[1]
|
Rendon, A. and Schäkel, K. (2019) Psoriasis Pathogenesis and Treatment. International Journal of Molecular Sciences, 20, Article 1475. https://doi.org/10.3390/ijms20061475
|
[2]
|
Parisi, R., Iskandar, I.Y.K., Kontopantelis, E., Augustin, M., Griffiths, C.E.M. and Ashcroft, D.M. (2020) National, Regional, and Worldwide Epidemiology of Psoriasis: Systematic Analysis and Modelling Study. BMJ, 369, m1590. https://doi.org/10.1136/bmj.m1590
|
[3]
|
Wang, K., Zhao, Y. and Cao, X. (2024) Global Burden and Future Trends in Psoriasis Epidemiology: Insights from the Global Burden of Disease Study 2019 and Predictions to 2030. Archives of Dermatological Research, 316, Article No. 114. https://doi.org/10.1007/s00403-024-02846-z
|
[4]
|
Iskandar, I.Y.K., Parisi, R., Griffiths, C.E.M. and Ashcroft, D.M. (2020) Systematic Review Examining Changes over Time and Variation in the Incidence and Prevalence of Psoriasis by Age and Gender. British Journal of Dermatology, 184, 243-258. https://doi.org/10.1111/bjd.19169
|
[5]
|
Gao, Y., Xu, T., Wang, Y., Hu, Y., Yin, S., Qin, Z., et al. (2025) Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research. Pharmaceutics, 17, Article 56. https://doi.org/10.3390/pharmaceutics17010056
|
[6]
|
Yu, D., Li, Y., Wang, M., Gu, J., Xu, W., Cai, H., et al. (2022) Exosomes as a New Frontier of Cancer Liquid Biopsy. Molecular Cancer, 21, Article No. 56. https://doi.org/10.1186/s12943-022-01509-9
|
[7]
|
Lin, S., Yu, Z., Chen, D., Wang, Z., Miao, J., Li, Q., et al. (2019) Progress in Microfluidics‐Based Exosome Separation and Detection Technologies for Diagnostic Applications. Small, 16, e1903916. https://doi.org/10.1002/smll.201903916
|
[8]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
|
[9]
|
Ramshani, Z., Zhang, C., Richards, K., Chen, L., Xu, G., Stiles, B.L., et al. (2019) Extracellular Vesicle MicroRNA Quantification from Plasma Using an Integrated Microfluidic Device. Communications Biology, 2, Article No. 189. https://doi.org/10.1038/s42003-019-0435-1
|
[10]
|
Aldabbas, R., Shaker, O.G., Ismail, M.F. and Fathy, N. (2022) miRNA-559 and MTDH as Possible Diagnostic Markers of Psoriasis: Role of PTEN/AKT/FOXO Pathway in Disease Pathogenesis. Molecular and Cellular Biochemistry, 478, 1427-1438. https://doi.org/10.1007/s11010-022-04599-7
|
[11]
|
Tokić, S., Jirouš, M., Plužarić, V., Mihalj, M., Šola, M., Tolušić Levak, M., et al. (2023) The miR-20a/miR-92b Profile Is Associated with Circulating γδ T-Cell Perturbations in Mild Psoriasis. International Journal of Molecular Sciences, 24, Article 4323. https://doi.org/10.3390/ijms24054323
|
[12]
|
De Logu, F., Maglie, R., Titiz, M., Poli, G., Landini, L., Marini, M., et al. (2023) miRNA-203b-3p Induces Acute and Chronic Pruritus through 5-HTR2B and TRPV4. Journal of Investigative Dermatology, 143, 142-153.e10. https://doi.org/10.1016/j.jid.2022.08.034
|
[13]
|
Théry, C., Witwer, K.W., Aikawa, E., et al. (2018) Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750.
