[1]
|
Li, J., Yin, P., Wang, H., Wang, L., You, J., Liu, J., et al. (2022) The Burden of Pneumoconiosis in China: An Analysis from the Global Burden of Disease Study 2019. BMC Public Health, 22, Article No. 1114. https://doi.org/10.1186/s12889-022-13541-x
|
[2]
|
Leung, C.C., Yu, I.T.S. and Chen, W. (2012) Silicosis. The Lancet, 379, 2008-2018. https://doi.org/10.1016/s0140-6736(12)60235-9
|
[3]
|
Hoy, R.F. and Chambers, D.C. (2020) Silica‐Related Diseases in the Modern World. Allergy, 75, 2805-2817. https://doi.org/10.1111/all.14202
|
[4]
|
毛翎. 《尘肺病治疗中国专家共识(2024年版)》解读[J]. 环境与职业医学, 2024, 41(1): 22-24.
|
[5]
|
Barnes, H., Lam, M., Tate, M.D. and Hoy, R. (2023) Toward Targeted Treatments for Silicosis. Current Opinion in Pulmonary Medicine, 30, 185-194. https://doi.org/10.1097/mcp.0000000000001020
|
[6]
|
Barnes, H., Goh, N.S.L., Leong, T.L. and Hoy, R. (2019) Silica‐Associated Lung Disease: An Old‐World Exposure in Modern Industries. Respirology, 24, 1165-1175. https://doi.org/10.1111/resp.13695
|
[7]
|
Zhang, J., Zhang, J., Yao, Z., Shao, W., Song, Y., Tang, W., et al. (2024) GAMG Ameliorates Silica-Induced Pulmonary Inflammation and Fibrosis via the Regulation of EMT and NLRP3/TGF-β1/Smad Signaling Pathway. Ecotoxicology and Environmental Safety, 285, Article 117124. https://doi.org/10.1016/j.ecoenv.2024.117124
|
[8]
|
Liu, T., Sun, H., Han, Y., Zhan, Y. and Jiang, J. (2024) The Role of Inflammation in Silicosis. Frontiers in Pharmacology, 15, Article 1362509. https://doi.org/10.3389/fphar.2024.1362509
|
[9]
|
Zhao, M., Wang, M., Chen, X., Gao, Y., Chen, Q., Wang, L., et al. (2024) Targeting Progranulin Alleviated Silica Particles-Induced Pulmonary Inflammation and Fibrosis via Decreasing IL-6 and TGF-β1/Smad. Journal of Hazardous Materials, 465, Article 133199. https://doi.org/10.1016/j.jhazmat.2023.133199
|
[10]
|
Braz, N.F.T., Carneiro, A.P.S., de Avelar, N.C.P., de Miranda, A.S., Lacerda, A.C.R., Teixeira, M.M., et al. (2016) Influence of Cytokines and Soluble Receptors in the Quality of Life and Functional Capacity of Workers Exposed to Silica. Journal of Occupational & Environmental Medicine, 58, 272-276. https://doi.org/10.1097/jom.0000000000000606
|
[11]
|
Căluțu, I., Smărăndescu, R. and Rașcu, A. (2022) Biomonitoring Exposure and Early Diagnosis in Silicosis: A Comprehensive Review of the Current Literature. Biomedicines, 11, Article 100. https://doi.org/10.3390/biomedicines11010100
|
[12]
|
Xu, Y., Ding, Q., Xie, Y., Zhang, Q., Zhou, Y., Sun, H., et al. (2024) Green Tea Polyphenol Alleviates Silica Particle-Induced Lung Injury by Suppressing IL-17/NF-κB p65 Signaling-Driven Inflammation. Phytomedicine, 135, Article 156238. https://doi.org/10.1016/j.phymed.2024.156238
|
[13]
|
Cao, Z., Liu, Y., Zhang, Z., Yang, P., Li, Z., Song, M., et al. (2021) Pirfenidone Ameliorates Silica-Induced Lung Inflammation and Fibrosis in Mice by Inhibiting the Secretion of Interleukin-17A. Acta Pharmacologica Sinica, 43, 908-918. https://doi.org/10.1038/s41401-021-00706-4
