[1]
|
Ponticelli, C., Podestà, M.A. and Moroni, G. (2020) Hyperuricemia as a Trigger of Immune Response in Hypertension and Chronic Kidney Disease. Kidney International, 98, 1149-1159. https://doi.org/10.1016/j.kint.2020.05.056
|
[2]
|
张玲, 黎颖, 张太君, 等. 慢性高尿酸血症肾病的中医防治研究进展[J]. 实用中西医结合临床, 2019, 19(6): 179-180.
|
[3]
|
Bao, R., Liu, M., Wang, D., Wen, S., Yu, H., Zhong, Y., et al. (2019) Effect of Eurycoma longifolia Stem Extract on Uric Acid Excretion in Hyperuricemia Mice. Frontiers in Pharmacology, 10, Article No. 1464. https://doi.org/10.3389/fphar.2019.01464
|
[4]
|
Li, X., Liu, J., Ma, L. and Fu, P. (2019) Pharmacological Urate-Lowering Approaches in Chronic Kidney Disease. European Journal of Medicinal Chemistry, 166, 186-196. https://doi.org/10.1016/j.ejmech.2019.01.043
|
[5]
|
Xu, W., Huang, Y., Li, L., Sun, Z., Shen, Y., Xing, J., et al. (2016) Hyperuricemia Induces Hypertension through Activation of Renal Epithelial Sodium Channel (ENaC). Metabolism, 65, 73-83. https://doi.org/10.1016/j.metabol.2015.10.026
|
[6]
|
Ghasemi, A. (2021) Uric Acid‐Induced Pancreatic β-Cell Dysfunction. BMC Endocrine Disorders, 21, Article No. 24. https://doi.org/10.1186/s12902-021-00698-6
|
[7]
|
Zoccali, C. and Mallamaci, F. (2017) Uric Acid in Chronic Kidney Disease: The Quest for Causality Continues. Nephrology Dialysis Transplantation, 33, 193-195. https://doi.org/10.1093/ndt/gfx341
|
[8]
|
Liu, C., Ke, S., Tseng, G., Wu, Y. and Hwang, J. (2021) Elevated Serum Uric Acid Is Associated with Incident Hypertension in the Health According to Various Contemporary Blood Pressure Guidelines. Nutrition, Metabolism and Cardiovascular Diseases, 31, 1209-1218. https://doi.org/10.1016/j.numecd.2021.01.003
|
[9]
|
Kim, W., Go, T., Kang, D., Lee, J., et al. (2020) Age and Sex Dependent Association of Uric Acid and Incident Hypertension. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 31, 1200-1208.
|
[10]
|
Cheung, K.W.K., van Groen, B.D., Spaans, E., van Borselen, M.D., de Bruijn, A.C.J.M., Simons‐Oosterhuis, Y., et al. (2019) A Comprehensive Analysis of Ontogeny of Renal Drug Transporters: mRNA Analyses, Quantitative Proteomics, and Localization. Clinical Pharmacology & Therapeutics, 106, 1083-1092. https://doi.org/10.1002/cpt.1516
|
[11]
|
Arakawa, H., Amezawa, N., Kawakatsu, Y. and Tamai, I. (2020) Renal Reabsorptive Transport of Uric Acid Precursor Xanthine by URAT1 and GLUT9. Biological and Pharmaceutical Bulletin, 43, 1792-1798. https://doi.org/10.1248/bpb.b20-00597
|
[12]
|
Xin, Y., Wang, K., Jia, Z., Xu, T., Xu, Q., Zhang, C., et al. (2018) Zurampic Protects Pancreatic β-Cells from High Uric Acid Induced-Damage by Inhibiting URAT1 and Inactivating the ROS/AMPK/ERK Pathways. Cellular Physiology and Biochemistry, 47, 1074-1083. https://doi.org/10.1159/000490184
|
[13]
|
Yong, T., Chen, S., Xie, Y., Chen, D., Su, J., Shuai, O., et al. (2018) Hypouricemic Effects of Ganoderma applanatum in Hyperuricemia Mice through OAT1 and GLUT9. Frontiers in Pharmacology, 8, Article No. 996. https://doi.org/10.3389/fphar.2017.00996
|
[14]
|
Jin, Y., Lin, Z., Zhang, B. and Bai, Y. (2018) Effects of Chicory on Serum Uric Acid, Renal Function, and GLUT9 Expression in Hyperuricaemic Rats with Renal Injury and in Vitro Verification with Cells. Evidence-Based Complementary and Alternative Medicine: eCAM, 2018, Article ID: 1764212. https://doi.org/10.1155/2018/1764212
|
[15]
|
Zhou, Y., Zhang, X., Li, C., Yuan, X., Han, L., Li, Z., et al. (2018) Research on the Pharmacodynamics and Mechanism of Fraxini Cortex on Hyperuricemia Based on the Regulation of URAT1 and GLUT9. Biomedicine & Pharmacotherapy, 106, 434-442. https://doi.org/10.1016/j.biopha.2018.06.163