|
[14]
|
Rohm, T.V., Cunha e Rocha, K. and Olefsky, J.M. (2025) Metabolic Messengers: Small Extracellular Vesicles. Nature Metabolism, 7, 253-262. https://doi.org/10.1038/s42255-024-01214-5
|
[15]
|
Peter, M.E. (2010) Targeting of mRNAs by Multiple miRNAs: The Next Step. Oncogene, 29, 2161-2164. https://doi.org/10.1038/onc.2010.59
|
[16]
|
Catalanotto, C., Cogoni, C. and Zardo, G. (2016) MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. International Journal of Molecular Sciences, 17, Article 1712. https://doi.org/10.3390/ijms17101712
|
[17]
|
Muraoka, A., Yokoi, A., Yoshida, K., Kitagawa, M., Bayasula, Murakami, M., et al. (2025) Serum-Derived Small Extracellular Vesicles as Biomarkers for Predicting Pregnancy and Delivery on Assisted Reproductive Technology in Patients with Endometriosis. Frontiers in Endocrinology, 15, Article 1442684. https://doi.org/10.3389/fendo.2024.1442684
|
[18]
|
Endzeliņš, E., Berger, A., Melne, V., Bajo-Santos, C., Soboļevska, K., Ābols, A., et al. (2017) Detection of Circulating Mirnas: Comparative Analysis of Extracellular Vesicle-Incorporated miRNAs and Cell-Free miRNAs in Whole Plasma of Prostate Cancer Patients. BMC Cancer, 17, Article No. 730. https://doi.org/10.1186/s12885-017-3737-z
|
[19]
|
Andreu, Z., Rivas, E., Sanguino‐Pascual, A., Lamana, A., Marazuela, M., González‐Alvaro, I., et al. (2016) Comparative Analysis of EV Isolation Procedures for miRNAs Detection in Serum Samples. Journal of Extracellular Vesicles, 5, Article ID: 31655. https://doi.org/10.3402/jev.v5.31655
|
[20]
|
Woźniak, E., Owczarczyk-Saczonek, A. and Placek, W. (2021) Psychological Stress, Mast Cells, and Psoriasis—Is There Any Relationship? International Journal of Molecular Sciences, 22, Article 13252. https://doi.org/10.3390/ijms222413252
|
[21]
|
Li, Q., Marcoux, G., Hu, Y., Rebetz, J., Guo, L., Semple, E., et al. (2024) Autoimmune Effector Mechanisms Associated with a Defective Immunosuppressive Axis in Immune Thrombocytopenia (ITP). Autoimmunity Reviews, 23, Article ID: 103677. https://doi.org/10.1016/j.autrev.2024.103677
|
[22]
|
An, Y., Zhang, Q., Ren, Y., Yang, S. and Zhang, Q. (2024) BML-111 Modulates and Alleviates p38/MAPK Signaling Pathway and Th1/Th2/Th17 Cytokine Response in Murine Psoriasis-Like Dermatitis. Discovery Medicine, 36, 2026-2036. https://doi.org/10.24976/discov.med.202436189.186
|
[23]
|
Krzysztofik, M., Brzewski, P., Kulbat, A., Masajada, M., Richter, K. and Wysocki, W.M. (2024) The Il-23/Th17 Pathway Inhibitors in the Treatment of Psoriasis and the Risk of Skin Malignancies: A Review. Advances in Dermatology and Allergology, 41, 552-559. https://doi.org/10.5114/ada.2024.143428
|
[24]
|
Kotb, I.S., Lewis, B.J., Barker, R.N. and Ormerod, A.D. (2018) Differential Effects of Phototherapy, Adalimumab and Betamethasone-Calcipotriol on Effector and Regulatory T Cells in Psoriasis. British Journal of Dermatology, 179, 127-135. https://doi.org/10.1111/bjd.16336
|
[25]
|
Wei, H., Chen, Q., Lin, L., Sha, C., Li, T., Liu, Y., et al. (2021) Regulation of Exosome Production and Cargo Sorting. International Journal of Biological Sciences, 17, 163-177. https://doi.org/10.7150/ijbs.53671
|
[26]
|
Sortebech, D., Schoenfeldt, T., Duvetorp, A., Agerholm-Nielsen, R. and Eidsmo, L. (2024) Skin-Resident T Cells Contribute to the Dynamic Disease Manifestations of Psoriasis. The Journal of Immunology, 213, 1267-1277. https://doi.org/10.4049/jimmunol.2400020
|
[27]
|
陈乐怡, 王登, 何远. 从细胞免疫应答看银屑病药物研发的最新进展[J]. 中国医院药学杂志, 2024, 44(1): 106-112.