|
[14]
|
Gao, X., Xu, H., Xu, D., Li, S., Wei, Z., Li, S., et al. (2020) MiR-411-3p Alleviates Silica-Induced Pulmonary Fibrosis by Regulating Smurf2/TGF-β Signaling. Experimental Cell Research, 388, Article 111878. https://doi.org/10.1016/j.yexcr.2020.111878
|
[15]
|
Li, N., Wu, K., Feng, F., Wang, L., Zhou, X. and Wang, W. (2021) Astragaloside IV Alleviates Silica-Induced Pulmonary Fibrosis via Inactivation of the TGF-β1/Smad2/3 Signaling Pathway. International Journal of Molecular Medicine, 47, Article No. 16. https://doi.org/10.3892/ijmm.2021.4849
|
[16]
|
Liu, T., Sun, H., Tang, M., Shen, H., Shen, Z., Han, Y., et al. (2024) Bicyclol Attenuates Pulmonary Fibrosis with Silicosis via Both Canonical and Non-Canonical TGF-β1 Signaling Pathways. Journal of Translational Medicine, 22, Article No. 682. https://doi.org/10.1186/s12967-024-05399-x
|
[17]
|
He, H., Wang, J., Zhang, Y., Wang, Y., Liu, Y., Li, X., et al. (2024) MiR-455-3p Regulates Lymphangiogenesis in Silicosis by Regulating VEGF-C/VEGFR3. Ecotoxicology and Environmental Safety, 278, Article 116444. https://doi.org/10.1016/j.ecoenv.2024.116444
|
[18]
|
Bo, C., Liu, F., Zhang, Z., Du, Z., Xiu, H., Zhang, Z., et al. (2024) Simvastatin Attenuates Silica-Induced Pulmonary Inflammation and Fibrosis in Rats via the AMPK-NOX Pathway. BMC Pulmonary Medicine, 24, Article No. 224. https://doi.org/10.1186/s12890-024-03014-9
|
[19]
|
Lam, M., Mansell, A. and Tate, M.D. (2022) Another One Fights the Dust: Targeting the NLRP3 Inflammasome for the Treatment of Silicosis. American Journal of Respiratory Cell and Molecular Biology, 66, 601-611. https://doi.org/10.1165/rcmb.2021-0545tr
|
[20]
|
Kang, L., Dai, J., Wang, Y., Shi, P., Zou, Y., Pei, J., et al. (2022) Blocking Caspase-1/Gsdmd and Caspase-3/-8/Gsdme Pyroptotic Pathways Rescues Silicosis in Mice. PLOS Genetics, 18, e1010515. https://doi.org/10.1371/journal.pgen.1010515
|
[21]
|
Peukert, K., Steinhagen, F., Fox, M., Feuerborn, C., Schulz, S., Seeliger, B., et al. (2022) Tetracycline Ameliorates Silica-Induced Pulmonary Inflammation and Fibrosis via Inhibition of Caspase-1. Respiratory Research, 23, Article No. 21. https://doi.org/10.1186/s12931-022-01937-7
|
[22]
|
Song, Z., Wang, L., Cao, Y., Liu, Z., Zhang, M., Zhang, Z., et al. (2022) Isoandrographolide Inhibits NLRP3 Inflammasome Activation and Attenuates Silicosis in Mice. International Immunopharmacology, 105, Article 108539. https://doi.org/10.1016/j.intimp.2022.108539
|
[23]
|
Peng, Z., Duan, M., Zhao, K., Tang, Y. and Liang, F. (2022) RAB20 Deficiency Promotes the Development of Silicosis via NLRP3 Inflammasome. Frontiers in Immunology, 13, Article 967299. https://doi.org/10.3389/fimmu.2022.967299
|
[24]
|
