外泌体MicroRNA在银屑病中的研究进展
Advances in the Study of Exosomal MicroRNA in Psoriasis
DOI: 10.12677/jcpm.2025.42218, PDF, HTML, XML,    科研立项经费支持
作者: 王祖鑫, 张 乐, 李波波:内蒙古医科大学研究生院,内蒙古 呼和浩特;内蒙古自治区人民医院皮肤性病科,内蒙古 呼和浩特;龚乾丰, 任婧华:内蒙古自治区人民医院皮肤性病科,内蒙古 呼和浩特;内蒙古科技大学包头医学院研究生院,内蒙古 包头;段 妍*:内蒙古自治区人民医院皮肤性病科,内蒙古 呼和浩特
关键词: 银屑病外泌体非编码RNAPsoriasis Exosome MicroRNA (miRNA)
摘要: 外泌体来源的MicroRNA已被证实具有一定的特异性,通过调控信号通路、释放或抑制炎症因子、参与角质形成细胞的增殖和凋亡等方式参与银屑病的发生发展过程。本文主要论述了外泌体MicroRNA在银屑病的发病机制和潜在能力的相关研究进展。
Abstract: Exosome-derived MicroRNAs have been shown to have certain specificity and participate in the process of psoriasis development by regulating signaling pathways, releasing or inhibiting inflammatory factors, and participating in the proliferation and apoptosis of keratinocytes. This paper mainly discusses the research progress related to the pathogenesis and potential ability of exosomal MicroRNAs in psoriasis.
文章引用:王祖鑫, 龚乾丰, 张乐, 任婧华, 李波波, 段妍. 外泌体MicroRNA在银屑病中的研究进展[J]. 临床个性化医学, 2025, 4(2): 583-593. https://doi.org/10.12677/jcpm.2025.42218

1. 引言

银屑病是一种慢性炎症性皮肤病,典型临床表现为边界清晰的红斑、瘙痒性斑块,表面覆盖银白色鳞屑并且具有遗传易感性[1]。银屑病影响了全球数百万人,Parisi等[2]利用GBD2019的研究数据分析了1990年至2019年银屑病的流行病学趋势,在2019年,全球银屑病负担包括4,622,594例发病病例、40,805,386例患病病例和3,505,736例DALY (失能调整生命年)病例,同时预计到2030年,每万人口的发病率将有可能增加[3]。尽管银屑病的流行病学没有在全球的每个国家进行研究,但已有数据表明疾病患病率差异较大,从东亚的0.14%到澳大利亚的1.99%不等,西欧(1.92%,1.07%至3.46%)、中欧(1.83%,0.62%至5.32%)、北美(1.50%,0.63%至3.60%)和高收入的拉丁美洲南部地区(1.10%,0.36%至2.96%)的银屑病患病率也较高,其中女性患者的发病年龄通常早于男性[4]。银屑病除皮肤表现外,还会引起一系列并发症,包括银屑病关节炎、精神健康问题、心血管疾病和代谢综合征等,这不仅给患者带来了身体和心理负担,同时也增加了治疗的医疗成本[5]

外泌体是一类由大多数细胞主动释放的脂质双膜结构囊泡,存在于人体的多种体液中,如血液、唾液、泪液和尿液[6],其包含多种成分,包括核酸、蛋白质、脂质、氨基酸和代谢物等,这些成分可以反映它们的细胞来源,并且可以从供体细胞转移到受体细胞,从而实现细胞内信息的转移[7] [8]。其中不同来源的细胞外泌体中携带的RNA成分与其亲本细胞中的RNA成分相比表现出很大的差异,包含非编码RNA和信使RNA [9]。微小RNA (miRNA)是一类内源性非编码RNA分子,在调控基因表达中起着根本性作用,部分的研究已经发现,银屑病患者对比正常人存在特征性的miRNA表达谱[10]-[12]。本文从外泌体miRNA的生物发生和功能开始,结合银屑病发病机制及潜在诊断预后标志物可能性,综述外泌体miRNA在银屑病中的研究进展。

2. 外泌体miRNA的生物学特性

外泌体是细胞外囊泡(EVs)中一种大小为30~150 nm内体来源EVs [13],它是一个高度异质性的群体,具有诱导复杂生物反应的不同能力。外泌体的异质性由于其大小、内容、对受体细胞的功能产生影响和来源细胞的不同而变化,这些特征的不同组合也可能导致更复杂的异质性[8] [14]。外泌体由功能性蛋白质、mRNA和miRNA组成,可以通过信号传导来诱导炎症反应[9]

微小RNA (miRNA)是小型非编码RNA,平均长度约为22至25个核苷酸,在转录后基因表达中起重要作用。miRNA的主要功能是通过结合信使RNA (mRNA)中的互补序列来阻遏mRNA翻译成蛋白质,一个miRNA可能靶向多个基因[15],miRNA是基因表达的强效调节剂,可调节多达60%的蛋白质编码基因[16]

越来越多的证据表明,循环中外泌体结合miRNA代表了血液中细胞外miRNA总量的一个独特子集,这表明与游离miRNA相比,结合miRNA更为稳定,同时也提示外泌体中miRNA可能成为新的炎症疾病的早期诊断和预后评估的一类生物标志物[9] [17]-[19]。在异常的遗传和环境因素中,失调的miRNA及其相关基因,会参与和调节银屑病中免疫细胞的行为与角质形成细胞发挥功能的途径,成为银屑病的致病因素。

3. 外泌体miRNA在银屑病发病机制中的作用

银屑病是一种慢性自身炎症性疾病,涉及免疫失调、角质形成细胞异常增殖以及免疫细胞浸润到皮肤组织等一系列的复杂机制[20]。T淋巴细胞是淋巴细胞的主要成分,根据T细胞的免疫效应功能,可分为辅助性T细胞(Th)、细胞毒性T细胞(CTL)及调节性T细胞(Treg),辅助性T细胞又分为Th1、Th2与Th17细胞[21]。在银屑病皮损的发展方面,有研究发现可能是由产生效应细胞因子(干扰素γ (IFN-γ)和肿瘤坏死因子α (TNF-α)的细胞毒性T淋巴细胞引发的[22]。随后,T辅助细胞17 (Th17)的发现及白细胞介素17 (IL-17)和IL-22的分泌成为引发表皮变化、导致银屑病发展的其他关键因素,在此机制过程的上游,树突状细胞分泌白细胞介素23 (IL-23)刺激Th17细胞和白细胞介素12 (IL-12)的分化和增殖,从而诱导IFN-γ的产生,而IFN-γ是Th1免疫反应发展所必需的条件[23]。随着对Th1/Th2的失衡及Th17细胞的深入研究,有更多证据发现Th17/Treg失衡在银屑病的发病中也起着非常重要的作用[24]。外泌体miRNA参与不同的细胞间通讯并调节细胞生物过程,包括调控信号通路、释放或抑制炎症因子、参与角质形成细胞的增殖和分化等[25]