|
[28]
|
You, J., Wang, Z. and Jia, X. (2025) MiR-128-3p Promotes Hyperproliferation of Keratinocytes and Psoriasis-Like Inflammation by Targeting SIRT1/HIF-1α. Archives of Dermatological Research, 317, Article No. 165. https://doi.org/10.1007/s00403-024-03669-8
|
[29]
|
Li, J., Chang, W., Li, J., Zhao, X. and Li, X. (2025) Il-22-Mediated MicroRNA-124-3p/GRB2 Axis Regulates Hyperproliferation and Inflammatory Response of Keratinocytes in Psoriasis. Archives of Dermatological Research, 317, Article No. 227. https://doi.org/10.1007/s00403-024-03668-9
|
[30]
|
Freisenhausen, J.C., Luo, L., Kelemen, E., Elton, J., Skoog, V., Pivarcsi, A., et al. (2025) RNA Sequencing Reveals the Long Non‐Coding RNA Signature in Psoriasis Keratinocytes and Identifies CYDAER as a Long Non‐Coding RNA Regulating Epidermal Differentiation. Experimental Dermatology, 34, e70054. https://doi.org/10.1111/exd.70054
|
[31]
|
Abdallah, F., Henriet, E., Suet, A., Arar, A., Clemençon, R., Malinge, J., et al. (2021) miR-21-3p/IL-22 Axes Are Major Drivers of Psoriasis Pathogenesis by Modulating Keratinocytes Proliferation-Survival Balance and Inflammatory Response. Cells, 10, Article 2547. https://doi.org/10.3390/cells10102547
|
[32]
|
Lin, J., Cao, Y., Ma, L., Tao, M. and Yang, X. (2024) Keratinocyte Exosomal loc285194 Ameliorates Psoriasis by Inhibiting the Differentiation of CD4+ T Cells to Th17 Cells through Regulating miR-211-5p/SIRT1 Axis. IUBMB Life, 77, e2935. https://doi.org/10.1002/iub.2935
|
[33]
|
Wu, J., Liu, S., Zhang, H., Zhang, X., Xue, J., Li, Z., et al. (2025) Amlexanox Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis by Inhibiting Th17 Cells and the NF-κB Signal Pathway. Biomedicine & Pharmacotherapy, 184, Article ID: 117922. https://doi.org/10.1016/j.biopha.2025.117922
|
[34]
|
Chen, L., Liu, C., Xiang, X., Qiu, W. and Guo, K. (2024) Mir-155 Promotes an Inflammatory Response in HaCaT Cells via the IRF2BP2/KLF2/NF-κB Pathway in Psoriasis. International Journal of Molecular Medicine, 54, Article No. 91. https://doi.org/10.3892/ijmm.2024.5415
|
[35]
|
Masalha, M., Sidi, Y. and Avni, D. (2018) The Contribution of Feedback Loops between miRNAs, Cytokines and Growth Factors to the Pathogenesis of Psoriasis. Experimental Dermatology, 27, 603-610. https://doi.org/10.1111/exd.13520
|
[36]
|
Huang, C., Zhong, W., Ren, X., Huang, X., Li, Z., Chen, C., et al. (2021) Correction: MiR-193b-3p-ERBB4 Axis Regulates Psoriasis Pathogenesis via Modulating Cellular Proliferation and Inflammatory-Mediator Production of Keratinocytes. Cell Death & Disease, 12, Article No. 963. https://doi.org/10.1038/s41419-021-04354-8
|
[37]
|
Shirley, S.N., Watson, A.E. and Yusuf, N. (2024) Pathogenesis of Inflammation in Skin Disease: From Molecular Mechanisms to Pathology. International Journal of Molecular Sciences, 25, Article 10152. https://doi.org/10.3390/ijms251810152
|
[38]
|
Laha, S., Das, S., Banerjee, U., Ganguly, T., Senapati, S., Chatterjee, G., et al. (2025) Genome-Wide RNA-Seq, DNA Methylation and Small RNA-Seq Analysis Unraveled Complex Gene Regulatory Networks in Psoriasis Pathogenesis. Gene, 933, Article ID: 148903. https://doi.org/10.1016/j.gene.2024.148903
