痛风性肾病致肾损伤的防治与研究
Research on Prevention and Treatment of Kidney Injury Caused by Gouty Nephropathy
DOI: 10.12677/tcm.2025.144184, PDF, HTML, XML,   
作者: 史粮坤*, 黄 峥, 刘粮酺:广西中医药大学研究生院,广西 南宁;田君明#:广西中医药大学骨伤学院,广西 南宁
关键词: 尿酸痛风性肾病微分子机制肾纤维化Uric Acid Gouty Nephropathy Micromolecular Mechanism Renal Fibrosis
摘要: 近年来痛风的发病逐年增加,已成为人体代谢疾病的常客之一,对于其带来的肾脏方面的损害更是不容忽视。痛风性关节炎经久不治,或失治误治则会导致痛风性肾病的发生,而它的产生过程少不了高尿酸环境的影响,最终肾的损伤也与尿酸的影响关系密切。文章探究痛风所致肾损伤的相关研究,以期为临床和基础研究提供思路。
Abstract: In recent years, the incidence of gout has increased year by year, and it has become one of the most frequent cases of human metabolic diseases. The damage to the kidneys caused by gout cannot be ignored. Gouty arthritis can lead to the occurrence of gouty nephropathy if it is left untreated for a long time or improperly treated, and its production process is indispensable to the influence of a high uric acid environment. Finally, kidney damage is also closely related to the influence of uric acid. The article explores the relevant research on kidney injury caused by gout, aiming to provide ideas for clinical and basic research.
文章引用:史粮坤, 田君明, 黄峥, 刘粮酺. 痛风性肾病致肾损伤的防治与研究[J]. 中医学, 2025, 14(4): 1232-1240. https://doi.org/10.12677/tcm.2025.144184

1. 引言

痛风性肾病(Gouty Nephropathy, GN),又名“尿酸性肾病”,是尿酸盐晶体结晶(Monosodium Urate, MSU)堆积而引发的一种无菌性炎症反应。尿酸(Uric Acid, UA)代谢失常虽是痛风性关节炎(Gouty Arthritis, GA)发病的医学共识,但对于其发病机制的研究并不明确,而高尿酸血症(Hyperuricemia, HUA)也是引发痛风后期所致肾损伤的一大高危因素[1]。高嘌呤饮食、抽烟酗酒等不良生活习惯及人口老龄化的趋势,使得痛风性肾病的发病率呈现出逐年上升的趋势。早期发病不明显,且较为隐匿,因此早发现、早诊断、早治疗,让GN不再进行下去,将会对临床产生重要意义。

2. 尿酸

2.1. 尿酸的作用

尿酸,一种天然水溶性抗氧化剂。正常人体尿酸浓度维持在240~420 μmol/L,此范围的UA浓度能够很好地保护一部分人体的神经系统,可延缓T细胞与B细胞和巨噬细胞的凋亡,并能够维持人体免疫系统的稳态[2]。而UA水平过低则会引发阿尔兹海默症、帕金森等神经退行性病变,过高则会引发高尿酸血症、痛风、高血压等心血管疾患[3]-[6]。降尿酸药物问世以前,终末期肾病常常伴随痛风出现,因此很多研究者认为痛风是终末期肾病的好发因素之一;后来经研究MSU被发现沉积在肾小管、肾髓质中,也进一步证实了UA会造成肾功能的损坏,痛风性肾病也逐渐被学者认可[7]。痛风和痛风性肾病是由长期的高尿酸血症导致,前者因尿酸堆积形成MSU,逐渐刺激关节组织间隙造成红肿热痛等反应;后者又称尿酸性肾病,可因痛风日久所致,也可由痛风病程中药物使用不当等原因引起[8] [9]