3.1. 外泌体miRNA与炎症因子在银屑病发病中的作用

银屑病的皮肤表现为遗传易感个体中由环境触发因素引起的局灶性病理改变,在皮损内,皮肤驻留T细胞(skin-resident T cells)和基质细胞之间串扰导致慢性炎症,TNF-α,IL-17、IL-22及IL-23等炎性细胞因子放大了局部慢性炎症,并维持了该疾病特征性的界限分明的厚的鳞屑状斑块[26]

白介素家族在银屑病的发生与维持中起着关键作用,在银屑病患者皮损中,IL-17配体会驱动异常形式的角质形成细胞分化以及银屑病表型特有的促炎细胞因子的过量产生,组织和血清中TNF-α水平升高是银屑病免疫失调的标志,IL-22是IL-23/IL-17通路中的上游介质,同时也是一种有效的促炎细胞因子[27]。IL-22与其他炎症介质一起刺激角质形成细胞产生炎症细胞因子(IL-1β、TNF-α、IL-6)、趋化因子(CCL20)和抗菌肽(S100A7、S100A8、S100A9、β-防御素-2) [18]。You等[28]研究发现,银屑病患者miRNA的异常调节在银屑病患者和IL-22刺激的HaCaT细胞(人类永生化角质形成细胞)中,miR-128-3p和HIF-1α表达水平升高,SIRT1表达降低,miR-128-3p在银屑病中的表达升高,并通过抑制SIRT1表达促进银屑病进展。Li等[29]发现IL-22介导的miR-124-3p通过抑制银屑病中的GRB2表达来调节角质形成细胞过度增殖和炎症反应,一个MicroRNA可能靶向多个靶基因,推测miR-124-3p可能还靶向其他下游基因,影响IL-22诱导的角质形成细胞功能。

3.2. 外泌体miRNA在银屑病发病信号通路中的作用

在银屑病的发病过程中IL-23/Th17轴、NF-κB通路、JAK/STAT通路、PI3K/BAKT通路是主要的致病通路,并且这几条通路之间存在相互联系[5]

3.2.1. IL-23/TH17轴

IL-23驱动免疫细胞产生IL-17,IL-17与其他细胞因子一起引起角质形成细胞的激活、过度增殖和异常分化,进而导致抗菌肽、趋化因子的释放,从而募集免疫细胞至皮肤形成恶性循环,进而形成慢性炎症[30]。IL-22主要由Th22和Th17产生,IL-22可诱导细胞因子、趋化因子和由IL-23/TH17轴介导的特异性反应[18]。目前研究表明,在银屑病MicroRNA特征中,miR-21是最上调和最活跃的miRNA之一。Abdallah等[31]研究发现,在银屑病小鼠模型中存在miR-21-3p的上调现象,该现象主要是通过STAT3和NF-κB信号传导发生,同时这种上调与体外和体内IL-22的表达与功能相关,该实验同时确定了一个差异表达基因网络,这些基因参与异常增殖和免疫调节并与银屑病的分子发病机制有关,这些结果通过功能分析证实了miR-21-3p的增殖潜力。Lin等[32]研究发现,从暴露在细胞因子中的角质形成细胞内分离出的外泌体,其外泌体内Th17细胞比例增加,抑制miR-211-5p可诱导CD4+T细胞中Th17细胞比例进一步增加,同时在银屑病动物模型中验证发现,角质形成细胞中分离的外泌体可通过调控miR-211-5p/SIRT1轴抑制Th17细胞分化,缓解银屑病症状。

3.2.2. NF-κB通路

NF-κB在调节多种细胞因子的表达方面起着至关重要的作用,它在银屑病患者皮损中表达升高,治疗后可恢复正常,它是角质形成细胞和免疫细胞的信号传导关键介质,降低NF-κB信号传导可显著抑制银屑病角质形成细胞的过度增殖和炎症细胞浸润,从而减轻炎症[33]。在银屑病的分子发病机制中,miRNA可以通过靶向调控NF-κB通路来调节角质形成细胞与促进炎症因子的释放。Chen等[34]研究发现miRNA-155通过NF-κB通路参与银屑病发病机制,该研究通过生物信息学分析银屑病中差异表达的基因和miRNA的生物学机制和功能,发现miR-155与IRF2BP2的相互作用可导致KLF2表达降低、p65表达增加和炎症因子分泌增加,从而加剧了HaCat细胞炎症反应,最终证实miR-155可能通过IRF2BP2/KLF2/NF-κB通路增加HaCaT细胞的炎症反应,从而诱导组织和细胞损伤来促进银屑病的发展。Masalha等[35]研究发现miR-155在控制炎症信号方面发挥正反馈功能,首先NF-κB与miR-155启动子结合而增加miR-155的表达,miR-155会通过NF-κB触发炎症信号使促炎细胞因子(如IL-1β、IFN-γ、TNF-α和IFN-α)产生,此外,miR-155可靶向调控炎症信号传导抑制剂(PTEN),PTEN可抑制激活NF-κB的PI3K/AKT通路,因此,通过PI3K/AKT通路阻断PTEN,miR-155可触发炎症和NF-κB信号。Huang等[36]证实了miR-193b-3p在银屑病患者、银屑病样炎症细胞模型和咪喹莫特(IMQ)诱导的银屑病样皮损小鼠模型中下调,该miRNA可以通过直接靶向ERBB4来抑制角质形成细胞活化,而ERBB4可诱导角质形成细胞的增殖、炎症因子的产生并参与STAT3和NF-κB通路,故功能性抑制miR-193b-3p可加速银屑病的发展。