|
[16]
|
Yu, X., Zhang, L., Zhang, P., Zhi, J., Xing, R. and He, L. (2020) Lycium barbarum Polysaccharides Protect Mice from Hyperuricaemia through Promoting Kidney Excretion of Uric Acid and Inhibiting Liver Xanthine Oxidase. Pharmaceutical Biology, 58, 944-949. https://doi.org/10.1080/13880209.2020.1817951
|
[17]
|
Deng, J., Jiang, W., Chen, C., Lee, L., Li, P., Huang, W., et al. (2020) Cordyceps cicadae Mycelia Ameliorate Cisplatin-Induced Acute Kidney Injury by Suppressing the TLR4/NF-B/MAPK and Activating the HO-1/Nrf2 and Sirt-1/AMPK Pathways in Mice. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 7912763. https://doi.org/10.1155/2020/7912763
|
[18]
|
Fan, Y., Liang, Z., Zhang, J. and You, G. (2021) Oral Proteasomal Inhibitors Ixazomib, Oprozomib, and Delanzomib Upregulate the Function of Organic Anion Transporter 3 (OAT3): Implications in OAT3-Mediated Drug-Drug Interactions. Pharmaceutics, 13, Article No. 314. https://doi.org/10.3390/pharmaceutics13030314
|
[19]
|
Kobayashi, M., Mizutani, A., Okamoto, T., Muranaka, Y., Nishi, K., Nishii, R., et al. (2021) Assessment of Drug Transporters Involved in the Urinary Secretion of [99mtc]dimercaptosuccinic Acid. Nuclear Medicine and Biology, 94, 92-97. https://doi.org/10.1016/j.nucmedbio.2021.01.004
|
[20]
|
Chen, C., Tseng, C., Yen, J., Chang, J., Chou, W., Chu, H., et al. (2018) ABCG2 Contributes to the Development of Gout and Hyperuricemia in a Genome-Wide Association Study. Scientific Reports, 8, Article No. 3137. https://doi.org/10.1038/s41598-018-21425-7
|
[21]
|
Li, X., Chu, F., Jiang, S., et al. (2021) Preliminary Study on Effect of Phellinus igniarius Ethanol Extract on Serum Uric Acid Metabolism and Gut Microbiome in Rats. China Journal of Chinese Materia Medica, 46, 177-182.
|
[22]
|
Gao, Y., Sun, J., Zhang, Y., Shao, T., Li, H., Wang, M., et al. (2020) Effect of a Traditional Chinese Medicine Formula (CoTOL) on Serum Uric Acid and Intestinal Flora in Obese Hyperuricemic Mice Inoculated with Intestinal Bacteria. Evidence-Based Complementary and Alternative Medicine: eCAM, 2020, Article ID: 8831937. https://doi.org/10.1155/2020/8831937
|
[23]
|
Xiong, C., Deng, J., Wang, X., Shao, X., Zhou, Q., Zou, H., et al. (2021) Pharmacologic Targeting of BET Proteins Attenuates Hyperuricemic Nephropathy in Rats. Frontiers in Pharmacology, 12, Article ID: 636154. https://doi.org/10.3389/fphar.2021.636154
|
[24]
|
Leask, M.P., Sumpter, N.A., Lupi, A.S., Vazquez, A.I., Reynolds, R.J., Mount, D.B., et al. (2020) The Shared Genetic Basis of Hyperuricemia, Gout, and Kidney Function. Seminars in Nephrology, 40, 586-599. https://doi.org/10.1016/j.semnephrol.2020.12.002
|
[25]
|
Otani, N., Kurata, Y., Maharani, N., Kuwabara, M., Ikeda, N., Notsu, T., et al. (2020) Evidence for Urate Uptake through Monocarboxylate Transporter 9 Expressed in Mammalian Cells and Its Enhancement by Heat Shock. Circulation Reports, 2, 425-432. https://doi.org/10.1253/circrep.cr-20-0016
|
[26]
|
Kasahara, M., Kuwabara, Y., Moriyama, T., Tanabe, K., Satoh-Asahara, N., Katsuya, T., et al. (2019) Intensive Uric Acid-Lowering Therapy in CKD Patients: The Protocol for a Randomized Controlled Trial. Clinical and Experimental Nephrology, 24, 235-241. https://doi.org/10.1007/s10157-019-01815-5
|
[27]
|
Martinon, F. (2009) Mechanisms of Uric Acid Crystal‐Mediated Autoinflammation. Immunological Reviews, 233, 218-232. https://doi.org/10.1111/j.0105-2896.2009.00860.x