2.2. UA在机体内的转运机制

2.2.1. 肾脏-URAT1,OATs

UA代谢有两大途径,以肾脏为主时,受大量基因、蛋白调控并经UA转运蛋白转载[10]。而UA水平稳态也依靠多种UA转运体协同维持[11],如主要位于肾脏近端小管细胞顶端中的MSU阴离子交换剂(Urate Transporter 1, URAT1),在尿酸重吸收过程中有着重要的作用[12]

高尿酸血症的重要靶点被证实了是从近端小管细胞顶端膜把MSU转运至近端小管管腔[12]。葡萄糖转运蛋白9 (Glucose Transporter 9, GLUT9)分布在肾近端小管细胞基底外侧膜的GLUT9L和顶端膜的GLUT9S两种亚型中,属于葡萄糖转运体家族和最突出的UA转运体之一[13] [14]。GLUT9S的UA转运能力更高,侧重于UA的重吸收,GLUT9L侧重于UA的排出[15];迄今为止,发现了10余种参与了UA转运相关的亚型,属于有机阴离子转运体家族(Organic Anion Transporter, OATs),而主要负责UA分泌的蛋白有OAT1、OAT3 [16]。OAT1存在于肾小管毛细血管与肾小管上皮细胞的尿酸运转过程中,起到运载作用[17],而作为摄取型的转运体OAT3等程度表达于肾脏近端小管和远端小管中,在肾脏中以尿酸、胆汁等为作用对象[18]。OCT2 (Organic Cation Transporters, OCT2)为UA分泌型转运体,在肾脏中参与大部分阳离子药物的代谢,属主要的肾脏有机阳离子转运体[19]

2.2.2. 肠道-ABCG2、URAT1、CNT2、菌群

以肠道为主时,经肠道菌群酶解破坏后,体内约有1/3的UA以粪便的形式被代谢掉。近年来大量的研究表明,几种细胞膜上载体蛋白有ABCG2、URAT1、CNT2等是参与肠道尿酸代谢的[20]。Li及其团队的研究发现,肠道菌群的失衡被发现于高尿酸血症患者中。所以乳酸杆菌和双歧杆菌的菌群数在肠道中减少,就会导致尿酸的代谢功能减弱,从而进一步加速高尿酸血症的发展[21],这进一步证明了肠道在尿酸代谢过程中扮演着关键角色[22]。因此保持尿酸转运体蛋白的稳态来调节尿酸代谢是痛风性肾病发展过程中最重要的途径。

3. 痛风性肾病

UA不光会对人体体表组织造成损坏,还会影响内脏组织。痛风性肾病又名“高尿酸肾病”,肾脏是UA代谢的主要器官,UA由肝脏合成经肾小球滤过后,再通过肾小管的分泌与吸收将其排出体外[23]。当血液中尿酸堆积过多,析出的MSU经肾不易排出[24] [25],堆积于肾间质、肾小管间质或尿道等部位均会导致渐发性或不可治愈的炎性损伤或纤维化[26]。下面总结了痛风性肾病的微分子机制。

3.1. RAS、OS-ESRD

痛风性肾病导致肾脏受损,主要体现为UA在肾小管、肾间质过度沉积,形成MSU,进一步激活炎症因子,导致肾小球高血压和肾小管间质纤维化,最终可能引发肾衰竭[27] [28]。在这一过程中,多种刺激因素可能诱发慢性肾脏疾病,如内皮发生的功能障碍、血管紧张素系统的被激活(Renin-Angiotensin System, RAS)、小管上皮间质的转化以及氧化应激反应(Oxidative Stress, OS)等[29]。这些刺激因素激活了多条信号通路,大量促炎症因子被释放,引发组织的炎症和损伤。同时,促纤维化因子也能被炎症因子所激活,进而引起基质蛋白合成增多和细胞外基质(Extracellular Matrix, ECM)的最终积累,累及肾小管出现纤维化病变[30] [31];终末期肾病(End Stage Renal Disease, ESRD)是肾小管间质发生纤维化导致走向慢性肾脏病末期的终点站。因此,对于痛风性肾病的治疗,应尽早干预,防止肾脏进一步受损,以延缓慢性肾脏疾病的发展[32]