3.2.3. JAK-STAT通路

JAK-STAT通路中相关的跨膜受体与细胞因子配体相结合,Janus激酶(JAK)就会被激活,一旦被激活,它们就会磷酸化自身和相关受体的细胞内成分,STAT (信号转导和转录激活因子)蛋白从细胞质移动到细胞膜并与JAK及其受体结合,之后JAK继续磷酸化STAT,STAT进而被激活、二聚化并进入细胞核,成为调节基因表达的活性转录因子,这些过程与银屑病发病机制密切相关[37]。JAK-STAT信号传导均受miRNA的调控,有研究通过对下调的miRNAhsa-let-7c-5p进行了功能表征,预测该miRNA会靶向参与银屑病中细胞周期过程、Th17细胞分化和JAK-STAT信号通路的上调基因,角质形成细胞中hsa-let-7c-5p的过度表达导致其靶基因下调,从而导致细胞增殖和迁移率降低[38]。Chen等[39]通过对12例寻常型银屑病患者在接受阿维A治疗前后血浆中循环miRNA的表达谱进行测序,并分析异常表达的miRNA介导的信号通路,并通过体外实验验证这些信号通路,揭示阿维A可以显著降低miR-122-5p的表达下调MAPK信号,表明阿维A可能通过调控miR-122-5p介导的MAPK、JAK-STAT及NF-κB信号通路,来抑制寻常型银屑病的发生。Buda等[40]研究发现阿达木单抗对JAK/STAT和IL-6依赖性IL-12/23通路的mRNA和miRNA表达具有最强的调节作用,在阿达木单抗的影响下,观察到STAT1、STAT3、STAT5、JAK3和IL-6在mRNA水平上过度表达,同时SOCS3和IL-6R表达水平下降,实验结果表明:JAK3与hsa-miR-373-5p之间的联系最强;SOCS3、STAT5与hsa-miR-1827之间的联系最强。

3.2.4. PI3K-AKT通路

PI3K-AKT信号通路在银屑病发病中的作用已被证实。银屑病患者血清和皮损组织中PI3K过度激活,可直接或间接激活Akt,进而促进mTOR磷酸化。最终PI3K/Akt/mTOR信号通路过度激活,促进炎症、角质形成细胞过度增生及血管生成,进而影响病情发展PI3K-AKT [41]。它参与银屑病的发展,有增强细胞增殖和抗凋亡的能力,并且该通路在银屑病中表现出双重作用。有研究表明在银屑病病变中,过度活跃的PI3K-AKT通路可能与调节表皮角质形成细胞的衰老样表型有关,从而促进角质形成细胞生长停滞,可抑制银屑病皮损进展[42]。PTEN-PI3K-AKT信号在银屑病角质形成细胞中也异常激活,并有多个miRNA参与此过程[43],在银屑病中已证实miR-125b-5p、miR-181b-5p和miR-320b靶向调控AKT3,IL-1β、IFN-γ和TNF-α等细胞因子与其受体结合并触发NF-κB的活化,从而增加miR-155的转录,而miR-155可通过靶向作用于PTEN间接增强NF-κB活化,这表明在银屑病中PTEN-PI3K-AKT通路受miRNA调控,无论是上调还是下调,这些miRNA相互协作,共同促进银屑病的发生发展和维持。还有研究发现银屑病患者皮损中,CircRNA通过miR-486-3p/AKT3通路抑制IL-22诱导的角质形成细胞增殖和迁移,影响银屑病的发展[44]

3.3. 免疫细胞来源的外泌体miRNA在银屑病发病中的作用

T辅助细胞(Th17)和T调节细胞(Treg)是两种重要的T细胞亚型,在银屑病等自身免疫性疾病中发挥重要作用[45]。银屑病患者存在体液和细胞免疫异常,免疫紊乱是银屑病发病机制中的重要环节。Th17细胞以分泌IL-17而闻名,而IL-17与银屑病的发病机制有关,并且是一种激活角质形成细胞受体的细胞因子,其常与Th1和Th2细胞分泌的细胞因子共同参与银屑病的发病[46]。Treg细胞具有抗炎特性并在银屑病患者外周血中表现出活性抑制,Th17和Treg细胞水平之间的明显失衡与银屑病的发展有关[47]。研究表明,在健康供体中,Treg细胞外泌体MicroRNA中的miR-146a-5p、miR-150-5p和miR-21-5p水平明显高于Th1-Th17细胞中的水平;相反,Th1/Th17细胞来源的外泌体中的miR-106-5p、miR-155-5p和miR-19a-3p明显低于Treg来源的外泌体,T细胞及其亚细胞组分之间外泌体内的miRNA谱存在明显差异[48]

银屑病中的特征性途径,如Th17细胞分化(免疫)和JAK-STAT信号传导等被发现受miRNA的调节。有研究对下调的miRNAhsa-let-7c-5p进行了功能表征,预测其靶向银屑病中参与细胞周期过程、Th17细胞分化和JAK-STAT信号通路的上调基因,发现角质形成细胞中hsa-let-7c-5p的过表达导致其靶基因下调,导致细胞增殖和迁移率降低[38]。有研究发现丝裂原活化蛋白激酶(MAPKs)在银屑病病变中被激活并过表达,miR-34a、miR-1275、miR-3188和miR-382的表达发生了显著变化,同时证明了其与DUSP1、MAPK9、MAP2K7及MAP3K2之间的潜在关系,认为这是银屑病背景下进一步研究的主题[49]

4. 外泌体miRNA作为银屑病生物标志物的潜力

miRNA是含有19到25个核苷酸的小型且高度保守的非编码RNA序列[50]。在银屑病患者皮损和健康人皮肤之间miRNA的表达水平不同,除了组织之外,miRNA也存在于体液中(血清、血浆、尿液及精液等),这些体液样本易于获取,可以视为潜在的非侵入性生物标志物,miRNA可以调控多种通路及蛋白从而影响银屑病的发生发展,多种来源的miRNA作为银屑病的诊断标志物和预后标准物有着巨大潜力[51]-[54]。外泌体中含有大量且丰富的miRNA可参与调控生物学功能,例如:miR-155、miR-222促进血管生成;miR-494促进血管和肌肉的生成;miR-181c减轻烧伤引起的炎症性损伤;miR-16下调肿瘤细胞中血管内皮生长因子(VEGF)的表达可以抑制肿瘤生长,而外泌体可以携带间充质干细胞(MSCs)分泌的miRNA与靶细胞之间进行物质交换和信息交流[55]