Peng, Z., Duan, M., Tang, Y., Wu, J., Zhao, K., Zhong, Y., et al. (2022) Impaired Interferon-γ Signaling Promotes the Development of Silicosis. iScience, 25, Article 104647. https://doi.org/10.1016/j.isci.2022.104647
|
[25]
|
Docherty, C.A., Fernando, A.J., Rosli, S., Lam, M., Dolle, R.E., Navia, M.A., et al. (2023) A Novel Dual NLRP1 and NLRP3 Inflammasome Inhibitor for the Treatment of Inflammatory Diseases. Clinical & Translational Immunology, 12, e1455. https://doi.org/10.1002/cti2.1455
|
[26]
|
Bolourani, S., Brenner, M. and Wang, P. (2021) The Interplay of Damps, TLR4, and Proinflammatory Cytokines in Pulmonary Fibrosis. Journal of Molecular Medicine, 99, 1373-1384. https://doi.org/10.1007/s00109-021-02113-y
|
[27]
|
Zhou, H., Zhang, Q., Huang, W., Zhou, S., Wang, Y., Zeng, X., et al. (2023) NLRP3 Inflammasome Mediates Silica-Induced Lung Epithelial Injury and Aberrant Regeneration in Lung Stem/Progenitor Cell-Derived Organotypic Models. International Journal of Biological Sciences, 19, 1875-1893. https://doi.org/10.7150/ijbs.80605
|
[28]
|
Zhang, Y., Liu, F., Jia, Q., Zheng, L., Tang, Q., Sai, L., et al. (2023) Baicalin Alleviates Silica-Induced Lung Inflammation and Fibrosis by Inhibiting TLR4/NF-κB Pathway in Rats. Physiological Research, 72, 221-233. https://doi.org/10.33549/physiolres.934978
|
[29]
|
Li, J., Cui, P., Jing, H., Chen, S., Ma, L., Zhang, W., et al. (2024) Hydrogen Combined with Tetrandrine Attenuates Silica-Induced Pulmonary Fibrosis via Suppressing NF-κB/NLRP3 Signaling Pathway-Mediated Epithelial Mesenchymal Transition and Inflammation. International Immunopharmacology, 138, Article 112563. https://doi.org/10.1016/j.intimp.2024.112563
|
[30]
|
Liu, M., Liu, H., Kang, H., Wu, J., Xing, P., Ding, X., et al. (2025) Anisodamine Ameliorates Crystalline Silica-Exposed Pulmonary Inflammation and Fibrosis via the α7nAChR/JAK2/STAT3 Signaling Pathway. Ecotoxicology and Environmental Safety, 289, Article 117534. https://doi.org/10.1016/j.ecoenv.2024.117534
|
[31]
|
Bai, Y., Liang, C., Gao, L., Han, T., Wang, F., Liu, Y., et al. (2024) Celastrol Pyrazine Derivative Alleviates Silicosis Progression via Inducing Ros-Mediated Apoptosis in Activated Fibroblasts. Molecules, 29, Article 538. https://doi.org/10.3390/molecules29020538
|
[32]
|
Du, Y., Huang, F., Guan, L., et al. (2023) Role of PI3K/Akt/mTOR Pathway-Mediated Macrophage Autophagy in Affecting the Phenotype Transformation of Lung Fibroblasts Induced by Silica Dust Exposure. Journal of Central South University. Medical Sciences, 48, 1152-1162. https://doi.org/10.11817/j.issn.1672-7347.2023.220581
|
[33]
|
Tan, S. and Chen, S. (2021) The Mechanism and Effect of Autophagy, Apoptosis, and Pyroptosis on the Progression of Silicosis. International Journal of Molecular Sciences, 22, Article 8110. https://doi.org/10.3390/ijms22158110
|
[34]
|
