矽肺病理机制与治疗药物的现状与展望
Current Status and Prospects of the Pathological Mechanisms and Therapeutic Drugs for Silicosis
DOI: 10.12677/acm.2025.154962, PDF, HTML, XML,    科研立项经费支持
作者: 张 艳:成都中医药大学医学与生命科学学院,四川 成都;陈耀华*:达州市中心医院呼吸与危重症医学科,四川 达州
关键词: 矽肺发病机制炎性细胞因子细胞程序性死亡治疗策略Silicosis Pathogenesis Inflammatory Cytokines Programmed Cell Death Therapeutic Strategies
摘要: 矽肺是一种由长期吸入二氧化硅颗粒引起的慢性肺部疾病,目前仍是最主要的职业病之一。矽肺的发病机制较为复杂,了解矽肺的发病机制对发掘诊断矽肺的有效生物标志物及研发治疗矽肺的药物至关重要。病程开始时,可吸入肺泡的二氧化硅被肺泡巨噬细胞吞噬,并释放一系列炎性细胞因子,这些因子招募其他免疫细胞到损伤部位。同时,像活性氧的产生和肺泡内的脂多糖等加剧了炎症反应和细胞损伤。随着时间的推移,持续的炎症反应激活成纤维细胞,促进细胞外基质成分的沉积,导致矽肺特征性的纤维化进程。近期研究还揭示了自噬、凋亡和焦亡等细胞死亡机制在矽肺发展中起了重要作用。本文综述了矽肺的热门发病机制,重点讨论了炎症因子的释放,氧化应激、内质网应激、巨噬细胞极化、细胞程序性死亡及热门信号通路等机制,并探讨了新兴的矽肺治疗策略。
Abstract: Silicosis is a chronic lung disease caused by the prolonged inhalation of silica particles, and it remains one of the most prevalent occupational diseases. The pathogenesis of silicosis is complex, and understanding it is crucial for discovering effective biomarkers for diagnosis and developing therapeutic drugs. In the early stages of the disease, inhaled silica particles are engulfed by alveolar macrophages, which release a series of inflammatory cytokines, such as TNF-α, IL-1β, and IL-6. These cytokines recruit other immune cells to the site of injury. Meanwhile, the generation of reactive oxygen species (ROS) and the presence of lipopolysaccharides in the alveoli exacerbate the inflammatory response and cellular damage. Over time, persistent inflammation activates fibroblasts and promotes the deposition of extracellular matrix components, leading to the characteristic fibrosis in silicosis. Recent studies have also highlighted the roles of autophagy, apoptosis, and pyroptosis in the progression of silicosis. This review summarizes the current understanding of the pathogenesis of silicosis, focusing on mechanisms such as the release of inflammatory cytokines, oxidative stress, endoplasmic reticulum stress, macrophage polarization, programmed cell death, and key signaling pathways. It also explores emerging therapeutic strategies for silicosis.
文章引用:张艳, 陈耀华. 矽肺病理机制与治疗药物的现状与展望[J]. 临床医学进展, 2025, 15(4): 518-530. https://doi.org/10.12677/acm.2025.154962

1. 矽肺病的背景

矽肺是由长期吸入结晶二氧化硅引起的一种慢性职业性肺部疾病[1]。根据世界卫生组织和国际劳工组织的统计,尽管随着工业化进程的推进和尘肺防治措施的加强,矽肺的发生率有所下降,但在一些发展中国家和特定职业群体中,矽肺的流行仍然十分严重且发现目前矽肺的发病年龄越来越年轻化[2]。根据矽肺的流行病学史,矽肺不只是单一的肺部疾病还会导致或者易合并全身多系统疾病,例如免疫系统紊乱、循环系统心衰、高血压、肾功能异常、代谢相关紊乱如糖尿病等[3]。目前矽肺的诊断主要靠粉尘接触史、临床表现及影像学史,到目前为止没有确切的生物标志物及特效药物用于矽肺病的诊断及治疗,深度剖析矽肺病的发病机制,探讨可用于诊断矽肺的生物标志物及有前景的药物[4] [5]

2. 矽肺的病理机制

可吸入的二氧化硅颗粒(直径小于5 um)后,部分可随气管内纤毛的运动通过咳嗽反射排出体外,而部分不能排出体外的颗粒会被巨噬细胞攻击,由此会产生一系列复杂机制,最终导致肺部持续炎症及不可逆纤维化[6]。矽肺的常见热门机制如下。

2.1. 矽肺发生机制中的各种细胞因子

由长期吸入二氧化硅诱导肺纤维化的小鼠及矽肺患者肺泡灌洗液及血清里面可观察到各种炎症因子升高如白细胞介素-1β (interleukin-1β, IL-1β)、白细胞介素-6 (interleukin-6, IL-6)、白细胞介素-17 (interleukin-17, IL-17)、肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)、转化生长因子-β (transforming growth factor-β, TGF-β)等,有据可查这些关键细胞因子在矽肺发病机制中起着重要的作用[7] [8]

2.1.1. I L-1β及IL-6

二氧化硅颗粒的存在会促使巨噬细胞和其他免疫细胞如中性粒细胞、树突状细胞、T细胞等释放大量IL-1β,这不仅引发局部的炎症反应,还通过增强TGF-β的表达,进一步促进胶原蛋白的沉积,加重肺部纤维化。IL-1β的过度分泌与矽肺的病程进展密切相关,且通过其促炎作用,加剧了免疫细胞的募集和激活。研究表明,中和或敲除IL-1β能够有效逆转矽肺的进展,强调了IL-1β在矽肺中的关键作用[9]。IL-6也是矽肺炎症反应中的重要因子,其是由巨噬细胞、淋巴细胞、成纤维细胞等多种细胞分泌。矽肺患者的血清和支气管肺泡灌洗液(BALF)中IL-6的水平显著升高。IL-6也被证实可以通过其受体激活多种信号通路导致多种促炎细胞因子(如IL-1、TNF-α)的转录和表达,IL-6还能够通过氧化应激作用增强活性氧(reactive oxygen species, ROS)的生成,ROS进一步激活下游的信号通路,促进促炎细胞因子的释放。IL-6能够影响免疫细胞的极化,特别是影响巨噬细胞的M1型极化,这种极化型巨噬细胞会释放大量的促炎因子,如IL-1和TNF-αBraz NFT等人研究了各种细胞因子发现矽肺病患者和结晶二氧化硅暴露患者的血清IL-6水平高于未暴露的健康个体[10]。靶向IL-1β和IL-6细胞因子可能是治疗矽肺的潜在方法,且IL-1β和IL-6细胞因子可能作为诊断矽肺的血清生物学标志物[11]

2.1.2. IL-17

IL-17其是由巨噬细胞和Th17淋巴细胞分泌的细胞因子,广泛参与宿主防御反应,尤其是对抗细菌感染。在小鼠矽肺模型中,使用茶多酚干预后,IL-17的表达水平显著降低,同时NF-κB信号通路受到抑制,炎症反应和肺纤维化程度明显减轻。这些结果表明,靶向IL-17/NF-κB信号通路可能是治疗矽肺的有效策略[12]。暴露于二氧化硅的动物模型显示,IL-17的水平升高,这与肺部纤维化的进展直接相关。IL-17通过激活下游的促炎细胞因子,如IL-6、TNF-α等,增强局部的炎症反应并加剧肺部的损伤。在针对矽肺治疗的研究中,吡非尼酮作为一种抗纤维化药物被广泛研究,并显示出显著的治疗效果。实验研究表明,吡非尼酮在早期和晚期矽肺模型中均能够有效减轻二氧化硅引发的肺功能障碍、炎性细胞因子(如TNF-α、IL-1β、IL-6)的分泌,并抑制胶原蛋白I和纤连蛋白等纤维化蛋白的沉积。更重要的是,吡非尼酮能够通过抑制IL-17A的分泌,缓解二氧化硅诱导的肺部炎症和纤维化,进一步证明了IL-17在矽肺发病中的关键作用[13]