|
[39]
|
Chen, L., Li, J., Yao, Y., Wang, S., Zheng, S., Ju, X., et al. (2021) Circulating MicroRNA Profile Unveils Mechanisms of Action of Acitretin for Psoriasis Vulgaris. Bioengineered, 12, 1838-1850. https://doi.org/10.1080/21655979.2021.1925205
|
[40]
|
Buda, P., Michalski, P., Warmusz, O., Michalska-Bańkowska, A., Sirek, T., Ossowski, P., et al. (2023) Influence of Adalimumab on Interleukin 12/23 Signalling Pathways in Human Keratinocytes Treated with Lipopolysaccharide A. Advances in Dermatology and Allergology, 40, 647-654. https://doi.org/10.5114/ada.2023.129272
|
[41]
|
Wang, D., Tang, W., Sun, N., Cao, K., Li, Q., Li, S., et al. (2024) Correction: Uncovering the Mechanism of Scopoletin in Ameliorating Psoriasis-Like Skin Symptoms via Inhibition of PI3K/Akt/mTOR Signaling Pathway. Inflammation. https://doi.org/10.1007/s10753-024-02225-w
|
[42]
|
Mercurio, L., Albanesi, C. and Madonna, S. (2021) Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Frontiers in Medicine, 8, Article 665647. https://doi.org/10.3389/fmed.2021.665647
|
[43]
|
Yang, X.L. and Wang, H.L. (2021) miRNAs Flowing up and Down: The Concerto of Psoriasis. Frontiers in Medicine, 8, Article 646796. https://doi.org/10.3389/fmed.2021.646796
|
[44]
|
Zhang, B. and Wu, S. (2023) Downregulation of Circ_0024028 Inhibits Il-22-Induced Keratinocyte Proliferation and Migration by miR-486-3p/AKT3 Axis. Archives of Dermatological Research, 315, 2079-2090. https://doi.org/10.1007/s00403-023-02597-3
|
[45]
|
Mao, M., Yuan, Y., Li, R., Kuang, Y., Lu, Y., Zhu, W., et al. (2025) Modulation of Gut Propionate and Intestinal Mucosal Protection by Bifidobacterium Longum: Mitigating Methotrexate Side Effects without Compromising the Efficacy of Psoriasis Therapy. International Immunopharmacology, 149, Article ID: 114196. https://doi.org/10.1016/j.intimp.2025.114196
|
[46]
|
Xin, Y., Yang, M., Zhao, Z., He, Z., Mei, Y., Xiong, F., et al. (2025) AIM2 Deficiency in CD4+ T Cells Promotes Psoriasis-Like Inflammation by Regulating Th17-Treg Axis via AIM2-IKZF2 Pathway. Journal of Autoimmunity, 150, Article ID: 103351. https://doi.org/10.1016/j.jaut.2024.103351
|
[47]
|
Shahine, Y., El-Aal, S.A.A., Reda, A.M., Sheta, E., Atia, N.M., Abdallah, O.Y., et al. (2023) Diosmin Nanocrystal Gel Alleviates Imiquimod-Induced Psoriasis in Rats via Modulating TLR7, 8/NF-κB/MicroRNA-31, AKT/mTOR/P70S6K Milieu, and Tregs/Th17 Balance. Inflammopharmacology, 31, 1341-1359. https://doi.org/10.1007/s10787-023-01198-w
|
[48]
|
Tang, B., Bi, Y., Zheng, X., Yang, Y., Huang, X., Yang, K., et al. (2024) The Role of Extracellular Vesicles in the Development and Treatment of Psoriasis: Narrative Review. Pharmaceutics, 16, Article 1586. https://doi.org/10.3390/pharmaceutics16121586
|
[49]
|
Wójcik, M., Zmarzły, N., Derkacz, A., Kulpok-Bagiński, T., Blek, N. and Grabarek, B.O. (2024) Gene Expression Profile of Mitogen-Activated Kinases and MicroRNAs Controlling Their Expression in HaCaT Cell Culture Treated with Lipopolysaccharide a and Cyclosporine A. Cell Cycle, 23, 279-293. https://doi.org/10.1080/15384101.2024.2320508