Cheng, D., Lian, W., Jia, X., Wang, T., Sun, W., Liu, Y., et al. (2024) LGALS3 Regulates Endothelial-to-Mesenchymal Transition via PI3K/AKT Signaling Pathway in Silica-Induced Pulmonary Fibrosis. Toxicology, 509, Article 153962. https://doi.org/10.1016/j.tox.2024.153962
|
[35]
|
Ma, R., Huang, X., Sun, D., Wang, J., Xue, C. and Ye, Q. (2024) Tetrandrine Alleviates Silica-Induced Pulmonary Fibrosis through PI3K/AKT Pathway: Network Pharmacology Investigation and Experimental Validation. Inflammation, 47, 1109-1126. https://doi.org/10.1007/s10753-023-01964-6
|
[36]
|
Cheng, D., Xu, Q., Wang, Y., Li, G., Sun, W., Ma, D., et al. (2021) Metformin Attenuates Silica-Induced Pulmonary Fibrosis via AMPK Signaling. Journal of Translational Medicine, 19, Article No. 349. https://doi.org/10.1186/s12967-021-03036-5
|
[37]
|
Li, N., Chang, M., Zhou, Q., Zhang, L., Wang, Y., Guan, Y., et al. (2023) Activation of AMPK Signalling by Metformin: Implication an Important Molecular Mechanism for Protecting against Mice Silicosis via Inhibited Endothelial Cell-to-Mesenchymal Transition by Regulating Oxidative Stress and Apoptosis. International Immunopharmacology, 120, Article 110321. https://doi.org/10.1016/j.intimp.2023.110321
|
[38]
|
Li, S., Li, C., Pang, X., Zhang, J., Yu, G., Yeo, A.J., et al. (2021) Metformin Attenuates Silica-Induced Pulmonary Fibrosis by Activating Autophagy via the AMPK-mTOR Signaling Pathway. Frontiers in Pharmacology, 12, Article 719589. https://doi.org/10.3389/fphar.2021.719589
|
[39]
|
赵道昆, 缪荣明. 氧化应激反应在矽肺发病中的作用[J]. 职业与健康, 2012, 28(15): 1818-1820.
|
[40]
|
李娟, 崔萍, 马丽, 等. 氢通过NF-κB/NLRP3信号通路干预矽肺早期炎症[J]. 中国职业医学, 2023, 50(5): 489-496.
|
[41]
|
张颖轶, 缪荣明. 氧化应激反应在矽肺发病中的影响及临床研究[J]. 职业与健康, 2012, 28(6): 641-643.
|
[42]
|
马佳. Wnt信号调控氧化损伤在矽肺病理发生中的作用机制[D]: [博士学位论文]. 银川: 宁夏大学, 2024.
|
[43]
|
Bian, Y., Deng, M., Liu, J., Li, J., Zhang, Q., Wang, Z., et al. (2024) The Glycyl-L-Histidyl-L-Lysine-Cu2+ Tripeptide Complex Attenuates Lung Inflammation and Fibrosis in Silicosis by Targeting Peroxiredoxin 6. Redox Biology, 75, Article 103237. https://doi.org/10.1016/j.redox.2024.103237
|
[44]
|
Kumari, S. and Singh, R. (2022) Protective Effects of Intranasal Curcumin on Silica-Induced Lung Damage. Cytokine, 157, Article 155949. https://doi.org/10.1016/j.cyto.2022.155949
|
[45]
|
Wang, L., Zhao, M., Qian, R., Wang, M., Bao, Q., Chen, X., et al. (2022) Nicotinamide Mononucleotide Ameliorates Silica-Induced Lung Injury through the Nrf2-Regulated Glutathione Metabolism Pathway in Mice. Nutrients, 15, Article 143. https://doi.org/10.3390/nu15010143
|
[46]
|
Marrocco, A. and Ortiz, L.A. (2022) Role of Metabolic Reprogramming in Pro-Inflammatory Cytokine Secretion from LPS or Silica-Activated Macrophages. Frontiers in Immunology, 13, Article 936167. https://doi.org/10.3389/fimmu.2022.936167
|
[47]
|
Kang, H., Gu, X., Cao, S., Tong, Z. and Song, N. (2024) Integrated Multi-Omics Analyses Reveal the Pro-Inflammatory and Pro-Fibrotic Pulmonary Macrophage Subcluster in Silicosis. Ecotoxicology and Environmental Safety, 284, Article 116899. https://doi.org/10.1016/j.ecoenv.2024.116899