2.1.3. TGF-β1

在矽肺的发病机制中,TGF-β1是最重要的纤维化介质之一,其通过促进细胞外基质的积累、诱导上皮–间质转化以及抑制基质降解,推动纤维化的进程。TGF-β1在矽肺中的作用主要通过其Smad信号通路实现,该通路能激活胶原蛋白和纤连蛋白基因的表达,进一步促进肺部纤维化的形成。持续的上皮间质转换过程和肺成纤维细胞向肌成纤维细胞的转化进一步加剧了细胞外基质的合成,推动了肺部的纤维化[14]。在临床研究中,黄芪甲苷通过TGF-β1/Smad信号通路抑制二氧化硅诱导的肺成纤维细胞纤维化,从而抑制矽肺病的进展[15]。此外,双环醇作为一种常用于治疗慢性病毒性肝炎和药物性肝损伤的化合物,近年来的研究显示其对多个器官包括肺部具有抗纤维化作用。在大鼠模型中双环醇能够防止成纤维细胞转化和上皮–间质转化过程,从而减少异常胶原蛋白的沉积。刘等首次证明,双环醇通过抑制TGF-β1的经典和非经典信号通路,改善炎性细胞因子的分泌,特别是TGF-β1的过度分泌,减缓矽肺的进展,表明双环醇在矽肺治疗中具有潜在的应用价值[16]

2.1.4. 生长因子

生长因子如血小板源性生长因子、成纤维细胞生长因子、血管内皮生长因子和结缔组织生长因子在矽肺的纤维化进程中具有重要作用。成纤维细胞生长因子通过刺激成纤维细胞增殖和细胞外基质合成,促进肺纤维化的发生。成纤维细胞生长因子则在矽肺的早期通过促进淋巴管生成来帮助清除肺部的灰尘和炎症介质。此外,结缔组织生长因子作为TGF-β的下游效应子,能够增强细胞外基质合成、成纤维细胞增殖和迁移,进一步推动肺纤维化的进程[17]。辛伐他汀是一种羟基甲基戊二酰辅酶A还原酶抑制剂,已广泛用于心血管疾病的预防和治疗。研究表明,辛伐他汀可以通过干扰成纤维细胞增殖和胶原蛋白合成来发挥抗纤维化作用。在大鼠模型中辛伐他汀在给药后28天显著减少了二氧化硅诱导的肺部炎症和纤维化。据实验表明辛伐他汀可以降低肺组织中白细胞介素IL-1β、IL-6、肿瘤坏死因子-α和转化生长因子-β1的水平。针对矽肺发病机制中细胞因子的靶向治疗在未来也许有价值[18]

2.2. NLRP3炎症小体与矽肺

近年来的研究发现炎症小体,特别是NLRP3型炎症小体(NOD-like receptor family pyrin domain containing 3 inflammasome, NLRP3炎症小体)在矽肺发病机制中扮演着关键角色。炎症小体通过其感应部分(如NLRP3、AIM2 (absent in melanoma 2, AIM2)等受体)识别细胞内的危险信号(如二氧化硅颗粒及活性氧(reactive oxygen species, ROS)等)。这些感应受体与配体结合后,引发适配蛋白(如ASC (apoptosis-associated speck-like protein containing a CARD, ASC))与NLRP3等分子的结合,形成一个多聚体复合物,即炎症小体。巨噬细胞中的NLRP3炎性小体是细胞因子分泌的主要诱导剂[19]。SiO2颗粒的吞噬作用通过四种不同的机制激活NLRP3炎性小体,(1) SR受体(cavenger Receptor,清道夫受体)巨噬细胞通过表面的SR受体识别SiO2颗粒并促进其内化,进而激活NLRP3炎性小体。(2) ATP释放与P2X7受体激活:吞噬SiO2颗粒后导致巨噬细胞死亡,细胞内的ATP释放到细胞外。ATP通过P2X7受体(ATP门控离子通道)识别,开启通道,导致K+外流和Na+内流,从而激活NLRP3炎性小体。(3) ROS产生:SiO2颗粒的吞噬作用引发ROS的大量生成,进而激活NLRP3炎性小体。(4) 溶酶体破裂释放物质:溶酶体破裂后,释放的内容物也可激活NLRP3炎性小体。炎症小体的激活会导致半胱天冬酶-1 (cysteinyl aspartate specific proteinase-1, Caspase-1)的自我激活,进而促进白细胞介素-1β (interleukin-1β, IL-1β)和白细胞介素-18 (interleukin-18, IL-18)的成熟并分泌。这些因子在矽肺中起着至关重要的作用。IL-1β正如前文所述是一个强效的促炎因子,能够促进免疫细胞的招募、激活巨噬细胞并增强炎症反应。IL-18与IL-1β类似,具有促炎作用,并能够增强T细胞(T lymphocyte, T细胞)的免疫反应。此外,炎症小体的激活不仅导致炎症因子的释放,还能通过Caspase-1介导的信号通路激活推动细胞焦亡[20]

四环素在体外和体内试验中表明能抑制caspase-1的激活,从而导致IL-1β的生成减少,减轻肺部的炎症及纤维化[21]。中药植物穿心莲的二萜类内酯成分可以通过抑制NLRP3来减少肺部炎症反应、上皮间质转化及胶原蛋白沉积及肺纤维化[22]。对矽肺病患者的支气管肺泡灌洗液进行单细胞测序,发现单核细胞/巨噬细胞中的RAB20基因缺乏与矽肺病的发生密切相关。在矽肺小鼠模型中,RAB20敲除显著增强了二氧化硅晶体诱导的肺间质纤维化和呼吸功能障碍。此外,这个过程强烈伴随着IL-1β的释放和NLRP3的激活[23]。这似乎给矽肺的靶向治疗添砖加瓦。干扰素-γ (interferon-gamma, IFN-γ)是由免疫系统中的T细胞和自然杀伤细胞分泌的主要细胞因子,具有多种免疫调节功能,研究表明,干扰素-γ受体缺陷小鼠中,二氧化硅晶体诱导的肺损伤加剧,而NLRP3缺陷小鼠则没有类似的加剧反应。这表明IFN-γ通过抑制NLRP3炎性小体的激活在抗炎和抗纤维化中起到保护作用[24]。ADS032据研究表明是第一个双重NLRP1和NLRP3抑制剂。其能快速、可逆且稳定的炎性小体抑制剂,可直接结合NLRP1和NLRP3,影响NLPR1和NLRP3的激活,减少人源性巨噬细胞和支气管上皮细胞中IL-1β的分泌和成熟[25]。综上所述,炎症小体是矽肺发病机制中的关键物质、通过各种途径阻碍炎症小体的激活可以缓解矽肺患者的肺部炎症,延缓肺部纤维化过程,未来需要进行更多的临床前研究和临床试验,以确认其在人体中的效果。

2.3. NF-κB、JAK/STAT及AMPK等信号通路在矽肺中的作用

2.3.1. 核因子κB通路(Nuclear Factor-Kappa B pathway, NF-κB通路)

巨噬细胞表面具有多种受体,它们能够识别并结合外源性二氧化硅颗粒,从而启动免疫反应。其中一个重要的受体是Toll样受体(Toll-like receptors, TLRs),尤其是TLR-4。TLR-4属于模式识别受体家族,负责识别损伤相关分子模式(DAMPs)和病原相关分子模式(PAMPs) [26]。二氧化硅颗粒作为一种损伤相关分子模式,可以通过TLR-4与巨噬细胞表面结合。在接触到二氧化硅颗粒后,会激活多个下游信号通路,主要包括NF-κB信号通路和丝裂原活化蛋白激酶信号通路(mitogen-activated protein kinase signaling pathway,MAPK信号通路)等。NF-κB信号通路中NF-κB是一种转录因子,能促进炎症因子的基因转录,如TNF-α、IL-1β、IL-6等。这些炎症因子正如前文所述能够增强局部和全身的免疫反应,促进炎症细胞的募集和激活,进一步加重肺部的炎症反应[27]。此外,NF-κB还能够通过调控成纤维细胞的激活促进肺部纤维化。黄芩苷治疗降低了Toll样受体4/NF-κB通路在患有矽肺病的大鼠的肺部。这些结果表明,黄芩苷抑制了大鼠矽肺病模型中的肺部炎症和纤维化,这可能归因于抑制Toll样受体4/NF-κB通路[28]。氢气已证明具有抗氧化、抗炎和抗纤维化特性,氢气与四丁碱联合使用可减轻与矽肺病相关的炎症,并通过NF-κB/NLRP3信号通路抑制EMT过程以改善纤维化[29]