|
[50]
|
O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, Article 402. https://doi.org/10.3389/fendo.2018.00402
|
[51]
|
Yang, S., Alalaiwe, A., Lin, Z., Lin, Y., Aljuffali, I.A. and Fang, J. (2022) Anti-Inflammatory MicroRNAs for Treating Inflammatory Skin Diseases. Biomolecules, 12, Article 1072. https://doi.org/10.3390/biom12081072
|
[52]
|
Carreras-Badosa, G., Maslovskaja, J., Vaher, H., Pajusaar, L., Annilo, T., Lättekivi, F., et al. (2022) Mirna Expression Profiles of the Perilesional Skin of Atopic Dermatitis and Psoriasis Patients Are Highly Similar. Scientific Reports, 12, Article No. 22645. https://doi.org/10.1038/s41598-022-27235-2
|
[53]
|
Abdallah, H.Y., Faisal, S., Tawfik, N.Z., Soliman, N.H., Kishk, R.M. and Ellawindy, A. (2023) Expression Signature of Immune-Related MicroRNAs in Autoimmune Skin Disease: Psoriasis and Vitiligo Insights. Molecular Diagnosis & Therapy, 27, 405-423. https://doi.org/10.1007/s40291-023-00646-1
|
[54]
|
陆子轩, 吴建华. 胞外囊泡在银屑病中的研究进展[J]. 中国麻风皮肤病杂志, 2023, 39(3): 218-222.
|
[55]
|
刘佳, 赵新程, 韩齐心, 等. miR-155在银屑病皮肤间充质干细胞外泌体中的差异表达研究[J]. 中国实用医药, 2022, 17(11): 186-190.
|
[56]
|
Miao, G., Pan, J., Wang, L. and Li, F. (2024) Analysis of the Correlation between the Levels of HIF-1α and miR-199a in Lesions and the Psoriasis Severity Index. Advances in Dermatology and Allergology, 41, 521-524. https://doi.org/10.5114/ada.2024.143495
|
[57]
|
Lättekivi, F., Guljavina, I., Midekessa, G., Viil, J., Heath, P.R., Bæk, R., et al. (2022) Profiling Blood Serum Extracellular Vesicles in Plaque Psoriasis and Psoriatic Arthritis Patients Reveals Potential Disease Biomarkers. International Journal of Molecular Sciences, 23, Article 4005. https://doi.org/10.3390/ijms23074005
|
[58]
|
Zhang, M., Niu, Z., Huang, Q., Han, L., Du, J., Liang, J., et al. (2024) Identification of an Exosomal miRNA-mRNA Regulatory Network Contributing to Methotrexate Efficacy. International Immunopharmacology, 135, Article ID: 112280. https://doi.org/10.1016/j.intimp.2024.112280
|
[59]
|
Saadawy, S.F., El‐Ghareeb, M.I. and Talaat, A. (2023) MicroRNA‐21 and MicroRNA‐125b Expression in Skin Tissue and Serum as Predictive Biomarkers for Psoriasis. International Journal of Dermatology, 63, 322-329. https://doi.org/10.1111/ijd.16962
|
[60]
|
Park, Y.J., Kim, D.C., Lee, S., Kim, H.S., Pak, J.Y., Kim, J., et al. (2024) Keratinocyte-Derived Circulating MicroRNAs in Extracellular Vesicles: A Novel Biomarker of Psoriasis Severity and Potential Therapeutic Target. Journal of Translational Medicine, 22, Article No. 235. https://doi.org/10.1186/s12967-024-05030-z
|
[61]
|
Abdul, N.S., Ronsivalle, V., Shivakumar, S., Fiorillo, L. and Minervini, G. (2025) Exosomal Biomarkers for Prognosis in Oral Squamous Cell Carcinoma—A Systematic Review of Emerging Technologies. Journal of Craniofacial Surgery. https://doi.org/10.1097/scs.0000000000011104
|
[62]
|