|
[48]
|
Ou, L., Zhang, P., Huang, Z., Cheng, Y., Miao, Q., Niu, R., et al. (2023) Targeting Sting-Mediated Pro-Inflammatory and Pro-Fibrotic Effects of Alveolar Macrophages and Fibroblasts Blunts Silicosis Caused by Silica Particles. Journal of Hazardous Materials, 458, Article 131907. https://doi.org/10.1016/j.jhazmat.2023.131907
|
[49]
|
Gao, J., Li, C., Wang, X., Sun, X., Zhang, R., Chen, C., et al. (2022) Oridonin Attenuates Lung Inflammation and Fibrosis in Silicosis via Covalent Targeting iNOS. Biomedicine & Pharmacotherapy, 153, Article 113532. https://doi.org/10.1016/j.biopha.2022.113532
|
[50]
|
Esfahani, M., Rahbar, A.H., Asl, S.S., Bashirian, S., Mir Moeini, E.S. and Mehri, F. (2023) The Effects of Resveratrol on Silica-Induced Lung Oxidative Stress and Inflammation in Rat. Safety and Health at Work, 14, 118-123. https://doi.org/10.1016/j.shaw.2023.02.001
|
[51]
|
Tian, X., Wei, Y., Hou, R., Liu, X., Tian, Y., Zhao, P., et al. (2023) Yangqing Chenfei Formula Alleviates Silica-Induced Pulmonary Inflammation in Rats by Inhibiting Macrophage M1 Polarization. Chinese Medicine, 18, Article No. 79. https://doi.org/10.1186/s13020-023-00787-9
|
[52]
|
Li, S., Zhao, J., Han, G., Zhang, X., Li, N. and Zhang, Z. (2023) Silicon Dioxide-Induced Endoplasmic Reticulum Stress of Alveolar Macrophages and Its Role on the Formation of Silicosis Fibrosis: A Review Article. Toxicology Research, 12, 1024-1033. https://doi.org/10.1093/toxres/tfad099
|
[53]
|
符显昭. 基于调控内质网应激-自噬机制探讨活血解毒降糖方对糖尿病动脉粥样硬化的影响[Z]. 右江: 右江民族医学院, 2023.
|
[54]
|
Yuan, H., He, Y., Zhang, Y., Min, H., Chen, J. and Li, C. (2024) Crystalline Silica-Induced Endoplasmic Reticulum Stress Promotes the Pathogenesis of Silicosis by Augmenting Proinflammatory Interstitial Pulmonary Macrophages. Science of The Total Environment, 946, Article 174299. https://doi.org/10.1016/j.scitotenv.2024.174299
|
[55]
|
Jiang, R., Han, L., Gao, Q. and Chao, J. (2021) ZC3H4 Mediates Silica-Induced EndoMT via ER Stress and Autophagy. Environmental Toxicology and Pharmacology, 84, Article 103605. https://doi.org/10.1016/j.etap.2021.103605
|
[56]
|
Li, Y., Cai, W., Jin, F., Wang, X., Liu, W., Li, T., et al. (2022) Thalidomide Alleviates Pulmonary Fibrosis Induced by Silica in Mice by Inhibiting ER Stress and the TLR4-NF-κB Pathway. International Journal of Molecular Sciences, 23, Article 5656. https://doi.org/10.3390/ijms23105656
|
[57]
|
Mao, N., Fan, Y., Liu, W., Yang, H., Yang, Y., Li, Y., et al. (2022) Oxamate Attenuates Glycolysis and ER Stress in Silicotic Mice. International Journal of Molecular Sciences, 23, Article 3013. https://doi.org/10.3390/ijms23063013
|
[58]
|
Marrocco, A., Frawley, K., Pearce, L.L., et al. (2021) Metabolic Adaptation of Macrophages as Mechanism of Defense against Crystalline Silica. Journal of Immunology, 207, 1627-1640.