4.1. 诊断标志物

有研究表明通路分析显示差异表达的miRNA可能靶向免疫系统相关通路,包括TNF-α、IL-2/STAT4和IL-6/JAK/STAT3。目前已证实miR-28-5p、miR-31-5p、miR-378a-3p和miR-203a在银屑病患者的皮肤中上调[52]。Miao等[56]发现miR-199a在银屑病中存在差异表达,该研究选取65例寻常型银屑病患者,用PASI (皮损面积与严重程度指数)进行分组,并与40例健康者进行对照,采用荧光定量PCR检测银屑病皮损及正常皮肤组织中miR-199a的表达情况,发现银屑病皮损中miR-199a水平与PASI呈正相关,进一步以PASI为因变量,并与因变量呈线性关系的miR-199a为自变量,经多元逐步回归分析,发现不同严重程度银屑病患者皮损中miR-199a表达存在差异,皮损中miR-199a水平可作为评估银屑病严重程度的潜在指标。Lättekivi等[57]在分析斑块型银屑病和银屑病关节炎患者血清外泌体时发现QXBT12、hsa-miR-33a-5p和hsa-miR-26a-5p与炎症性皮肤病和关节炎有关,它们可作为诊断和预后标准物。

4.2. 预后标志物

有研究发现,miR-199a-5p、miR-195-5p、miR-196a-5p、miR-124、miR-191-5p和miR-21-5p与银屑病严重程度相关[58]。Saadawy等[59]通过分析与对照40例银屑病患者与40例健康群体中血清样本和皮肤组织中miR-125b和miR-21的mRNA表达发现,miR-21在银屑病样本中表达显著增加,miR-125在银屑病样本中表达显著降低,这表明miR-21和miR-125b的表达水平可能在预测银屑病的严重程度有潜在价值,角质形成细胞衍生的外泌体miR-625-3p在重度银屑病患者的血浆和皮肤中均显著增加,并且准确地区分了中度至重度银屑病和轻度至中度银屑病,研究认为外泌体中miR-625-3p是一种评估银屑病严重程度的新型可靠生物标志物,可在临床环境中客观评估银屑病的严重程度,并可能成为潜在的治疗靶点[60]

目前在口腔鳞状细胞癌,胃肠道癌症,股骨头坏死等疾病中研究发现外泌体生物标志物(包括miRNA、lncRNA和蛋白质)具有极大潜力,很多miRNA被证明对非侵入性诊断有着巨大的潜力,可提高预后和结果的准确性[61]-[63]

4.3. 治疗反应标志物

在临床治疗中使用miRNA作为监测治疗反应物,目前也有较多研究。Zhang等[58]招募了63名银屑病患者,从收集到的血浆中提取细胞外囊泡,并对银屑病患者血浆来源的细胞外囊泡miRNA进行新一代测序,研究发现miR-625-3p、miR-4488和miR-342-3p上调,miR-5698、miR-1255b-5p和miR323a-5p下调,经过实验后发现miR-625-3p和miR-4488可以作为银屑病治疗反应的标志物。Federico等[64]招募了8名接受瑞莎珠单抗(Risankizumab)治疗的银屑病患者,并分析了治疗前与治疗1年后的临床表现和miRNA评估数据,结果发现治疗1年后miR-146a和miR-155的血浆水平显著降低;在治疗前的患者中,miR-210和miR-378水平与疾病严重程度评分之间存在显著的正相关性。Chen等[39]通过收集18人使用阿维A治疗银屑病前后血样,鉴定出3种miRNA (miR-146a-5p、miR-122-5p和miR-21-5p)在阿维A治疗后其水平显著降低,结果显示这3个miRNA具有作为评估阿维A治疗效果的分子标志物的潜力。以上研究发现miRNA作为监测治疗标准物有巨大研究潜力。

5. 外泌体miRNA在银屑病治疗中的潜在应用

外泌体中含有mRNA、miRNA和其他非编码RNA [65],它们可以在外泌体循环时被吸收,最终影响受体细胞的靶基因表达、信号传导和整体生物学功能的改变,这表明外泌体miRNA存在主动分选机制[66]。研究发现,一类miRNA序列会优先分选进入外泌体,如miR-320和miR-150 [16]。之前的研究也发现,在小RNA中,外泌体中miRNA的含量要高于宿主细胞中。这些研究都表明,宿主细胞存在一种分选机制,可以引导特定的miRNA进入外泌体[67]

MSCs (间充质干细胞)是细胞移植疗法中应用最广泛的细胞类型,它们可以分化为多个谱系,并且可以从不同的组织来源分离并扩展它们[68]。MSCs的分泌组可分为两个主要部分:可溶性部分,包括蛋白质和可溶性因子,如细胞因子、生长因子和趋化因子;囊泡部分,包括外泌体、微囊泡和凋亡小体。外泌体(30~200 nm)是通过内吞作用产生的,微囊泡(200~1000 nm)通过出芽直接从质膜释放,凋亡体(1000~5000 nm)是凋亡过程中形成的大囊泡[69]。其中,MSC-EV的治疗中仅使用外泌体和微囊泡。miRNA作为外泌体中的携带物质之一,外泌体可以将其运输到其他细胞中以促进细胞间通信,并可以融合到靶细胞的质膜,释放可以激活和调节特定基因的miRNA [70]

外泌体具有免疫原性低、稳定性好、靶向性强、与靶细胞融合能力强等特点,可作为银屑病治疗的递送工具[71]。外泌体具有很强的靶向性和良好的组织相容性,可以高效、准确地递送蛋白质、核酸和/或药物,因此外泌体作为一种新型银屑病靶向免疫治疗递送平台有巨大的研究潜力。目前Chandran等[72]研究局部应用间充质干细胞/基质细胞(MSC)外泌体软膏治疗健康志愿者银屑病的安全性和耐受性上取得了研究结果,这表明外泌体在治疗银屑病上的研究潜能。