2.3.2. Janus激酶/信号转导及转录激活因子通路(Janus Kinase/Signal Transducer and Activator of Transcription, JAK/STAT)

JAK/STAT信号通路在细胞增殖、分化、凋亡和免疫调节等多种生理过程中发挥重要作用。在矽肺的发病机制中,多种细胞因子和介质,如IL-6、TGF-β、活性氧和血小板衍生生长因子等,能够激活JAK/STAT通路,该通路又进一步促进炎症因子如IL-6和IL-17的表达,增强局部炎症反应并加速纤维化进程。此外,JAK/STAT通路的激活还与成纤维细胞的活化和胶原蛋白的合成密切相关。研究表明,莨菪丹明(Anisodamine, ANI)可能通过调节α7烟碱型乙酰胆碱受体介导的JAK2/STAT3信号通路,抑制肺部炎症和纤维化,从而缓解矽肺的病理进程。动物实验显示,ANI能够显著减轻二氧化硅暴露引起的肺部炎症和纤维化反应。基于这些发现,研究建议在矽肺早期阶段,煤炭工人可使用ANI进行治疗和预防,以延缓疾病进展[30]

2.3.3. 磷脂酰肌醇3-激酶/蛋白激酶B/雷帕霉素通路(Phosphoinositide 3-Kinase/Protein Kinase B/Mechanistic Target of Rapamycin Pathway, PI3K/Akt/mTOR)

PI3K/Akt/mTOR通路是调控细胞增殖、存活和代谢的核心信号通路[31]。在矽肺的发病机制中,该通路的异常激活通过促进细胞增殖和免疫反应,显著参与了纤维化的形成。具体而言,PI3K/Akt的激活能够上调TGF-β信号通路,进而促进成纤维细胞的增殖和胶原蛋白的过度沉积[32]。同时,mTOR作为该通路的关键调控因子,通过调节细胞代谢和合成代谢过程,进一步加速纤维化进程。二氧化硅已被证明可以通过PI3K/Akt/mTOR通路调控自噬[33]。靶向抑制PI3K/Akt/mTOR通路可能成为缓解矽肺纤维化的潜在治疗策略[34]。粉防己碱(tetrandrine, TET)是一种生物碱,已被证实具有抑制矽肺纤维化的潜力。TET通过靶向抑制PI3K/AKT信号通路,能够有效减轻二氧化硅诱导的肺纤维化。这些研究结果为TET在矽肺治疗中的应用提供了重要的理论依据和实验支持[35]

2.3.4. AMP活化蛋白激酶信号通路(AMP-Activated Protein Kinase Signaling Pathway, AMPK Signaling Pathway)

AMPK信号通路在维持细胞能量平衡、调节代谢和自噬方面发挥着重要作用。在矽尘暴露下,肺细胞可能经历能量代谢障碍,因为氧化应激和细胞损伤增加会消耗大量的ATP [36]。AMPK的经典作用之一是通过抑制mTORC1,间接启动自噬。mTORC1是自噬的负调控因子,在细胞内充足的能量和营养条件下会抑制自噬。激活自噬可以去除细胞内的矽尘颗粒和损伤的细胞器,从而减轻细胞的损伤。此外,AMPK能够通过抑制NF-κB等炎症通路,减轻炎症反应。AMPK的作用在减少炎症反应、抑制过度纤维化过程中发挥着重要作用[37]。在近期的研究中提示阿卡波糖、二甲双胍等AMPK激动剂,有对抗纤维化和抑制炎症的潜力,通过激活AMPK可以减轻矽肺的炎症反应和纤维化进程。雷帕霉素作为mTOR抑制剂,可能有助于减少炎症和纤维化反应,在矽肺的治疗中具有一定的前景[38]

2.4. 矽肺中的氧化应激机制

TLR-4与其配体结合后,受体发生构象变化,能够招募并激活与活性氧生成相关的酶系统,其中NADPH氧化酶(nicotinamide adenine dinucleotide phosphate oxidase, NOX)是关键酶之一。NADPH氧化酶复合物由多个亚基组成,包括NOX1、NOX2、NOX4等同源亚型,这些亚型在不同细胞类型中的表达和功能存在差异[39]。在巨噬细胞中,NOX2是最主要的亚型,负责细胞内ROS的生成。活性氧作为一种危险相关分子模式可以激活核因子κB等信号通路,促进TNF-α、IL-6、IL-1β、TGF-β等炎症因子释放,促进炎症反应,成纤维细胞增殖,并刺激其分泌大量胶原蛋白和其他细胞外基质成分[40] [41]。除了NADPH氧化酶,线粒体也是细胞内重要的ROS来源。二氧化硅颗粒被巨噬细胞吞噬后,可能通过直接与线粒体膜相互作用,导致线粒体功能障碍,进而释放大量活性氧,进一步加剧氧化应激和炎症反应[42]。甘氨酰-L-组氨酰-L-赖氨酸是一种天然存在于人体血液和尿液中的三肽,具有显著的抗氧化作用。研究表明,在小鼠模型中,其能够减轻肺泡巨噬细胞的氧化应激,展现出作为潜在药物的潜力。甘氨酰-L-组氨酰-L-赖氨酸与铜离子形成的复合物,通过与抗氧化应激分子过氧化还原蛋白结合,显著减少巨噬细胞中ROS的生成和氧化应激水平,从而可能抑制矽肺的发展。这些发现表明,甘氨酰-L-组氨酰-L-赖氨酸通过靶向过氧化还原蛋白在巨噬细胞中发挥抗氧化作用,为矽肺的治疗提供了新的思路[43]。此外,姜黄素作为一种天然化合物,具有显著的抗炎和抗氧化作用。研究表明,姜黄素能够减轻二氧化硅诱导的气道炎症和肺组织结构损伤,从而对肺损伤起到保护作用。因此,姜黄素被视为矽肺病的潜在替代和补充治疗药物[44]。在小鼠模型中烟酰胺单核苷酸则通过调节内源性谷胱甘肽代谢途径,减轻二氧化硅诱导的氧化应激和肺损伤。研究表明,补充烟酰胺单核苷酸能够有效缓解矽肺中的氧化应激和炎症反应,为矽肺的治疗提供了一种新的策略[45]

