Du, Y., Liang, J., et al. (2008) In Vitro and in Vivo Neuroprotective Effect and Mechanisms of Glabridin, a Major Active Isoflavan from Glycyrrhiza Glabra (Licorice). Life Sciences, 82, 68-78. https://doi.org/10.1016/j.lfs.2007.10.019
|