|
[59]
|
Jia, Q., Wang, H., Wang, Y., Xue, W., Jiang, Q., Wang, J., et al. (2024) Investigation of the Mechanism of Silica-Induced Pulmonary Fibrosis: The Role of Lung Microbiota Dysbiosis and the LPS/TLR4 Signaling Pathway. Science of The Total Environment, 912, Article 168948. https://doi.org/10.1016/j.scitotenv.2023.168948
|
[60]
|
Brumatti, G., Salmanidis, M. and Ekert, P.G. (2010) Crossing Paths: Interactions between the Cell Death Machinery and Growth Factor Survival Signals. Cellular and Molecular Life Sciences, 67, 1619-1630. https://doi.org/10.1007/s00018-010-0288-8
|
[61]
|
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541. https://doi.org/10.1038/s41418-017-0012-4
|
[62]
|
Zhao, H., Wang, Y., Qiu, T., Liu, W. and Yao, P. (2020) Autophagy, an Important Therapeutic Target for Pulmonary Fibrosis Diseases. Clinica Chimica Acta, 502, 139-147. https://doi.org/10.1016/j.cca.2019.12.016
|
[63]
|
Du, S., Li, C., Lu, Y., Lei, X., Zhang, Y., Li, S., et al. (2019) Dioscin Alleviates Crystalline Silica-Induced Pulmonary Inflammation and Fibrosis through Promoting Alveolar Macrophage Autophagy. Theranostics, 9, 1878-1892. https://doi.org/10.7150/thno.29682
|
[64]
|
Li, N., Shi, F., Wang, X., Yang, P., Sun, K., Zhang, L., et al. (2021) Silica Dust Exposure Induces Pulmonary Fibrosis through Autophagy Signaling. Environmental Toxicology, 36, 1269-1277. https://doi.org/10.1002/tox.23124
|
[65]
|
Tan, S. and Chen, S. (2021) Macrophage Autophagy and Silicosis: Current Perspective and Latest Insights. International Journal of Molecular Sciences, 22, Article 453. https://doi.org/10.3390/ijms22010453
|
[66]
|
Li, P., Hao, X., Liu, J., Zhang, Q., Liang, Z., Li, X., et al. (2023) MiR-29a-3p Regulates Autophagy by Targeting AKT3-Mediated mTOR in SiO2-Induced Lung Fibrosis. International Journal of Molecular Sciences, 24, Article 11440. https://doi.org/10.3390/ijms241411440
|
[67]
|
Xie, Y., Ma, J., Xie, L., Li, W., Yang, M., Gu, P., et al. (2022) Inhibition of Gas6 Promotes Crystalline Silica‐Induced Inflammatory Response of Macrophages via Blocking Autophagy Flux. Environmental Toxicology, 37, 1925-1933. https://doi.org/10.1002/tox.23539
|
[68]
|
Hotchkiss, R.S., Strasser, A., McDunn, J.E. and Swanson, P.E. (2009) Cell Death. New England Journal of Medicine, 361, 1570-1583. https://doi.org/10.1056/nejmra0901217
|
[69]
|
Li, R., Kang, H. and Chen, S. (2023) From Basic Research to Clinical Practice: Considerations for Treatment Drugs for Silicosis. International Journal of Molecular Sciences, 24, 8333.