2.5. 巨噬细胞的极化

巨噬细胞极化是指在不同微环境刺激下,巨噬细胞向不同功能亚型如M1型和M2型转化的过程[46] [47]。M1型巨噬细胞的激活通常与矽肺的初期炎症反应密切相关。激活的M1型巨噬细胞通过分泌大量的促炎细胞因子(如TNF-α、IL-1β、IL-6等),启动强烈的免疫反应,这不仅加剧了肺部的急性炎症反应,还导致肺组织损伤和局部免疫反应的增强[48]。Ou等人在其研究中指出,二氧化硅早期通过激活巨噬细胞,促进了矽肺的炎症及纤维化进程。随着长期暴露于二氧化硅颗粒,巨噬细胞的功能逐渐转变,趋向于减轻炎症和促进组织修复。此时,巨噬细胞向M2型巨噬细胞极化,M2型巨噬细胞分泌的关键因子之一是TGF-β,它能够促进纤维化反应。TGF-β通过激活成纤维细胞,推动胶原蛋白及其他细胞外基质成分的积累,进而引发肺部纤维化。诱导型一氧化氮合酶是促炎条件下M1极化巨噬细胞的一种生物标志物。研究发现,在矽肺中,诱导型一氧化氮合酶水平增加与细胞因子反应密切相关,抑制诱导型一氧化氮合酶及其产物的激活对矽肺病具有临床价值。高等人试验表明冬凌草甲素作为一种有效的治疗药物,能够直接抑制诱导型一氧化氮合酶蛋白的表达,进而减轻矽肺小鼠的肺炎及肺纤维化[49]。白藜芦醇是一种小分子多酚化合物,广泛存在于葡萄、浆果、坚果等植物中。其具有抗氧化、抗炎、毛细血管保护、抗诱变等多种保护作用。Hemmati等人指出,葡萄籽提取物能够减轻二氧化硅对小鼠的纤维化作用,具体表现为减少脂质过氧化,降低肺和血清中丙二醛脂质过氧化反应的代谢产物之一丙二醛水平,同时增强抗氧化酶的活性[50]。养清陈肺是一个中药方剂,专门用于治疗早期矽肺病。通过网络药理学和转录组学的综合分析,Tian等人发现,养清陈肺通过调节多个信号通路,抑制M1型巨噬细胞介导的炎症反应。具体而言,养清陈肺能够通过抑制mTOR、MAPK、PI3K-Akt、NF-κB和JAK-STAT信号通路的激活,显著降低p-mTORC1、p-P38和p-P65的水平,从而减轻矽肺小鼠的肺部炎症和纤维化[51]。然而,除了经典的M1/M2模式,近年来研究发现还有其他功能性巨噬细胞亚型参与矽肺进展。例如,氧化型巨噬细胞,在氧化应激环境下被诱导,表现出抗凋亡和抗氧化能力,可能影响纤维化进程;M4巨噬细胞在炎症微环境中通过血小板因子4 (Platelet Factor 4, PF4)介导增强趋化活性,可能促进二氧化硅颗粒的清除或炎症持续[46]

2.6. 矽肺发病机制中的内质网应激

内质网是细胞内重要的细胞器,参与蛋白质折叠、脂质合成和钙离子储存等多种功能[52]。在矽肺中,二氧化硅颗粒的持续暴露及其引发的细胞损伤会激活内质网应激,进而触发炎症反应、细胞死亡和纤维化进程。内质网应激通过IRE1α、PERK和ATF6三条未折叠蛋白反应信号通路,调控细胞的应激反应,进而调节炎症反应、细胞存活和纤维化过程[53]。研究表明,在小鼠模型中,二氧化硅诱导的内质网应激主要导致间质巨噬细胞的增加,并对肺巨噬细胞产生显著影响。尽管这些间质巨噬细胞共表达M1和M2样标志物,但它们主要呈现M1样极化状态,并通过表达促炎细胞因子(如pro-IL-1β和TNF-α)在矽肺病理进展中发挥促炎作用。此外,内质网应激还通过调节肺泡上皮细胞凋亡、上皮-间充质转化、成纤维细胞增殖、肌成纤维细胞分化以及M2型巨噬细胞极化,与肺纤维化的发生密切相关[54]。ZC3H4是CCCH锌指蛋白家族的一员,参与巨噬细胞活化和上皮-间充质转化。研究发现,在矽肺小鼠模型中,二氧化硅暴露显著增加了肺血管中ZC3H4的表达。ZC3H4通过介导内质网应激和自噬,参与二氧化硅诱导的内皮–间充质转化,表明ZC3H4可能成为肺纤维化治疗的潜在靶点[55] 。此外,沙利度胺作为一种潜在的治疗药物,在矽肺小鼠模型和二氧化硅刺激的巨噬细胞中表现出显著的保护作用。沙利度胺通过抑制内质网应激和TLR4-NF-κB通路,减轻炎症反应和肺纤维化,为矽肺的治疗提供了新的方向[56]。近年来发现糖酵解产物乳酸能诱导活性氧的产生并促进未折叠蛋白反应基因的表达。草酸盐是乳酸的竞争性抑制剂,草酸盐可抑制鼻咽癌、非小细胞肺癌和胃癌细胞的增殖,并降低其活力。矽肺小鼠模型中草胺酸盐减轻了二氧化硅诱导的内质网应激信号通路的关键磷酸化蛋白标志物表达的增加以及活性氧产生的增加,草酸盐在治疗矽肺中有巨大潜力[57]

2.7. 脂多糖(Lipopolysaccharide, LPS)在矽肺发展中的作用

在矽肺患者的肺泡灌洗液中发现大量脂多糖,脂多糖存在于革兰阴性杆菌的细胞壁中。这可能提示了矽肺患者肺部独特的微生态环境,容易合并细菌感染。LPS与TLR-4受体结合后,激活了髓样分化因子88 (myeloid differentiation factor 88, MyD88)、肿瘤坏死因子受体相关因子6 (tumor necrosis factor receptor-associated factor 6, TRAF6)等信号蛋白,进而激活NF-κB和MAPK等信号通路。此外,LPS激活的巨噬细胞会产生大量的活性氧和氮物质[58]。二氧化硅颗粒与LPS的共同存在可以进一步增强巨噬细胞的激活作用。二氧化硅颗粒引起的ROS生成和内质网应激增加了巨噬细胞的活性,而LPS通过TLR-4的激活进一步放大了这种免疫反应。长期暴露于LPS还能促进慢性肺部损伤和纤维化;LPS还能通过促进TGF-β的释放,激活成纤维细胞并增加胶原蛋白等细胞外基质的合成,从而推动肺部的纤维化[59]。因此,针对矽肺发生机制中脂多糖的作用,抗生素的使用可能有一定的作用,未来需进一步进行临床前试验验证这一点。

2.8. 矽肺发生机制中程序性坏死作用

程序性细胞死亡(Programmed Cell Death, PCD)是指细胞通过基因调控的方式自我杀死。与由外部刺激导致的坏死不同,程序性细胞死亡通常是细胞以有序、可控的方式死亡,并且不会引发剧烈的炎症反应[60]。近年来研究发现程序性细胞死亡在矽肺的发病机制中扮演着越来越重要的角色。程序性细胞死亡通常包括凋亡、焦亡、自噬等[61]

2.8.1. 自噬

自噬是一种清除受损细胞器、蛋白质和病原体的生理过程,对维持细胞稳态至关重要[62]。据前面所述二氧化硅被证实通过PI3K/Akt/mTOR通路调节自噬。最近的研究表明,通过利用mTOR抑制剂雷帕霉素自噬减轻了二氧化硅诱导的巨噬细胞凋亡,降低了二氧化硅处理的巨噬细胞中肿瘤坏死因子-α (TNF-α)和TGF-β的表达[63]-[68]。自噬功能受阻可能导致二氧化硅诱导的炎症反应加剧,且自噬功能过度会导致巨噬细胞凋亡,促进炎症反应。因此,正常的自噬功能对防止细胞损伤和炎症至关重要[69] [70]。矽肺病患者 巨噬细胞中积累着大量的自噬体和受损的溶酶体,这意味着二氧化硅破坏了巨噬细胞自噬降解的正常过程,即过度自噬最终导致细胞死亡。综上所述,自噬在矽肺中既可能发挥保护作用,也可能在失调时促进疾病进展。因此,调控自噬以维持其正常功能,可能成为治疗矽肺的新策略[71] [72]

2.8.2. 凋亡

凋亡是细胞自我毁灭的过程,通过严格的基因调控进行。然而,在矽肺等病理条件下,二氧化硅的刺激和微环境的改变可能导致凋亡细胞清除障碍,从而使凋亡表现出一定的促炎特性。因此,凋亡在矽肺中的炎症相关性是特定病理条件下的结果,而非凋亡的典型特征,抑制肺泡上皮细胞和巨噬细胞的过度凋亡可能成为矽肺治疗的新策略[73]