6. 结论与展望

外泌体miRNA在银屑病的发病机制、诊断和治疗中具有重要作用。通过调控炎症反应、角质形成细胞增殖和免疫细胞的功能,外泌体miRNA为银屑病的研究提供了新的视角。未来随着技术的进步和研究的深入,外泌体miRNA有望成为银屑病诊断和治疗的重要工具。血浆外泌体miRNA在银屑病的诊断、治疗和预后检测中具有重要潜力,未来研究应进一步解析外泌体miRNA在银屑病中的具体作用机制,并探索其临床应用价值。未来的研究或许应重点关注miRNA疗法、新兴生物疗法和小分子疗法的组合疗法,这些疗法可能作为整体治疗方案会更有效、更精准地治疗银屑病。

基金项目

内蒙古自治区科技计划项目(2022YFSH0005);内蒙古自治区卫生健康委医疗卫生科技计划项目(202202004);内蒙古医科大学校级联合项目(YKD2021LH043);内蒙古医学科学院公立医院科研联合基金项目(2024GLLH0048);内蒙古自治区医师协会临床医学研究和临床新技术推广项目(YSXH2024KYF002)。

NOTES

*通讯作者。

参考文献

[1] Rendon, A. and Schäkel, K. (2019) Psoriasis Pathogenesis and Treatment. International Journal of Molecular Sciences, 20, Article 1475.
https://doi.org/10.3390/ijms20061475
[2] Parisi, R., Iskandar, I.Y.K., Kontopantelis, E., Augustin, M., Griffiths, C.E.M. and Ashcroft, D.M. (2020) National, Regional, and Worldwide Epidemiology of Psoriasis: Systematic Analysis and Modelling Study. BMJ, 369, m1590.
https://doi.org/10.1136/bmj.m1590
[3] Wang, K., Zhao, Y. and Cao, X. (2024) Global Burden and Future Trends in Psoriasis Epidemiology: Insights from the Global Burden of Disease Study 2019 and Predictions to 2030. Archives of Dermatological Research, 316, Article No. 114.
https://doi.org/10.1007/s00403-024-02846-z
[4] Iskandar, I.Y.K., Parisi, R., Griffiths, C.E.M. and Ashcroft, D.M. (2020) Systematic Review Examining Changes over Time and Variation in the Incidence and Prevalence of Psoriasis by Age and Gender. British Journal of Dermatology, 184, 243-258.
https://doi.org/10.1111/bjd.19169
[5] Gao, Y., Xu, T., Wang, Y., Hu, Y., Yin, S., Qin, Z., et al. (2025) Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research. Pharmaceutics, 17, Article 56.
https://doi.org/10.3390/pharmaceutics17010056
[6] Yu, D., Li, Y., Wang, M., Gu, J., Xu, W., Cai, H., et al. (2022) Exosomes as a New Frontier of Cancer Liquid Biopsy. Molecular Cancer, 21, Article No. 56.
https://doi.org/10.1186/s12943-022-01509-9
[7] Lin, S., Yu, Z., Chen, D., Wang, Z., Miao, J., Li, Q., et al. (2019) Progress in Microfluidics‐Based Exosome Separation and Detection Technologies for Diagnostic Applications. Small, 16, e1903916.
https://doi.org/10.1002/smll.201903916
[8] Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[9] Ramshani, Z., Zhang, C., Richards, K., Chen, L., Xu, G., Stiles, B.L., et al. (2019) Extracellular Vesicle MicroRNA Quantification from Plasma Using an Integrated Microfluidic Device. Communications Biology, 2, Article No. 189.
https://doi.org/10.1038/s42003-019-0435-1
[10] Aldabbas, R., Shaker, O.G., Ismail, M.F. and Fathy, N. (2022) miRNA-559 and MTDH as Possible Diagnostic Markers of Psoriasis: Role of PTEN/AKT/FOXO Pathway in Disease Pathogenesis. Molecular and Cellular Biochemistry, 478, 1427-1438.
https://doi.org/10.1007/s11010-022-04599-7
[11] Tokić, S., Jirouš, M., Plužarić, V., Mihalj, M., Šola, M., Tolušić Levak, M., et al. (2023) The miR-20a/miR-92b Profile Is Associated with Circulating γδ T-Cell Perturbations in Mild Psoriasis. International Journal of Molecular Sciences, 24, Article 4323.
https://doi.org/10.3390/ijms24054323
[12] De Logu, F., Maglie, R., Titiz, M., Poli, G., Landini, L., Marini, M., et al. (2023) miRNA-203b-3p Induces Acute and Chronic Pruritus through 5-HTR2B and TRPV4. Journal of Investigative Dermatology, 143, 142-153.e10.
https://doi.org/10.1016/j.jid.2022.08.034
[13] Théry, C., Witwer, K.W., Aikawa, E., et al. (2018) Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750.
[14] Rohm, T.V., Cunha e Rocha, K. and Olefsky, J.M. (2025) Metabolic Messengers: Small Extracellular Vesicles. Nature Metabolism, 7, 253-262.
https://doi.org/10.1038/s42255-024-01214-5
[15] Peter, M.E. (2010) Targeting of mRNAs by Multiple miRNAs: The Next Step. Oncogene, 29, 2161-2164.
https://doi.org/10.1038/onc.2010.59
[16] Catalanotto, C., Cogoni, C. and Zardo, G. (2016) MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. International Journal of Molecular Sciences, 17, Article 1712.
https://doi.org/10.3390/ijms17101712
[17] Muraoka, A., Yokoi, A., Yoshida, K., Kitagawa, M., Bayasula, Murakami, M., et al. (2025) Serum-Derived Small Extracellular Vesicles as Biomarkers for Predicting Pregnancy and Delivery on Assisted Reproductive Technology in Patients with Endometriosis. Frontiers in Endocrinology, 15, Article 1442684.
https://doi.org/10.3389/fendo.2024.1442684
[18] Endzeliņš, E., Berger, A., Melne, V., Bajo-Santos, C., Soboļevska, K., Ābols, A., et al. (2017) Detection of Circulating Mirnas: Comparative Analysis of Extracellular Vesicle-Incorporated miRNAs and Cell-Free miRNAs in Whole Plasma of Prostate Cancer Patients. BMC Cancer, 17, Article No. 730.
https://doi.org/10.1186/s12885-017-3737-z