3.2. NF-κB

作为在炎症反应中占据重要地位的核转录因子,NF-κB (Nuclear Factor Kappa B)信号通路也是必不可少的一环[33]。尿酸作为一种强作用力的促炎分子,可以使得更多的促炎因子被诱导和聚集,而NF-κB通路又可以被这些因子进一步激活表达[34] [35]。在NF-κB通路被激活后,大量细胞间黏附因子会被诱导出现在肾小管的上皮细胞,从而使得肾间质炎症以及ECM累积,最终发生肾间质的纤维化形成[36] [37]。因此,进展性痛风性肾病的主要发病机制被认为是由肾小管间质的纤维化所引起的。肾小管上皮损伤源自于长期尿酸环境的影响,自分泌与旁分泌机制被受损的肾近端小管所激活,导致肾间质纤维化的逐渐形成[38]

3.3. IR

胰岛素抵抗(Insulin Resistance, IR)会加剧高尿酸血症(HUA)对肾脏的损害。在维护肾脏内皮细胞稳态中起关键作用的胰岛素,是以2条途径所实现的(磷脂酰肌醇3-激酶/蛋白激酶B和Ras/Raf/MAPK)。然而,HUA状态下,胰岛素信号的传导会被高浓度的尿酸所干扰,导致胰岛素诱导的eNOS (Endothelial Nitric Oxide Synthase,内皮型一氧化氮合酶,缩写eNOS或NOS3)激活与表达减少和内皮细胞NO合成的减少。将会导致内皮细胞IR的发生发展和内皮功能被破坏,以及会影响NO依赖性血管的舒张功能[39]。因此,胰岛素抵抗在高尿酸血症引起的肾脏损害中扮演了重要角色。

综上所述,痛风性肾病主要表现为肾小血管与肾间质的破坏和纤维化的形成,因此抗炎症反应及抗肾纤维化在治疗痛风性肾病过程中的临床意义颇大。通过上述研究,在微分子被证明安全有效后方可进入临床试用阶段,包括制定使用指南、培训医护人员,以及建立健全完善的、安全的、可供检查的指标和方案。

4. 痛风性肾病的临床诊断

最新指南中,不分性别,采取2次非同日空腹血尿酸,指标超过420 μmol/L就可诊断为HUA [40]。当超过该值,MSU就会沉积于关节、肾脏或其他组织中,导致肾损伤。

累及肾脏时会有尿酸性肾结石病、无菌性间质性肾炎、肾梗阻性病变三种表现形式。早期尿酸性肾结石病人多无症状,结石大者可出现肾绞痛或血尿。肾梗阻性病变较为罕见,由于主要见于癌症放化疗后,肿瘤溶解等造成UA堵塞于肾髓质集合管、间质和输尿管中,形成炎症、积水、肾小球萎缩、肾小管扩张坏死、急性肾损伤等肾脏病变[41]

4.1. 临床实验室检查

4.1.1. 视黄醇结合蛋白(RBP)

视黄醇结合蛋白是肝脏合成的转运蛋白,广泛分布于人体血液和尿液中。主要由肾小球过滤,肾小管重吸收后分解供机体利用,少量随尿排出。当肾小管受损时,该指标升高,暗示肾小球滤过功能下降[42]

4.1.2. 尿微量白蛋白(mAlb)

尿微量白蛋白是肝脏合成的,正常情况下无法通过肾小球基膜的较大分子量白蛋白。其指标升高可能预示着肾小球受损,其敏感性超过肌酐、尿素氮等指标。临床研究证实,mAlb能更有效地检测早期肾损伤,为肾功能评估提供重要依据[43]

4.1.3. 慢性肾脏疾病流行病学协作组CKD-EPI方程[44]

慢性肾脏疾病(CDK)定义:多因素引发的慢性肾脏结构功能障碍(肾损伤病史超过3个月,包括病理损伤、尿液及血液指标异常,伴影像学改变,或其他未知因素)