2.8.3. 焦亡

焦亡是一种炎症性程序性细胞死亡,由炎症小体(如NLRP3)激活caspase-1引起,caspase-1进一步激活gasdermin D,形成细胞膜孔洞。激活的caspase-1促进IL-1β和IL-18的成熟,并将这些细胞因子通过细胞膜孔洞分泌到细胞外,增强炎症反应。caspase-1抑制剂VX-765通过抑制硅诱导的矽肺小鼠模型中肺泡巨噬细胞焦亡来减少炎症性肺损伤。据小鼠矽肺模型所验证,新型抗纤维化药物甲呋酮(MFD)有效下调了二氧化硅诱导的TLR4-NF-κB/MAPK信号通路的激活,并减轻了焦亡标志物的上调[74]。这些结果可能为早期矽肺病的预防和治疗提供新的见解[76]

2.8.4. 自噬、凋亡及焦亡之间的相互关系

在矽肺等疾病中,自噬、凋亡和焦亡三种程序性细胞死亡形式之间存在复杂的交互作用。自噬可通过清除受损细胞器和蛋白质抑制凋亡,但过度自噬也可能促进凋亡[75]。自噬还可通过调节炎症小体活性影响焦亡:适度的自噬可清除炎症小体组分,减轻焦亡;而自噬过度则可能加剧炎症小体激活,促进焦亡[77]。此外,凋亡与焦亡也可相互作用,焦亡释放的炎症因子可能进一步诱导凋亡,尤其在局部免疫反应过度的情况下。这些交互作用共同调控矽肺的病理进程[76]

2.9. 与矽肺发病机制相关的其他热门研究机制

2.9.1. 肺泡Ⅱ型细胞

肺泡Ⅱ型上皮细胞的上皮–间充质转分化是肺肌成纤维细胞的重要来源,它们位于肺泡壁内层,主要负责表面活性物质的合成与分泌、肺组织修复等功能。在肺部损伤后,肺泡Ⅱ型细胞可以分化为肺泡I型细胞,参与修复受损的肺泡。同时,它们通过分泌TGF-β等促纤维化因子,促进成纤维细胞的激活和胶原蛋白的合成,推动肺部纤维化进程。长期的肺泡Ⅱ型细胞损伤和功能紊乱可能加剧纤维化的发生[77]。miR-30c-5p是一种微小RNA,已被确定与许多疾病过程中上皮–间质转化的激活相关,孙等人使用矽肺小鼠模型提示miR-30c-5p可以通过作用于自噬相关基因片段来阻止Ⅱ型肺泡上皮细胞的间质转换,从而抑制矽肺纤维化过程[78]

2.9.2. 糖酵解

糖酵解是肌成纤维细胞分化和巨噬细胞活化的主要能量驱动机制,这两者都会促进肺部炎症和胶原蛋白沉积。暴露于二氧化硅的小鼠糖酵解相关酶的表达如HK2、PFKM、PKM2和PDK1及乳酸水平均显著升高。之前的研究表明,吸入二氧化硅的大鼠乳酸脱氢酶A的mRNA和蛋白质水平上调[79]。表明乳酸脱氢酶A在矽肺病的糖酵解中具有潜在作用。乳酸脱氢酶A是糖酵解的关键酶,可以将丙酮酸转化为乳酸。在特发性肺纤维化患者中发现LDHA及其代谢产物乳酸水平升高[80]。N-乙酰–丝酰–天冬氨酰–赖氨酰–脯氨酸是一种天然存在的免疫调节活性肽,在试验中发现可以通过抑制糖酵解增强,能够减轻二氧化硅诱导的糖酵解增强和巨噬细胞活化,发挥抗炎和抗纤维化作用。这些研究结果表明,糖酵解抑制剂可能为矽肺的治疗提供新方向[81]

3. 小结与展望

矽肺的发病机制涉及多个相互关联的生物学过程,包括炎症反应、氧化应激、细胞自噬、成纤维细胞活化等。为了开发有效的靶向药物,深入研究这些分子机制显得尤为重要。未来的研究可以从以下几个方向展开:首先,炎症微环境的调控机制需要进一步明确,尤其是巨噬细胞的极化、炎症细胞因子研究信号通路之间的相互关系。这些研究有助于开发新型抗纤维化药物,抑制炎症反应。其次,氧化应激在矽肺病变中的作用值得关注。未来应深入研究ROS的调控机制,并探索抗氧化剂或ROS清除剂在治疗中的潜在应用。此外,细胞自噬和凋亡在矽肺进程中的作用仍需进一步探讨,特别是mTOR、AMPK等关键信号通路的调控机制。通过调节自噬过程,可能为干预矽肺纤维化提供新的思路。

成纤维细胞活化和胶原沉积是纤维化的核心环节。未来研究可以聚焦于抗成纤维化药物,如TGF-β抑制剂,以及中药活性成分如姜黄素等的潜在治疗作用。目前新技术如转录组、蛋白组、代谢组等可应用于矽肺的发病机制探索及寻找可能的潜在诊断矽肺的生物标志物,提高矽肺早期诊断率。未来还需不断开展临床前和临床试验,验证潜在药物的有效性和安全性。

