[1]
|
夏明睿, 贺永(2022). 功能磁共振脑成像机遇和挑战——中国十年来发展成果及展望. 磁共振成像, 13(10), 23-36, 65.
|
[2]
|
Allen, R. J., & Ueno, T. (2018). Multiple High-Reward Items Can Be Prioritized in Working Memory but with Greater Vulnerability to Interference. Attention, Perception, & Psychophysics, 80, 1731-1743. https://doi.org/10.3758/s13414-018-1543-6
|
[3]
|
Baddeley, A. D., & Hitch, G. (1974). Working Memory. Psychology of Learning and Motivation, 8, 47-89. https://doi.org/10.1016/s0079-7421(08)60452-1
|
[4]
|
Brissenden, J. A., Tobyne, S. M., Osher, D. E., Levin, E. J., Halko, M. A., & Somers, D. C. (2018). Topographic Cortico-Cerebellar Networks Revealed by Visual Attention and Working Memory. Current Biology, 28, 3364-3372.e5. https://doi.org/10.1016/j.cub.2018.08.059
|
[5]
|
Cowan, N. (2000). The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. Behavioral and Brain Sciences, 24, 87-114. https://doi.org/10.1017/s0140525x01003922
|
[6]
|
Cowan, N., Elliott, E. M., Saults, J. S., & Mclaughlin, J. A. (2006). The Relationship between Working Memory Capacity and Attentional Control. Journal of Memory and Language, 54, 1-19.
|
[7]
|
Cowan, N., Elliott, E. M., Saults, J. S., & Mclaughlin, J. A. (2005). On the Capacity for Attention: The Neuroanatomy of Individual Differences. Journal of Experimental Psychology: General, 134, 1-26.
|
[8]
|
Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18, 193-222. https://doi.org/10.1146/annurev.ne.18.030195.001205
|
[9]
|
Diaz, J. A., & Spitzer, B. (2021). Dissociating the Roles of α Oscillation Sub-Bands in Visual Working Memory. NeuroImage, 230, 1-12.
|
[10]
|
Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a Filter: Feature-Based Attention Regulates the Distribution of Visual Working Memory Resources. Journal of Experimental Psychology: Human Perception and Performance, 43, 1843-1854. https://doi.org/10.1037/xhp0000428
|
[11]
|
Formica, S., Palenciano, A. F., Vermeylen, L., Myers, N. E., Brass, M., & González-García, C. (2024). Internal Attention Modulates the Functional State of Novel Stimulus-Response Associations in Working Memory. Cognition, 245, Article ID: 105739. https://doi.org/10.1016/j.cognition.2024.105739
|
[12]
|
Günseli, E., Fahrenfort, J. J., van Moorselaar, D., Daoultzis, K. C., Meeter, M., & Olivers, C. N. L. (2019). EEG Dynamics Reveal a Dissociation between Storage and Selective Attention within Working Memory. Scientific Reports, 9, Article No. 13499. https://doi.org/10.1038/s41598-019-49577-0
|
[13]
|
Hajonides, J. E., Ede, F., van Stokes, M. G., & Nobre, A. C. (2020). Comparing the Prioritization of Items and Feature-Dimensions in Visual Working Memory. Journal of Vision, 20, 25.
|
[14]
|
Hamblin-Frohman, J., & Becker, S. I. (2023). Attentional Selection Is a Sufficient Cause for Visual Working Memory Interference. Journal of Vision, 23, 15.