Mehta, M.J., Shin, D., Park, H.S., An, J.S., Lim, S.I., Kim, H.J., et al. (2025) Exosome‐Based Theranostic for Gastrointestinal Cancer: Advances in Biomarker Discovery and Therapeutic Engineering. Small Methods. https://doi.org/10.1002/smtd.202402058
|
[63]
|
Chen, W., Li, C., Yi, Z., Luo, G., Zhang, P., Wu, P., et al. (2025) MicroRNA Expression Profile in the Patient's Plasma Exosomes of Alcohol‐Induced Osteonecrosis of Femoral Head: Potential Vascular Regulation Mechanism. Journal of Cellular and Molecular Medicine, 29, e70382. https://doi.org/10.1111/jcmm.70382
|
[64]
|
Diotallevi, F., Matacchione, G., d’Agostino, G.M., Gioacchini, H., Campanati, A., Sabbatinelli, J., et al. (2023) Inflammamir-146a and-155 Plasma Levels Are Associated with Clinical Efficacy of Risankizumab Treatment in Psoriatic Patients: Pilot Study. Dermatology and Therapy, 13, 1377-1387. https://doi.org/10.1007/s13555-023-00931-1
|
[65]
|
Boriachek, K., Islam, M.N., Möller, A., Salomon, C., Nguyen, N., Hossain, M.S.A., et al. (2017) Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small, 14, Article ID: 1702153. https://doi.org/10.1002/smll.201702153
|
[66]
|
Aghabozorgi, A.S., Ahangari, N., Eftekhaari, T.E., Torbati, P.N., Bahiraee, A., Ebrahimi, R., et al. (2019) Circulating Exosomal Mirnas in Cardiovascular Disease Pathogenesis: New Emerging Hopes. Journal of Cellular Physiology, 234, 21796-21809. https://doi.org/10.1002/jcp.28942
|
[67]
|
Wójcik, M., Plata-Babula, A., Głowaczewska, A., Sirek, T., Orczyk, A., Małecka, M., et al. (2024) Expression Profile of mRNAs and miRNAs Related to Mitogen-Activated Kinases in HaCaT Cell Culture Treated with Lipopolysaccharide a and Adalimumab. Cell Cycle, 23, 385-404. https://doi.org/10.1080/15384101.2024.2335051
|
[68]
|
Margiana, R., Markov, A., Zekiy, A.O., Hamza, M.U., Al-Dabbagh, K.A., Al-Zubaidi, S.H., et al. (2022) Clinical Application of Mesenchymal Stem Cell in Regenerative Medicine: A Narrative Review. Stem Cell Research & Therapy, 13, Article No. 366. https://doi.org/10.1186/s13287-022-03054-0
|
[69]
|
Clua‐Ferré, L., Suau, R., Vañó‐Segarra, I., Ginés, I., Serena, C. and Manyé, J. (2024) Therapeutic Potential of Mesenchymal Stem Cell‐Derived Extracellular Vesicles: A Focus on Inflammatory Bowel Disease. Clinical and Translational Medicine, 14, e70075. https://doi.org/10.1002/ctm2.70075
|
[70]
|
Kumar, M.A., Baba, S.K., Sadida, H.Q., Marzooqi, S.A., Jerobin, J., Altemani, F.H., et al. (2024) Extracellular Vesicles as Tools and Targets in Therapy for Diseases. Signal Transduction and Targeted Therapy, 9, Article No. 27. https://doi.org/10.1038/s41392-024-01735-1
|
[71]
|
Sadeghi, S., Tehrani, F.R., Tahmasebi, S., Shafiee, A. and Hashemi, S.M. (2023) Exosome Engineering in Cell Therapy and Drug Delivery. Inflammopharmacology, 31, 145-169. https://doi.org/10.1007/s10787-022-01115-7
|
[72]
|
Chandran, N.S., Bhupendrabhai, M.N., Tan, T.T., Zhang, B., Lim, S.K., Choo, A.B.H., et al. (2025) A Phase 1, Open-Label Study to Determine Safety and Tolerability of the Topical Application of Mesenchymal Stem/Stromal Cell (MSC) Exosome Ointment to Treat Psoriasis in Healthy Volunteers. Cytotherapy. https://doi.org/10.1016/j.jcyt.2025.01.007
|