总之,未来矽肺研究应聚焦于关键分子机制,结合基础研究与临床应用,研发可治疗矽肺的药物,更好地使广大患者获益。

基金项目

四川省科技技术厅重点研发项目(2023YFS0469)。

NOTES

*通讯作者。

参考文献

[1] Li, J., Yin, P., Wang, H., Wang, L., You, J., Liu, J., et al. (2022) The Burden of Pneumoconiosis in China: An Analysis from the Global Burden of Disease Study 2019. BMC Public Health, 22, Article No. 1114.
https://doi.org/10.1186/s12889-022-13541-x
[2] Leung, C.C., Yu, I.T.S. and Chen, W. (2012) Silicosis. The Lancet, 379, 2008-2018.
https://doi.org/10.1016/s0140-6736(12)60235-9
[3] Hoy, R.F. and Chambers, D.C. (2020) Silica‐Related Diseases in the Modern World. Allergy, 75, 2805-2817.
https://doi.org/10.1111/all.14202
[4] 毛翎. 《尘肺病治疗中国专家共识(2024年版)》解读[J]. 环境与职业医学, 2024, 41(1): 22-24.
[5] Barnes, H., Lam, M., Tate, M.D. and Hoy, R. (2023) Toward Targeted Treatments for Silicosis. Current Opinion in Pulmonary Medicine, 30, 185-194.
https://doi.org/10.1097/mcp.0000000000001020
[6] Barnes, H., Goh, N.S.L., Leong, T.L. and Hoy, R. (2019) Silica‐Associated Lung Disease: An Old‐World Exposure in Modern Industries. Respirology, 24, 1165-1175.
https://doi.org/10.1111/resp.13695
[7] Zhang, J., Zhang, J., Yao, Z., Shao, W., Song, Y., Tang, W., et al. (2024) GAMG Ameliorates Silica-Induced Pulmonary Inflammation and Fibrosis via the Regulation of EMT and NLRP3/TGF-β1/Smad Signaling Pathway. Ecotoxicology and Environmental Safety, 285, Article 117124.
https://doi.org/10.1016/j.ecoenv.2024.117124
[8] Liu, T., Sun, H., Han, Y., Zhan, Y. and Jiang, J. (2024) The Role of Inflammation in Silicosis. Frontiers in Pharmacology, 15, Article 1362509.
https://doi.org/10.3389/fphar.2024.1362509
[9] Zhao, M., Wang, M., Chen, X., Gao, Y., Chen, Q., Wang, L., et al. (2024) Targeting Progranulin Alleviated Silica Particles-Induced Pulmonary Inflammation and Fibrosis via Decreasing IL-6 and TGF-β1/Smad. Journal of Hazardous Materials, 465, Article 133199.
https://doi.org/10.1016/j.jhazmat.2023.133199
[10] Braz, N.F.T., Carneiro, A.P.S., de Avelar, N.C.P., de Miranda, A.S., Lacerda, A.C.R., Teixeira, M.M., et al. (2016) Influence of Cytokines and Soluble Receptors in the Quality of Life and Functional Capacity of Workers Exposed to Silica. Journal of Occupational & Environmental Medicine, 58, 272-276.
https://doi.org/10.1097/jom.0000000000000606
[11] Căluțu, I., Smărăndescu, R. and Rașcu, A. (2022) Biomonitoring Exposure and Early Diagnosis in Silicosis: A Comprehensive Review of the Current Literature. Biomedicines, 11, Article 100.
https://doi.org/10.3390/biomedicines11010100
[12] Xu, Y., Ding, Q., Xie, Y., Zhang, Q., Zhou, Y., Sun, H., et al. (2024) Green Tea Polyphenol Alleviates Silica Particle-Induced Lung Injury by Suppressing IL-17/NF-κB p65 Signaling-Driven Inflammation. Phytomedicine, 135, Article 156238.
https://doi.org/10.1016/j.phymed.2024.156238
[13] Cao, Z., Liu, Y., Zhang, Z., Yang, P., Li, Z., Song, M., et al. (2021) Pirfenidone Ameliorates Silica-Induced Lung Inflammation and Fibrosis in Mice by Inhibiting the Secretion of Interleukin-17A. Acta Pharmacologica Sinica, 43, 908-918.
https://doi.org/10.1038/s41401-021-00706-4
[14] Gao, X., Xu, H., Xu, D., Li, S., Wei, Z., Li, S., et al. (2020) MiR-411-3p Alleviates Silica-Induced Pulmonary Fibrosis by Regulating Smurf2/TGF-β Signaling. Experimental Cell Research, 388, Article 111878.
https://doi.org/10.1016/j.yexcr.2020.111878
[15] Li, N., Wu, K., Feng, F., Wang, L., Zhou, X. and Wang, W. (2021) Astragaloside IV Alleviates Silica-Induced Pulmonary Fibrosis via Inactivation of the TGF-β1/Smad2/3 Signaling Pathway. International Journal of Molecular Medicine, 47, Article No. 16.
https://doi.org/10.3892/ijmm.2021.4849
[16] Liu, T., Sun, H., Tang, M., Shen, H., Shen, Z., Han, Y., et al. (2024) Bicyclol Attenuates Pulmonary Fibrosis with Silicosis via Both Canonical and Non-Canonical TGF-β1 Signaling Pathways. Journal of Translational Medicine, 22, Article No. 682.
https://doi.org/10.1186/s12967-024-05399-x
[17] He, H., Wang, J., Zhang, Y., Wang, Y., Liu, Y., Li, X., et al. (2024) MiR-455-3p Regulates Lymphangiogenesis in Silicosis by Regulating VEGF-C/VEGFR3. Ecotoxicology and Environmental Safety, 278, Article 116444.
https://doi.org/10.1016/j.ecoenv.2024.116444
[18] Bo, C., Liu, F., Zhang, Z., Du, Z., Xiu, H., Zhang, Z., et al. (2024) Simvastatin Attenuates Silica-Induced Pulmonary Inflammation and Fibrosis in Rats via the AMPK-NOX Pathway. BMC Pulmonary Medicine, 24, Article No. 224.
https://doi.org/10.1186/s12890-024-03014-9
[19] Lam, M., Mansell, A. and Tate, M.D. (2022) Another One Fights the Dust: Targeting the NLRP3 Inflammasome for the Treatment of Silicosis. American Journal of Respiratory Cell and Molecular Biology, 66, 601-611.
https://doi.org/10.1165/rcmb.2021-0545tr
[20] Kang, L., Dai, J., Wang, Y., Shi, P., Zou, Y., Pei, J., et al. (2022) Blocking Caspase-1/Gsdmd and Caspase-3/-8/Gsdme Pyroptotic Pathways Rescues Silicosis in Mice. PLOS Genetics, 18, e1010515.
https://doi.org/10.1371/journal.pgen.1010515
[21] Peukert, K., Steinhagen, F., Fox, M., Feuerborn, C., Schulz, S., Seeliger, B., et al. (2022) Tetracycline Ameliorates Silica-Induced Pulmonary Inflammation and Fibrosis via Inhibition of Caspase-1. Respiratory Research, 23, Article No. 21.
https://doi.org/10.1186/s12931-022-01937-7
[22] Song, Z., Wang, L., Cao, Y., Liu, Z., Zhang, M., Zhang, Z., et al. (2022) Isoandrographolide Inhibits NLRP3 Inflammasome Activation and Attenuates Silicosis in Mice. International Immunopharmacology, 105, Article 108539.
https://doi.org/10.1016/j.intimp.2022.108539
[23] Peng, Z., Duan, M., Zhao, K., Tang, Y. and Liang, F. (2022) RAB20 Deficiency Promotes the Development of Silicosis via NLRP3 Inflammasome. Frontiers in Immunology, 13, Article 967299.
https://doi.org/10.3389/fimmu.2022.967299
[24] Peng, Z., Duan, M., Tang, Y., Wu, J., Zhao, K., Zhong, Y., et al. (2022) Impaired Interferon-γ Signaling Promotes the Development of Silicosis. iScience, 25, Article 104647.
https://doi.org/10.1016/j.isci.2022.104647
[25] Docherty, C.A., Fernando, A.J., Rosli, S., Lam, M., Dolle, R.E., Navia, M.A., et al. (2023) A Novel Dual NLRP1 and NLRP3 Inflammasome Inhibitor for the Treatment of Inflammatory Diseases. Clinical & Translational Immunology, 12, e1455.
https://doi.org/10.1002/cti2.1455
[26] Bolourani, S., Brenner, M. and Wang, P. (2021) The Interplay of Damps, TLR4, and Proinflammatory Cytokines in Pulmonary Fibrosis. Journal of Molecular Medicine, 99, 1373-1384.
https://doi.org/10.1007/s00109-021-02113-y
[27] Zhou, H., Zhang, Q., Huang, W., Zhou, S., Wang, Y., Zeng, X., et al. (2023) NLRP3 Inflammasome Mediates Silica-Induced Lung Epithelial Injury and Aberrant Regeneration in Lung Stem/Progenitor Cell-Derived Organotypic Models. International Journal of Biological Sciences, 19, 1875-1893.