|
[28]
|
Amaral, F.A., Costa, V.V., Tavares, L.D., Sachs, D., Coelho, F.M., Fagundes, C.T., et al. (2012) NLRP3 Inflammasome-Mediated Neutrophil Recruitment and Hypernociception Depend on Leukotriene B4 in a Murine Model of Gout. Arthritis & Rheumatism, 64, 474-484. https://doi.org/10.1002/art.33355
|
[29]
|
Chen, Z., Sun, X., Li, X., Xu, Z., Yang, Y., Lin, Z., et al. (2020) Polydatin Attenuates Renal Fibrosis in Diabetic Mice through Regulating the Cx32-Nox4 Signaling Pathway. Acta Pharmacologica Sinica, 41, 1587-1596. https://doi.org/10.1038/s41401-020-0475-6
|
[30]
|
Chen, X., Ge, H., Lei, S., Jiang, Z., Su, J., He, X., et al. (2020) Dendrobium officinalis Six Nostrum Ameliorates Urate Under-Excretion and Protects Renal Dysfunction in Lipid Emulsion-Induced Hyperuricemic Rats. Biomedicine & Pharmacotherapy, 132, Article ID: 110765. https://doi.org/10.1016/j.biopha.2020.110765
|
[31]
|
Piani, F. and Johnson, R.J. (2021) Does Gouty Nephropathy Exist, and Is It More Common than We Think? Kidney International, 99, 31-33. https://doi.org/10.1016/j.kint.2020.10.015
|
[32]
|
Lu, X., Zeng, R., Lin, J., Hu, J., Rong, Z., Xu, W., et al. (2019) Pharmacological Basis for Use of Madecassoside in Gouty Arthritis: Anti-Inflammatory, Anti-Hyperuricemic, and NLRP3 Inhibition. Immunopharmacology and Immunotoxicology, 41, 277-284. https://doi.org/10.1080/08923973.2019.1590721
|
[33]
|
Ma, C., Kang, L., Ren, H., Zhang, D. and Kong, L. (2015) Simiao Pill Ameliorates Renal Glomerular Injury via Increasing Sirt1 Expression and Suppressing NF-κB/NLRP3 Inflammasome Activation in High Fructose-Fed Rats. Journal of Ethnopharmacology, 172, 108-117. https://doi.org/10.1016/j.jep.2015.06.015
|
[34]
|
Lv, Y., Bing, Q., Lv, Z., Xue, J., Li, S., Han, B., et al. (2020) Imidacloprid-Induced Liver Fibrosis in Quails via Activation of the TGF-Beta1/Smad Pathway. Science of the Total Environment, 705, Article ID: 135915. https://doi.org/10.1016/j.scitotenv.2019.135915
|
[35]
|
Kim, S., Lee, S., Kim, Y., Kim, S., Seo, J., Choi, Y., et al. (2015) Hyperuricemia-Induced NLRP3 Activation of Macrophages Contributes to the Progression of Diabetic Nephropathy. American Journal of Physiology-Renal Physiology, 308, F993-F1003. https://doi.org/10.1152/ajprenal.00637.2014
|
[36]
|
Tan, J., Wan, L., Chen, X., Li, X., Hao, X., Li, X., et al. (2019) Conjugated Linoleic Acid Ameliorates High Fructose‐Induced Hyperuricemia and Renal Inflammation in Rats via NLRP3 Inflammasome and TLR4 Signaling Pathway. Molecular Nutrition & Food Research, 63, e1801402. https://doi.org/10.1002/mnfr.201801402
|
[37]
|
Zhao, H., Xu, J., Wang, R., Tang, W., Kong, L., Wang, W., et al. (2021) Plantaginis Semen Polysaccharides Ameliorate Renal Damage through Regulating NLRP3 Inflammasome in Gouty Nephropathy Rats. Food & Function, 12, 2543-2553. https://doi.org/10.1039/d0fo03143g
|
[38]
|
Grainger, R., McLaughlin, R.J., Harrison, A.A. and Harper, J.L. (2012) Hyperuricaemia Elevates Circulating CCL2 Levels and Primes Monocyte Trafficking in Subjects with Inter-Critical Gout. Rheumatology, 52, 1018-1021. https://doi.org/10.1093/rheumatology/kes326
|
[39]
|
Bahadoran, Z., Mirmiran, P., Kashfi, K. and Ghasemi, A. (2021) Hyperuricemia-Induced Endothelial Insulin Resistance: The Nitric Oxide Connection. Pflügers Archiv—European Journal of Physiology, 474, 83-98. https://doi.org/10.1007/s00424-021-02606-2
|
[40]
|
中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019) [J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13.