|
[15]
|
Huang, L. (2025). Comprehensive Exploration of Visual Working Memory Mechanisms Using Large-Scale Behavioral Experiment. Nature Communications, 16, Article No. 1383. https://doi.org/10.1038/s41467-025-56700-5
|
[16]
|
Kim, S., & Cho, Y. S. (2024). Feature-based Attentional Control for Distractor Suppression. Attention, Perception, & Psychophysics, 86, 1075-1085. https://doi.org/10.3758/s13414-024-02858-x
|
[17]
|
Kong, G., & Fougnie, D. (2019). Visual Search within Working Memory. Journal of Experimental Psychology: General, 148, 1688-1700. https://doi.org/10.1037/xge0000555
|
[18]
|
Li, D., Zhao, C., Guo, J., Kong, Y., Li, H., Du, B. et al. (2021). Visual Working Memory Guides Spatial Attention: Evidence from α Oscillations and Sustained Potentials. Neuropsychologia, 151, Article ID: 107719. https://doi.org/10.1016/j.neuropsychologia.2020.107719
|
[19]
|
Li, S., Cai, Y., Liu, J., Li, D., Feng, Z., Chen, C. et al. (2017). Dissociated Roles of the Parietal and Frontal Cortices in the Scope and Control of Attention during Visual Working Memory. NeuroImage, 149, 210-219. https://doi.org/10.1016/j.neuroimage.2017.01.061
|
[20]
|
Liang, G., & Scolari, M. (2020). Limited Interactions between Space-and Feature-Based Attention in Visually Sparse Displays. Journal of Vision, 20, 1-21. https://doi.org/10.1167/jov.20.4.5
|
[21]
|
Liang, T., Chen, X., Ye, C., Zhang, J., & Liu, Q. (2019). Electrophysiological Evidence Supports the Role of Sustained Visuospatial Attention in Maintaining Visual WM Contents. International Journal of Psychophysiology, 146, 54-62. https://doi.org/10.1016/j.ijpsycho.2019.09.011
|
[22]
|
Luck, S. J., & Vogel, E. K. (1997). The Capacity of Visual Working Memory for Features and Conjunctions. Nature, 390, 279-281. https://doi.org/10.1038/36846
|
[23]
|
Luck, S. J., & Vogel, E. K. (2013). Visual Working Memory Capacity: From Psychophysics and Neurobiology to Individual Differences. Trends in Cognitive Sciences, 17, 391-400. https://doi.org/10.1016/j.tics.2013.06.006
|
[24]
|
Luck, S. J., Hillyard, S. A., Mouloua, M., & Hawkins, H. L. (1996). Mechanisms of Visual-Spatial Attention: Resource Allocation or Uncertainty Reduction? Journal of Experimental Psychology: Human Perception and Performance, 22, 725-737. https://doi.org/10.1037//0096-1523.22.3.725
|
[25]
|
Martin-Garcia, O., da Silva, P. H. R., De Smet, S., De Witte, S., Brunoni, A. R., Vanderhasselt, M. et al. (2025). Baseline Gray Matter Volume Associates with Working Memory Performance after Prefrontal Transcranial Direct Current Stimulation. Behavioural Brain Research, 481, Article ID: 115416. https://doi.org/10.1016/j.bbr.2025.115416
|
[26]
|
McNab, F., & Klingberg, T. (2008). Prefrontal Cortex and Basal Ganglia Control Access to Working Memory. Nature Neuroscience, 11, 103-107. https://doi.org/10.1038/nn2024
|
[27]
|
Olivers, C. N., & Roelfsema, P. R. (2023). Attention for Action in Visual Working Memory. Cortex, 131, 179-194.
|
[28]
|
Panichello, M. F., & Buschman, T. J. (2021). Shared Mechanisms Underlie the Control of Working Memory and Attention. Nature, 592, 601-605. https://doi.org/10.1038/s41586-021-03390-w
|
[29]
|
Schneider, D., Barth, A., Getzmann, S., & Wascher, E. (2017). On the Neural Mechanisms Underlying the Protective Function of Retroactive Cuing against Perceptual Interference: Evidence by Event-Related Potentials of the EEG. Biological Psychology, 124, 47-56. https://doi.org/10.1016/j.biopsycho.2017.01.006
|
[30]
|
Schneider, K. A. (1995). Working Memory and Attention: A Combined Approach. Psychological Research, 57, 179-188.
|
[31]
|
Schroeder, S. C. Y., Ball, F., & Busch, N. A. (2018). The Role of Alpha Oscillations in Distractor Inhibition during Memory Retention. European Journal of Neuroscience, 48, 2516-2526. https://doi.org/10.1111/ejn.13852
|
[32]
|
van der Meulen, J. H. (2021). Prioritising Feature Representations in Visual Working Memory. Master’s Thesis, University of Oxford.
|
[33]
|
Vogel, E. K., & Machizawa, M. G. (2004). Neural Activity Predicts Individual Differences in Visual Working Memory Capacity. Nature, 428, 748-751. https://doi.org/10.1038/nature02447
|
[34]
|
Williams, M., Pouget, P., Boucher, L., & Woodman, G. F. (2013). Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory. Memory & Cognition, 41, 698-715. https://doi.org/10.3758/s13421-013-0296-7
|
[35]
|
Woodman, G. F., & Luck, S. J. (2009). Why Is Information Displaced from Visual Working Memory during Visual Search? Visual Cognition, 18, 275-295. https://doi.org/10.1080/13506280902734326
|
[36]
|
Zhan, M., Pallier, C., Agrawal, A., Dehaene, S., & Cohen, L. (2023). Does the Visual Word Form Area Split in Bilingual Readers? a Millimeter-Scale 7-T fMRI Study. Science Advances, 9, eadf6140. https://doi.org/10.1126/sciadv.adf6140
|
[37]
|
Zhong, C., Qu, Z., Yang, N., Sun, M., Wang, Y., & Ding, Y. (2024). Susceptibility to Attentional Capture by Target-Matching Distractors Predicts High Visual Working Memory Capacity. Psychological Science, 35, 1203-1216. https://doi.org/10.1177/09567976241279520
|