[19] Andreu, Z., Rivas, E., Sanguino‐Pascual, A., Lamana, A., Marazuela, M., González‐Alvaro, I., et al. (2016) Comparative Analysis of EV Isolation Procedures for miRNAs Detection in Serum Samples. Journal of Extracellular Vesicles, 5, Article ID: 31655.
https://doi.org/10.3402/jev.v5.31655
[20] Woźniak, E., Owczarczyk-Saczonek, A. and Placek, W. (2021) Psychological Stress, Mast Cells, and Psoriasis—Is There Any Relationship? International Journal of Molecular Sciences, 22, Article 13252.
https://doi.org/10.3390/ijms222413252
[21] Li, Q., Marcoux, G., Hu, Y., Rebetz, J., Guo, L., Semple, E., et al. (2024) Autoimmune Effector Mechanisms Associated with a Defective Immunosuppressive Axis in Immune Thrombocytopenia (ITP). Autoimmunity Reviews, 23, Article ID: 103677.
https://doi.org/10.1016/j.autrev.2024.103677
[22] An, Y., Zhang, Q., Ren, Y., Yang, S. and Zhang, Q. (2024) BML-111 Modulates and Alleviates p38/MAPK Signaling Pathway and Th1/Th2/Th17 Cytokine Response in Murine Psoriasis-Like Dermatitis. Discovery Medicine, 36, 2026-2036.
https://doi.org/10.24976/discov.med.202436189.186
[23] Krzysztofik, M., Brzewski, P., Kulbat, A., Masajada, M., Richter, K. and Wysocki, W.M. (2024) The Il-23/Th17 Pathway Inhibitors in the Treatment of Psoriasis and the Risk of Skin Malignancies: A Review. Advances in Dermatology and Allergology, 41, 552-559.
https://doi.org/10.5114/ada.2024.143428
[24] Kotb, I.S., Lewis, B.J., Barker, R.N. and Ormerod, A.D. (2018) Differential Effects of Phototherapy, Adalimumab and Betamethasone-Calcipotriol on Effector and Regulatory T Cells in Psoriasis. British Journal of Dermatology, 179, 127-135.
https://doi.org/10.1111/bjd.16336
[25] Wei, H., Chen, Q., Lin, L., Sha, C., Li, T., Liu, Y., et al. (2021) Regulation of Exosome Production and Cargo Sorting. International Journal of Biological Sciences, 17, 163-177.
https://doi.org/10.7150/ijbs.53671
[26] Sortebech, D., Schoenfeldt, T., Duvetorp, A., Agerholm-Nielsen, R. and Eidsmo, L. (2024) Skin-Resident T Cells Contribute to the Dynamic Disease Manifestations of Psoriasis. The Journal of Immunology, 213, 1267-1277.
https://doi.org/10.4049/jimmunol.2400020
[27] 陈乐怡, 王登, 何远. 从细胞免疫应答看银屑病药物研发的最新进展[J]. 中国医院药学杂志, 2024, 44(1): 106-112.
[28] You, J., Wang, Z. and Jia, X. (2025) MiR-128-3p Promotes Hyperproliferation of Keratinocytes and Psoriasis-Like Inflammation by Targeting SIRT1/HIF-1α. Archives of Dermatological Research, 317, Article No. 165.
https://doi.org/10.1007/s00403-024-03669-8
[29] Li, J., Chang, W., Li, J., Zhao, X. and Li, X. (2025) Il-22-Mediated MicroRNA-124-3p/GRB2 Axis Regulates Hyperproliferation and Inflammatory Response of Keratinocytes in Psoriasis. Archives of Dermatological Research, 317, Article No. 227.
https://doi.org/10.1007/s00403-024-03668-9
[30] Freisenhausen, J.C., Luo, L., Kelemen, E., Elton, J., Skoog, V., Pivarcsi, A., et al. (2025) RNA Sequencing Reveals the Long Non‐Coding RNA Signature in Psoriasis Keratinocytes and Identifies CYDAER as a Long Non‐Coding RNA Regulating Epidermal Differentiation. Experimental Dermatology, 34, e70054.
https://doi.org/10.1111/exd.70054
[31] Abdallah, F., Henriet, E., Suet, A., Arar, A., Clemençon, R., Malinge, J., et al. (2021) miR-21-3p/IL-22 Axes Are Major Drivers of Psoriasis Pathogenesis by Modulating Keratinocytes Proliferation-Survival Balance and Inflammatory Response. Cells, 10, Article 2547.
https://doi.org/10.3390/cells10102547
[32] Lin, J., Cao, Y., Ma, L., Tao, M. and Yang, X. (2024) Keratinocyte Exosomal loc285194 Ameliorates Psoriasis by Inhibiting the Differentiation of CD4+ T Cells to Th17 Cells through Regulating miR-211-5p/SIRT1 Axis. IUBMB Life, 77, e2935.
https://doi.org/10.1002/iub.2935
[33] Wu, J., Liu, S., Zhang, H., Zhang, X., Xue, J., Li, Z., et al. (2025) Amlexanox Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis by Inhibiting Th17 Cells and the NF-κB Signal Pathway. Biomedicine & Pharmacotherapy, 184, Article ID: 117922.
https://doi.org/10.1016/j.biopha.2025.117922
[34] Chen, L., Liu, C., Xiang, X., Qiu, W. and Guo, K. (2024) Mir-155 Promotes an Inflammatory Response in HaCaT Cells via the IRF2BP2/KLF2/NF-κB Pathway in Psoriasis. International Journal of Molecular Medicine, 54, Article No. 91.
https://doi.org/10.3892/ijmm.2024.5415
[35] Masalha, M., Sidi, Y. and Avni, D. (2018) The Contribution of Feedback Loops between miRNAs, Cytokines and Growth Factors to the Pathogenesis of Psoriasis. Experimental Dermatology, 27, 603-610.
https://doi.org/10.1111/exd.13520
[36] Huang, C., Zhong, W., Ren, X., Huang, X., Li, Z., Chen, C., et al. (2021) Correction: MiR-193b-3p-ERBB4 Axis Regulates Psoriasis Pathogenesis via Modulating Cellular Proliferation and Inflammatory-Mediator Production of Keratinocytes. Cell Death & Disease, 12, Article No. 963.
https://doi.org/10.1038/s41419-021-04354-8