|
[41]
|
Khanna, P., Johnson, R.J., Marder, B., LaMoreaux, B. and Kumar, A. (2020) Systemic Urate Deposition: An Unrecognized Complication of Gout? Journal of Clinical Medicine, 9, Article No. 3204. https://doi.org/10.3390/jcm9103204
|
[42]
|
万学红, 卢雪峰. 诊断学[M]. 第9版. 北京: 人民卫生出版社, 2018: 341-345.
|
[43]
|
Stamp, L.K., Chapman, P.T., Barclay, M.L., Horne, A., Frampton, C., Tan, P., et al. (2017) A Randomised Controlled Trial of the Efficacy and Safety of Allopurinol Dose Escalation to Achieve Target Serum Urate in People with Gout. Annals of the Rheumatic Diseases, 76, 1522-1528. https://doi.org/10.1136/annrheumdis-2016-210872
|
[44]
|
徐佩, 魏雪菲, 李菡, 等. 不同肾小球滤过率估算公式对估算慢性肾脏病患者肾小球滤过率的差异比较[J]. 现代医学, 2018, 46(9) : 978-983.
|
[45]
|
周妍, 李靖, 赵鑫宇, 等. 中西医结合治疗尿酸性肾病的随机对照试验中结局指标的选择[J]. 世界中医药, 2023, 18(9): 1260-1264.
|
[46]
|
邵忠林. 针药联合治疗湿热内蕴、肝肾不足型慢性尿酸性肾病的临床观察[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2020.
|
[47]
|
陈松鹤, 俞鸿晖, 方芝嫔, 等. 中医药治疗痛风性肾病的进展概述[J]. 中国中医急症, 2020, 29(10): 1877-1880.
|
[48]
|
林志帅, 鲁盈. 痛风性肾病中医辨治浅述[J]. 浙江中医杂志, 2019, 54(5): 382.
|
[49]
|
回鲁金, 董志刚. 董志刚辨治痛风性肾病经验[J]. 湖南中医杂志, 2016, 32(4): 32-33.
|
[50]
|
李春胜, 李卫东, 刘燕. 非布司他治疗G3期慢性肾脏病伴无症状高尿酸血症的临床效果及对患者肾功能的保护作用[J]. 中国临床药学杂志, 2021, 30(1): 1-4.
|
[51]
|
Tien, Y., Shih, M., Tien, C., Huang, H. and Tu, Y. (2022) To Treat or Not to Treat? Effect of Urate-Lowering Therapy on Renal Function, Blood Pressure and Safety in Patients with Asymptomatic Hyperuricemia: A Systematic Review and Network Meta-Analysis. The Journal of the American Board of Family Medicine, 35, 140-151. https://doi.org/10.3122/jabfm.2022.01.210273
|
[52]
|
Waheed, Y., Yang, F. and Sun, D. (2021) Role of Asymptomatic Hyperuricemia in the Progression of Chronic Kidney Disease and Cardiovascular Disease. The Korean Journal of Internal Medicine, 36, 1281-1293. https://doi.org/10.3904/kjim.2020.340
|
[53]
|
安琦, 王珂, 史恒军. 痛风辨证施治中顾护脾胃的探讨[J]. 陕西中医, 2015, 36(3): 385.
|
[54]
|
郝晓娟, 姜星, 范军. 中医治疗尿酸性肾病相关研究进展[J]. 中国现代医药杂志, 2020, 22(11): 100-103.
|
[55]
|
魏若妍, 张源, 张复亮, 等. 上海市徐家汇街道老年人高尿酸血症、痛风患病状况及影响因素研究[J]. 中国全科医学, 2019, 22(16): 1954-1959, 1972.
|
[56]
|
Rodenbach, K.E., Schneider, M.F., Furth, S.L., Moxey-Mims, M.M., Mitsnefes, M.M., Weaver, D.J., et al. (2015) Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. American Journal of Kidney Diseases, 66, 984-992. https://doi.org/10.1053/j.ajkd.2015.06.015
|
[57]
|
Aiumtrakul, N., Wiputhanuphongs, P., Supasyndh, O. and Satirapoj, B. (2020) Hyperuricemia and Impaired Renal Function: A Prospective Cohort Study. Kidney Diseases, 7, 210-218. https://doi.org/10.1159/000511196
|
[58]
|
Fukuda, A., Wickman, L.T., Venkatareddy, M.P., Wang, S.Q., Chowdhury, M.A., Wiggins, J.E., et al. (2012) Urine Podocin: Nephrin mRNA Ratio (PNR) as a Podocyte Stress Biomarker. Nephrology Dialysis Transplantation, 27, 4079-4087. https://doi.org/10.1093/ndt/gfs313
|