https://doi.org/10.7150/ijbs.80605
[28] Zhang, Y., Liu, F., Jia, Q., Zheng, L., Tang, Q., Sai, L., et al. (2023) Baicalin Alleviates Silica-Induced Lung Inflammation and Fibrosis by Inhibiting TLR4/NF-κB Pathway in Rats. Physiological Research, 72, 221-233.
https://doi.org/10.33549/physiolres.934978
[29] Li, J., Cui, P., Jing, H., Chen, S., Ma, L., Zhang, W., et al. (2024) Hydrogen Combined with Tetrandrine Attenuates Silica-Induced Pulmonary Fibrosis via Suppressing NF-κB/NLRP3 Signaling Pathway-Mediated Epithelial Mesenchymal Transition and Inflammation. International Immunopharmacology, 138, Article 112563.
https://doi.org/10.1016/j.intimp.2024.112563
[30] Liu, M., Liu, H., Kang, H., Wu, J., Xing, P., Ding, X., et al. (2025) Anisodamine Ameliorates Crystalline Silica-Exposed Pulmonary Inflammation and Fibrosis via the α7nAChR/JAK2/STAT3 Signaling Pathway. Ecotoxicology and Environmental Safety, 289, Article 117534.
https://doi.org/10.1016/j.ecoenv.2024.117534
[31] Bai, Y., Liang, C., Gao, L., Han, T., Wang, F., Liu, Y., et al. (2024) Celastrol Pyrazine Derivative Alleviates Silicosis Progression via Inducing Ros-Mediated Apoptosis in Activated Fibroblasts. Molecules, 29, Article 538.
https://doi.org/10.3390/molecules29020538
[32] Du, Y., Huang, F., Guan, L., et al. (2023) Role of PI3K/Akt/mTOR Pathway-Mediated Macrophage Autophagy in Affecting the Phenotype Transformation of Lung Fibroblasts Induced by Silica Dust Exposure. Journal of Central South University. Medical Sciences, 48, 1152-1162.
https://doi.org/10.11817/j.issn.1672-7347.2023.220581
[33] Tan, S. and Chen, S. (2021) The Mechanism and Effect of Autophagy, Apoptosis, and Pyroptosis on the Progression of Silicosis. International Journal of Molecular Sciences, 22, Article 8110.
https://doi.org/10.3390/ijms22158110
[34] Cheng, D., Lian, W., Jia, X., Wang, T., Sun, W., Liu, Y., et al. (2024) LGALS3 Regulates Endothelial-to-Mesenchymal Transition via PI3K/AKT Signaling Pathway in Silica-Induced Pulmonary Fibrosis. Toxicology, 509, Article 153962.
https://doi.org/10.1016/j.tox.2024.153962
[35] Ma, R., Huang, X., Sun, D., Wang, J., Xue, C. and Ye, Q. (2024) Tetrandrine Alleviates Silica-Induced Pulmonary Fibrosis through PI3K/AKT Pathway: Network Pharmacology Investigation and Experimental Validation. Inflammation, 47, 1109-1126.
https://doi.org/10.1007/s10753-023-01964-6
[36] Cheng, D., Xu, Q., Wang, Y., Li, G., Sun, W., Ma, D., et al. (2021) Metformin Attenuates Silica-Induced Pulmonary Fibrosis via AMPK Signaling. Journal of Translational Medicine, 19, Article No. 349.
https://doi.org/10.1186/s12967-021-03036-5
[37] Li, N., Chang, M., Zhou, Q., Zhang, L., Wang, Y., Guan, Y., et al. (2023) Activation of AMPK Signalling by Metformin: Implication an Important Molecular Mechanism for Protecting against Mice Silicosis via Inhibited Endothelial Cell-to-Mesenchymal Transition by Regulating Oxidative Stress and Apoptosis. International Immunopharmacology, 120, Article 110321.
https://doi.org/10.1016/j.intimp.2023.110321
[38] Li, S., Li, C., Pang, X., Zhang, J., Yu, G., Yeo, A.J., et al. (2021) Metformin Attenuates Silica-Induced Pulmonary Fibrosis by Activating Autophagy via the AMPK-mTOR Signaling Pathway. Frontiers in Pharmacology, 12, Article 719589.
https://doi.org/10.3389/fphar.2021.719589
[39] 赵道昆, 缪荣明. 氧化应激反应在矽肺发病中的作用[J]. 职业与健康, 2012, 28(15): 1818-1820.
[40] 李娟, 崔萍, 马丽, 等. 氢通过NF-κB/NLRP3信号通路干预矽肺早期炎症[J]. 中国职业医学, 2023, 50(5): 489-496.
[41] 张颖轶, 缪荣明. 氧化应激反应在矽肺发病中的影响及临床研究[J]. 职业与健康, 2012, 28(6): 641-643.
[42] 马佳. Wnt信号调控氧化损伤在矽肺病理发生中的作用机制[D]: [博士学位论文]. 银川: 宁夏大学, 2024.
[43] Bian, Y., Deng, M., Liu, J., Li, J., Zhang, Q., Wang, Z., et al. (2024) The Glycyl-L-Histidyl-L-Lysine-Cu2+ Tripeptide Complex Attenuates Lung Inflammation and Fibrosis in Silicosis by Targeting Peroxiredoxin 6. Redox Biology, 75, Article 103237.
https://doi.org/10.1016/j.redox.2024.103237
[44] Kumari, S. and Singh, R. (2022) Protective Effects of Intranasal Curcumin on Silica-Induced Lung Damage. Cytokine, 157, Article 155949.
https://doi.org/10.1016/j.cyto.2022.155949
[45] Wang, L., Zhao, M., Qian, R., Wang, M., Bao, Q., Chen, X., et al. (2022) Nicotinamide Mononucleotide Ameliorates Silica-Induced Lung Injury through the Nrf2-Regulated Glutathione Metabolism Pathway in Mice. Nutrients, 15, Article 143.
https://doi.org/10.3390/nu15010143
[46] Marrocco, A. and Ortiz, L.A. (2022) Role of Metabolic Reprogramming in Pro-Inflammatory Cytokine Secretion from LPS or Silica-Activated Macrophages. Frontiers in Immunology, 13, Article 936167.
https://doi.org/10.3389/fimmu.2022.936167
[47] Kang, H., Gu, X., Cao, S., Tong, Z. and Song, N. (2024) Integrated Multi-Omics Analyses Reveal the Pro-Inflammatory and Pro-Fibrotic Pulmonary Macrophage Subcluster in Silicosis. Ecotoxicology and Environmental Safety, 284, Article 116899.
https://doi.org/10.1016/j.ecoenv.2024.116899
[48] Ou, L., Zhang, P., Huang, Z., Cheng, Y., Miao, Q., Niu, R., et al. (2023) Targeting Sting-Mediated Pro-Inflammatory and Pro-Fibrotic Effects of Alveolar Macrophages and Fibroblasts Blunts Silicosis Caused by Silica Particles. Journal of Hazardous Materials, 458, Article 131907.
https://doi.org/10.1016/j.jhazmat.2023.131907
[49] Gao, J., Li, C., Wang, X., Sun, X., Zhang, R., Chen, C., et al. (2022) Oridonin Attenuates Lung Inflammation and Fibrosis in Silicosis via Covalent Targeting iNOS. Biomedicine & Pharmacotherapy, 153, Article 113532.
https://doi.org/10.1016/j.biopha.2022.113532
[50] Esfahani, M., Rahbar, A.H., Asl, S.S., Bashirian, S., Mir Moeini, E.S. and Mehri, F. (2023) The Effects of Resveratrol on Silica-Induced Lung Oxidative Stress and Inflammation in Rat. Safety and Health at Work, 14, 118-123.
https://doi.org/10.1016/j.shaw.2023.02.001
[51] Tian, X., Wei, Y., Hou, R., Liu, X., Tian, Y., Zhao, P., et al. (2023) Yangqing Chenfei Formula Alleviates Silica-Induced Pulmonary Inflammation in Rats by Inhibiting Macrophage M1 Polarization. Chinese Medicine, 18, Article No. 79.
https://doi.org/10.1186/s13020-023-00787-9
[52] Li, S., Zhao, J., Han, G., Zhang, X., Li, N. and Zhang, Z. (2023) Silicon Dioxide-Induced Endoplasmic Reticulum Stress of Alveolar Macrophages and Its Role on the Formation of Silicosis Fibrosis: A Review Article. Toxicology Research, 12, 1024-1033.
https://doi.org/10.1093/toxres/tfad099
[53] 符显昭. 基于调控内质网应激-自噬机制探讨活血解毒降糖方对糖尿病动脉粥样硬化的影响[Z]. 右江: 右江民族医学院, 2023.
[54] Yuan, H., He, Y., Zhang, Y., Min, H., Chen, J. and Li, C. (2024) Crystalline Silica-Induced Endoplasmic Reticulum Stress Promotes the Pathogenesis of Silicosis by Augmenting Proinflammatory Interstitial Pulmonary Macrophages. Science of The Total Environment, 946, Article 174299.
https://doi.org/10.1016/j.scitotenv.2024.174299