|
[70]
|
Li, W., Xie, L., Ma, J., Cheng, M., Fan, L., Xu, Y., et al. (2021) Gas6 or Mer Deficiency Ameliorates Silica-Induced Autophagosomes Accumulation in Mice Lung. Toxicology Letters, 337, 28-37. https://doi.org/10.1016/j.toxlet.2020.11.013
|
[71]
|
Cooley, J.C., Javkhlan, N., Wilson, J.A., Foster, D.G., Edelman, B.L., Ortiz, L.A., et al. (2023) Inhibition of Antiapoptotic BCL-2 Proteins with ABT-263 Induces Fibroblast Apoptosis, Reversing Persistent Pulmonary Fibrosis. JCI Insight, 8, e163762. https://doi.org/10.1172/jci.insight.163762
|
[72]
|
Long, L., Dai, X., Yao, T., Zhang, X., Jiang, G., Cheng, X., et al. (2024) Mefunidone Alleviates Silica-Induced Inflammation and Fibrosis by Inhibiting the TLR4-NF-κB/MAPK Pathway and Attenuating Pyroptosis in Murine Macrophages. Biomedicine & Pharmacotherapy, 178, Article 117216. https://doi.org/10.1016/j.biopha.2024.117216
|
[73]
|
Tao, H., Zhao, H., Mo, A., Shao, L., Ge, D., Liu, J., et al. (2023) VX-765 Attenuates Silica-Induced Lung Inflammatory Injury and Fibrosis by Modulating Alveolar Macrophages Pyroptosis in Mice. Ecotoxicology and Environmental Safety, 249, Article 114359. https://doi.org/10.1016/j.ecoenv.2022.114359
|
[74]
|
Jessop, F., Hamilton, R.F., Rhoderick, J.F., Shaw, P.K. and Holian, A. (2016) Autophagy Deficiency in Macrophages Enhances NLRP3 Inflammasome Activity and Chronic Lung Disease Following Silica Exposure. Toxicology and Applied Pharmacology, 309, 101-110. https://doi.org/10.1016/j.taap.2016.08.029
|
[75]
|
Rogers, C., Fernandes-Alnemri, T., Mayes, L., Alnemri, D., Cingolani, G. and Alnemri, E.S. (2017) Cleavage of DFNA5 by Caspase-3 during Apoptosis Mediates Progression to Secondary Necrotic/Pyroptotic Cell Death. Nature Communications, 8, Article No. 14128. https://doi.org/10.1038/ncomms14128
|
[76]
|
Wang, Y., Gao, W., Shi, X., Ding, J., Liu, W., He, H., et al. (2017) Chemotherapy Drugs Induce Pyroptosis through Caspase-3 Cleavage of a Gasdermin. Nature, 547, 99-103. https://doi.org/10.1038/nature22393
|
[77]
|
Yao, C., Guan, X., Carraro, G., Parimon, T., Liu, X., Huang, G., et al. (2021) Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 203, 707-717. https://doi.org/10.1164/rccm.202004-1274oc
|
[78]
|
Sun, J., Zhao, N., Zhang, R., Li, Y., Yu, T., Nong, Q., et al. (2025) Metabolic Landscape of Human Alveolar Type II Epithelial Cells Undergoing Epithelial-Mesenchymal Transition Induced Directly by Silica Exposure. Journal of Environmental Sciences, 149, 676-687. https://doi.org/10.1016/j.jes.2024.02.020
|
[79]
|
Cai, W., Zhang, B., Li, T., Jin, F., Li, Y., Xu, H., et al. (2021) Transcriptomic Analysis Identifies Upregulation of Secreted Phosphoprotein 1 in Silicotic Rats. Experimental and Therapeutic Medicine, 21, Article No. 579. https://doi.org/10.3892/etm.2021.10011
|
[80]
|
Zhu, Y., Yao, J., Duan, Y., Xu, H., Cheng, Q., Gao, X., et al. (2020) Protein Expression Profile in Rat Silicosis Model Reveals Upregulation of PTPN2 and Its Inhibitory Effect on Epithelial-Mesenchymal Transition by Dephosphorylation of STAT3. International Journal of Molecular Sciences, 21, Article 1189. https://doi.org/10.3390/ijms21041189
|
[81]
|
Mao, N., Yang, H., Yin, J., Li, Y., Jin, F., Li, T., et al. (2021) Glycolytic Reprogramming in Silica-Induced Lung Macrophages and Silicosis Reversed by Ac-SDKP Treatment. International Journal of Molecular Sciences, 22, Article 10063. https://doi.org/10.3390/ijms221810063
|