[37] Shirley, S.N., Watson, A.E. and Yusuf, N. (2024) Pathogenesis of Inflammation in Skin Disease: From Molecular Mechanisms to Pathology. International Journal of Molecular Sciences, 25, Article 10152.
https://doi.org/10.3390/ijms251810152
[38] Laha, S., Das, S., Banerjee, U., Ganguly, T., Senapati, S., Chatterjee, G., et al. (2025) Genome-Wide RNA-Seq, DNA Methylation and Small RNA-Seq Analysis Unraveled Complex Gene Regulatory Networks in Psoriasis Pathogenesis. Gene, 933, Article ID: 148903.
https://doi.org/10.1016/j.gene.2024.148903
[39] Chen, L., Li, J., Yao, Y., Wang, S., Zheng, S., Ju, X., et al. (2021) Circulating MicroRNA Profile Unveils Mechanisms of Action of Acitretin for Psoriasis Vulgaris. Bioengineered, 12, 1838-1850.
https://doi.org/10.1080/21655979.2021.1925205
[40] Buda, P., Michalski, P., Warmusz, O., Michalska-Bańkowska, A., Sirek, T., Ossowski, P., et al. (2023) Influence of Adalimumab on Interleukin 12/23 Signalling Pathways in Human Keratinocytes Treated with Lipopolysaccharide A. Advances in Dermatology and Allergology, 40, 647-654.
https://doi.org/10.5114/ada.2023.129272
[41] Wang, D., Tang, W., Sun, N., Cao, K., Li, Q., Li, S., et al. (2024) Correction: Uncovering the Mechanism of Scopoletin in Ameliorating Psoriasis-Like Skin Symptoms via Inhibition of PI3K/Akt/mTOR Signaling Pathway. Inflammation.
https://doi.org/10.1007/s10753-024-02225-w
[42] Mercurio, L., Albanesi, C. and Madonna, S. (2021) Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Frontiers in Medicine, 8, Article 665647.
https://doi.org/10.3389/fmed.2021.665647
[43] Yang, X.L. and Wang, H.L. (2021) miRNAs Flowing up and Down: The Concerto of Psoriasis. Frontiers in Medicine, 8, Article 646796.
https://doi.org/10.3389/fmed.2021.646796
[44] Zhang, B. and Wu, S. (2023) Downregulation of Circ_0024028 Inhibits Il-22-Induced Keratinocyte Proliferation and Migration by miR-486-3p/AKT3 Axis. Archives of Dermatological Research, 315, 2079-2090.
https://doi.org/10.1007/s00403-023-02597-3
[45] Mao, M., Yuan, Y., Li, R., Kuang, Y., Lu, Y., Zhu, W., et al. (2025) Modulation of Gut Propionate and Intestinal Mucosal Protection by Bifidobacterium Longum: Mitigating Methotrexate Side Effects without Compromising the Efficacy of Psoriasis Therapy. International Immunopharmacology, 149, Article ID: 114196.
https://doi.org/10.1016/j.intimp.2025.114196
[46] Xin, Y., Yang, M., Zhao, Z., He, Z., Mei, Y., Xiong, F., et al. (2025) AIM2 Deficiency in CD4+ T Cells Promotes Psoriasis-Like Inflammation by Regulating Th17-Treg Axis via AIM2-IKZF2 Pathway. Journal of Autoimmunity, 150, Article ID: 103351.
https://doi.org/10.1016/j.jaut.2024.103351
[47] Shahine, Y., El-Aal, S.A.A., Reda, A.M., Sheta, E., Atia, N.M., Abdallah, O.Y., et al. (2023) Diosmin Nanocrystal Gel Alleviates Imiquimod-Induced Psoriasis in Rats via Modulating TLR7, 8/NF-κB/MicroRNA-31, AKT/mTOR/P70S6K Milieu, and Tregs/Th17 Balance. Inflammopharmacology, 31, 1341-1359.
https://doi.org/10.1007/s10787-023-01198-w
[48] Tang, B., Bi, Y., Zheng, X., Yang, Y., Huang, X., Yang, K., et al. (2024) The Role of Extracellular Vesicles in the Development and Treatment of Psoriasis: Narrative Review. Pharmaceutics, 16, Article 1586.
https://doi.org/10.3390/pharmaceutics16121586
[49] Wójcik, M., Zmarzły, N., Derkacz, A., Kulpok-Bagiński, T., Blek, N. and Grabarek, B.O. (2024) Gene Expression Profile of Mitogen-Activated Kinases and MicroRNAs Controlling Their Expression in HaCaT Cell Culture Treated with Lipopolysaccharide a and Cyclosporine A. Cell Cycle, 23, 279-293.
https://doi.org/10.1080/15384101.2024.2320508
[50] O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, Article 402.
https://doi.org/10.3389/fendo.2018.00402
[51] Yang, S., Alalaiwe, A., Lin, Z., Lin, Y., Aljuffali, I.A. and Fang, J. (2022) Anti-Inflammatory MicroRNAs for Treating Inflammatory Skin Diseases. Biomolecules, 12, Article 1072.
https://doi.org/10.3390/biom12081072
[52] Carreras-Badosa, G., Maslovskaja, J., Vaher, H., Pajusaar, L., Annilo, T., Lättekivi, F., et al. (2022) Mirna Expression Profiles of the Perilesional Skin of Atopic Dermatitis and Psoriasis Patients Are Highly Similar. Scientific Reports, 12, Article No. 22645.
https://doi.org/10.1038/s41598-022-27235-2
[53] Abdallah, H.Y., Faisal, S., Tawfik, N.Z., Soliman, N.H., Kishk, R.M. and Ellawindy, A. (2023) Expression Signature of Immune-Related MicroRNAs in Autoimmune Skin Disease: Psoriasis and Vitiligo Insights. Molecular Diagnosis & Therapy, 27, 405-423.
https://doi.org/10.1007/s40291-023-00646-1
[54] 陆子轩, 吴建华. 胞外囊泡在银屑病中的研究进展[J]. 中国麻风皮肤病杂志, 2023, 39(3): 218-222.
[55] 刘佳, 赵新程, 韩齐心, 等. miR-155在银屑病皮肤间充质干细胞外泌体中的差异表达研究[J]. 中国实用医药, 2022, 17(11): 186-190.
[56] Miao, G., Pan, J., Wang, L. and Li, F. (2024) Analysis of the Correlation between the Levels of HIF-1α and miR-199a in Lesions and the Psoriasis Severity Index. Advances in Dermatology and Allergology, 41, 521-524.