[55] Jiang, R., Han, L., Gao, Q. and Chao, J. (2021) ZC3H4 Mediates Silica-Induced EndoMT via ER Stress and Autophagy. Environmental Toxicology and Pharmacology, 84, Article 103605.
https://doi.org/10.1016/j.etap.2021.103605
[56] Li, Y., Cai, W., Jin, F., Wang, X., Liu, W., Li, T., et al. (2022) Thalidomide Alleviates Pulmonary Fibrosis Induced by Silica in Mice by Inhibiting ER Stress and the TLR4-NF-κB Pathway. International Journal of Molecular Sciences, 23, Article 5656.
https://doi.org/10.3390/ijms23105656
[57] Mao, N., Fan, Y., Liu, W., Yang, H., Yang, Y., Li, Y., et al. (2022) Oxamate Attenuates Glycolysis and ER Stress in Silicotic Mice. International Journal of Molecular Sciences, 23, Article 3013.
https://doi.org/10.3390/ijms23063013
[58] Marrocco, A., Frawley, K., Pearce, L.L., et al. (2021) Metabolic Adaptation of Macrophages as Mechanism of Defense against Crystalline Silica. Journal of Immunology, 207, 1627-1640.
[59] Jia, Q., Wang, H., Wang, Y., Xue, W., Jiang, Q., Wang, J., et al. (2024) Investigation of the Mechanism of Silica-Induced Pulmonary Fibrosis: The Role of Lung Microbiota Dysbiosis and the LPS/TLR4 Signaling Pathway. Science of The Total Environment, 912, Article 168948.
https://doi.org/10.1016/j.scitotenv.2023.168948
[60] Brumatti, G., Salmanidis, M. and Ekert, P.G. (2010) Crossing Paths: Interactions between the Cell Death Machinery and Growth Factor Survival Signals. Cellular and Molecular Life Sciences, 67, 1619-1630.
https://doi.org/10.1007/s00018-010-0288-8
[61] Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541.
https://doi.org/10.1038/s41418-017-0012-4
[62] Zhao, H., Wang, Y., Qiu, T., Liu, W. and Yao, P. (2020) Autophagy, an Important Therapeutic Target for Pulmonary Fibrosis Diseases. Clinica Chimica Acta, 502, 139-147.
https://doi.org/10.1016/j.cca.2019.12.016
[63] Du, S., Li, C., Lu, Y., Lei, X., Zhang, Y., Li, S., et al. (2019) Dioscin Alleviates Crystalline Silica-Induced Pulmonary Inflammation and Fibrosis through Promoting Alveolar Macrophage Autophagy. Theranostics, 9, 1878-1892.
https://doi.org/10.7150/thno.29682
[64] Li, N., Shi, F., Wang, X., Yang, P., Sun, K., Zhang, L., et al. (2021) Silica Dust Exposure Induces Pulmonary Fibrosis through Autophagy Signaling. Environmental Toxicology, 36, 1269-1277.
https://doi.org/10.1002/tox.23124
[65] Tan, S. and Chen, S. (2021) Macrophage Autophagy and Silicosis: Current Perspective and Latest Insights. International Journal of Molecular Sciences, 22, Article 453.
https://doi.org/10.3390/ijms22010453
[66] Li, P., Hao, X., Liu, J., Zhang, Q., Liang, Z., Li, X., et al. (2023) MiR-29a-3p Regulates Autophagy by Targeting AKT3-Mediated mTOR in SiO2-Induced Lung Fibrosis. International Journal of Molecular Sciences, 24, Article 11440.
https://doi.org/10.3390/ijms241411440
[67] Xie, Y., Ma, J., Xie, L., Li, W., Yang, M., Gu, P., et al. (2022) Inhibition of Gas6 Promotes Crystalline Silica‐Induced Inflammatory Response of Macrophages via Blocking Autophagy Flux. Environmental Toxicology, 37, 1925-1933.
https://doi.org/10.1002/tox.23539
[68] Hotchkiss, R.S., Strasser, A., McDunn, J.E. and Swanson, P.E. (2009) Cell Death. New England Journal of Medicine, 361, 1570-1583.
https://doi.org/10.1056/nejmra0901217
[69] Li, R., Kang, H. and Chen, S. (2023) From Basic Research to Clinical Practice: Considerations for Treatment Drugs for Silicosis. International Journal of Molecular Sciences, 24, 8333.
[70] Li, W., Xie, L., Ma, J., Cheng, M., Fan, L., Xu, Y., et al. (2021) Gas6 or Mer Deficiency Ameliorates Silica-Induced Autophagosomes Accumulation in Mice Lung. Toxicology Letters, 337, 28-37.
https://doi.org/10.1016/j.toxlet.2020.11.013
[71] Cooley, J.C., Javkhlan, N., Wilson, J.A., Foster, D.G., Edelman, B.L., Ortiz, L.A., et al. (2023) Inhibition of Antiapoptotic BCL-2 Proteins with ABT-263 Induces Fibroblast Apoptosis, Reversing Persistent Pulmonary Fibrosis. JCI Insight, 8, e163762.
https://doi.org/10.1172/jci.insight.163762
[72] Long, L., Dai, X., Yao, T., Zhang, X., Jiang, G., Cheng, X., et al. (2024) Mefunidone Alleviates Silica-Induced Inflammation and Fibrosis by Inhibiting the TLR4-NF-κB/MAPK Pathway and Attenuating Pyroptosis in Murine Macrophages. Biomedicine & Pharmacotherapy, 178, Article 117216.
https://doi.org/10.1016/j.biopha.2024.117216
[73] Tao, H., Zhao, H., Mo, A., Shao, L., Ge, D., Liu, J., et al. (2023) VX-765 Attenuates Silica-Induced Lung Inflammatory Injury and Fibrosis by Modulating Alveolar Macrophages Pyroptosis in Mice. Ecotoxicology and Environmental Safety, 249, Article 114359.
https://doi.org/10.1016/j.ecoenv.2022.114359
[74] Jessop, F., Hamilton, R.F., Rhoderick, J.F., Shaw, P.K. and Holian, A. (2016) Autophagy Deficiency in Macrophages Enhances NLRP3 Inflammasome Activity and Chronic Lung Disease Following Silica Exposure. Toxicology and Applied Pharmacology, 309, 101-110.
https://doi.org/10.1016/j.taap.2016.08.029
[75] Rogers, C., Fernandes-Alnemri, T., Mayes, L., Alnemri, D., Cingolani, G. and Alnemri, E.S. (2017) Cleavage of DFNA5 by Caspase-3 during Apoptosis Mediates Progression to Secondary Necrotic/Pyroptotic Cell Death. Nature Communications, 8, Article No. 14128.
https://doi.org/10.1038/ncomms14128
[76] Wang, Y., Gao, W., Shi, X., Ding, J., Liu, W., He, H., et al. (2017) Chemotherapy Drugs Induce Pyroptosis through Caspase-3 Cleavage of a Gasdermin. Nature, 547, 99-103.
https://doi.org/10.1038/nature22393
[77] Yao, C., Guan, X., Carraro, G., Parimon, T., Liu, X., Huang, G., et al. (2021) Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 203, 707-717.
https://doi.org/10.1164/rccm.202004-1274oc
[78] Sun, J., Zhao, N., Zhang, R., Li, Y., Yu, T., Nong, Q., et al. (2025) Metabolic Landscape of Human Alveolar Type II Epithelial Cells Undergoing Epithelial-Mesenchymal Transition Induced Directly by Silica Exposure. Journal of Environmental Sciences, 149, 676-687.
https://doi.org/10.1016/j.jes.2024.02.020
[79] Cai, W., Zhang, B., Li, T., Jin, F., Li, Y., Xu, H., et al. (2021) Transcriptomic Analysis Identifies Upregulation of Secreted Phosphoprotein 1 in Silicotic Rats. Experimental and Therapeutic Medicine, 21, Article No. 579.
https://doi.org/10.3892/etm.2021.10011
[80] Zhu, Y., Yao, J., Duan, Y., Xu, H., Cheng, Q., Gao, X., et al. (2020) Protein Expression Profile in Rat Silicosis Model Reveals Upregulation of PTPN2 and Its Inhibitory Effect on Epithelial-Mesenchymal Transition by Dephosphorylation of STAT3. International Journal of Molecular Sciences, 21, Article 1189.
https://doi.org/10.3390/ijms21041189
[81] Mao, N., Yang, H., Yin, J., Li, Y., Jin, F., Li, T., et al. (2021) Glycolytic Reprogramming in Silica-Induced Lung Macrophages and Silicosis Reversed by Ac-SDKP Treatment. International Journal of Molecular Sciences, 22, Article 10063.
https://doi.org/10.3390/ijms221810063