https://doi.org/10.5114/ada.2024.143495
[57] Lättekivi, F., Guljavina, I., Midekessa, G., Viil, J., Heath, P.R., Bæk, R., et al. (2022) Profiling Blood Serum Extracellular Vesicles in Plaque Psoriasis and Psoriatic Arthritis Patients Reveals Potential Disease Biomarkers. International Journal of Molecular Sciences, 23, Article 4005.
https://doi.org/10.3390/ijms23074005
[58] Zhang, M., Niu, Z., Huang, Q., Han, L., Du, J., Liang, J., et al. (2024) Identification of an Exosomal miRNA-mRNA Regulatory Network Contributing to Methotrexate Efficacy. International Immunopharmacology, 135, Article ID: 112280.
https://doi.org/10.1016/j.intimp.2024.112280
[59] Saadawy, S.F., El‐Ghareeb, M.I. and Talaat, A. (2023) MicroRNA‐21 and MicroRNA‐125b Expression in Skin Tissue and Serum as Predictive Biomarkers for Psoriasis. International Journal of Dermatology, 63, 322-329.
https://doi.org/10.1111/ijd.16962
[60] Park, Y.J., Kim, D.C., Lee, S., Kim, H.S., Pak, J.Y., Kim, J., et al. (2024) Keratinocyte-Derived Circulating MicroRNAs in Extracellular Vesicles: A Novel Biomarker of Psoriasis Severity and Potential Therapeutic Target. Journal of Translational Medicine, 22, Article No. 235.
https://doi.org/10.1186/s12967-024-05030-z
[61] Abdul, N.S., Ronsivalle, V., Shivakumar, S., Fiorillo, L. and Minervini, G. (2025) Exosomal Biomarkers for Prognosis in Oral Squamous Cell Carcinoma—A Systematic Review of Emerging Technologies. Journal of Craniofacial Surgery.
https://doi.org/10.1097/scs.0000000000011104
[62] Mehta, M.J., Shin, D., Park, H.S., An, J.S., Lim, S.I., Kim, H.J., et al. (2025) Exosome‐Based Theranostic for Gastrointestinal Cancer: Advances in Biomarker Discovery and Therapeutic Engineering. Small Methods.
https://doi.org/10.1002/smtd.202402058
[63] Chen, W., Li, C., Yi, Z., Luo, G., Zhang, P., Wu, P., et al. (2025) MicroRNA Expression Profile in the Patient's Plasma Exosomes of Alcohol‐Induced Osteonecrosis of Femoral Head: Potential Vascular Regulation Mechanism. Journal of Cellular and Molecular Medicine, 29, e70382.
https://doi.org/10.1111/jcmm.70382
[64] Diotallevi, F., Matacchione, G., d’Agostino, G.M., Gioacchini, H., Campanati, A., Sabbatinelli, J., et al. (2023) Inflammamir-146a and-155 Plasma Levels Are Associated with Clinical Efficacy of Risankizumab Treatment in Psoriatic Patients: Pilot Study. Dermatology and Therapy, 13, 1377-1387.
https://doi.org/10.1007/s13555-023-00931-1
[65] Boriachek, K., Islam, M.N., Möller, A., Salomon, C., Nguyen, N., Hossain, M.S.A., et al. (2017) Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small, 14, Article ID: 1702153.
https://doi.org/10.1002/smll.201702153
[66] Aghabozorgi, A.S., Ahangari, N., Eftekhaari, T.E., Torbati, P.N., Bahiraee, A., Ebrahimi, R., et al. (2019) Circulating Exosomal Mirnas in Cardiovascular Disease Pathogenesis: New Emerging Hopes. Journal of Cellular Physiology, 234, 21796-21809.
https://doi.org/10.1002/jcp.28942
[67] Wójcik, M., Plata-Babula, A., Głowaczewska, A., Sirek, T., Orczyk, A., Małecka, M., et al. (2024) Expression Profile of mRNAs and miRNAs Related to Mitogen-Activated Kinases in HaCaT Cell Culture Treated with Lipopolysaccharide a and Adalimumab. Cell Cycle, 23, 385-404.
https://doi.org/10.1080/15384101.2024.2335051
[68] Margiana, R., Markov, A., Zekiy, A.O., Hamza, M.U., Al-Dabbagh, K.A., Al-Zubaidi, S.H., et al. (2022) Clinical Application of Mesenchymal Stem Cell in Regenerative Medicine: A Narrative Review. Stem Cell Research & Therapy, 13, Article No. 366.
https://doi.org/10.1186/s13287-022-03054-0
[69] Clua‐Ferré, L., Suau, R., Vañó‐Segarra, I., Ginés, I., Serena, C. and Manyé, J. (2024) Therapeutic Potential of Mesenchymal Stem Cell‐Derived Extracellular Vesicles: A Focus on Inflammatory Bowel Disease. Clinical and Translational Medicine, 14, e70075.
https://doi.org/10.1002/ctm2.70075
[70] Kumar, M.A., Baba, S.K., Sadida, H.Q., Marzooqi, S.A., Jerobin, J., Altemani, F.H., et al. (2024) Extracellular Vesicles as Tools and Targets in Therapy for Diseases. Signal Transduction and Targeted Therapy, 9, Article No. 27.
https://doi.org/10.1038/s41392-024-01735-1
[71] Sadeghi, S., Tehrani, F.R., Tahmasebi, S., Shafiee, A. and Hashemi, S.M. (2023) Exosome Engineering in Cell Therapy and Drug Delivery. Inflammopharmacology, 31, 145-169.
https://doi.org/10.1007/s10787-022-01115-7
[72] Chandran, N.S., Bhupendrabhai, M.N., Tan, T.T., Zhang, B., Lim, S.K., Choo, A.B.H., et al. (2025) A Phase 1, Open-Label Study to Determine Safety and Tolerability of the Topical Application of Mesenchymal Stem/Stromal Cell (MSC) Exosome Ointment to Treat Psoriasis in Healthy Volunteers. Cytotherapy.
https://doi.org/10.1016/j.jcyt.2025.01.007