以血肌酐为基础的eGFR (经估算的肾小球滤过率)分为CKD1-5期:eGFR ≥ 90 ml/min/1.73 m2 (CKD1 期);60~89 ml/min/1.73 m2 (CKD2期);30~59 ml/min/1.73 m2 (CKD3期);15~29 ml/min/1.73 m2 (CKD4期); eGFR < 15 ml/min/1.73 m2 (CKD5期)。

4.1.4. 近年来尿酸性肾病的相关指标研究

周妍等人对尿酸性肾病的诊断指标相关文献进行分析对比,共检索229篇文献。其中发表日期最早的为1994年,最晚的为2021;共有162篇文献的79个指标被纳入研究,其中肌酐、尿素氮与24 h尿蛋白定量这3个指标多用于肾功能测定,而血UA多用于评价尿酸水平。有效率判定使用率 > 87%,64个指标使用率 < 5%。结论:目前无统一的结局指标,大多尿酸性肾病研究使用生化指标作为结局指标[45]

4.2. 其他检查

1) 对于出现慢性肾间质性肾炎的患者:主要检测蛋白尿、高血压,观察其夜尿以及水肿等症状的出现。2) 对于肾结石患者:检测肾区绞痛、血尿、B超或腹部X线片。3) 对于急性肾衰竭的患者:检测其SUA、血尿素氮、肌酐,会有渐进性少尿、水肿、高血压等症状。4) 对于慢性肾衰的患者:病程较长,除主要检测的血尿素氮、肌酐外,会有慢性间质性肾炎与肾结石的症状表现,且长时间的肾衰会合并贫血,可加测血常规。若至终末期,需行透析作为终末期结局指标,临床症状较多可选用复合指标共同来判断[45]

综上,实验室检查将尿酸与肾损伤的指标独立研究较多,并无具体诊断痛风性肾病的唯一标准或金指标,对于其治疗和后期疗养的研究仍需不断挖掘,临床诊断标准仍需不断完善和统一。

5. 痛风性关节炎的中医认识

有关“痛风”最早的记载出自梁代陶弘景的《名医别录》:“独活,微温,无毒。主治诸贼风,百节痛风无久新者。”延续至金元时期,“痛风”一词被朱丹溪确立出来,并为后世痛风病症的研究奠定了基础。在此之前,如《素问·痹论篇》曰“风寒湿三气杂至,合而为痹也”,将关节病泛指为痹病,也提出了“风寒湿气中其俞,而食饮应之,循俞而入”,很早将疑似痛风的关节病与饮食习惯相联系。

《诸病源候论·历节风候》载“历节风之状,……,历节疼痛不可忍,屈伸不得是也,由饮酒腠理开,汗出当风所致也”,历节为游走性关节痛,与痛风性关节炎急性期症状相像。中医中的“白虎”也属突发剧烈性疼痛的一种关节病,唐代《外台秘要卷十三·白虎方》首载:“其疾昼静而夜发,发即彻髓,酸疼乍歇,其病如虎之啮,故名曰白虎之病也”。对比痹证、历节,白虎等病的特点发现与现代痛风性关节炎的临床特征极为相似。“气脚”指邪毒流注于膝足引发的足部关节红肿疼痛,与痛风性关节炎发于肢体末端关节的特点相符合。

以上观点均对痛风的临床表现和病因病机做出了总结性的认识,也描述了痛风病在血受邪侵而致湿热痰瘀,阻滞筋脉引起关节疼痛发病的主要机理,与现代医学研究对于UA与MSU沉积关节引发炎症反应,导致痛风性关节炎急性期发作的研究有异曲同工之处,对后世痛风性关节炎的研究也有很深的借鉴意义。

6. 痛风性肾病中医认识

痛风性肾病,古籍并未明确记载,在其发病早期为“痛风”,有关节肿痛、屈伸不利、关节畸形等症状,属“痹证”、“历节病”等范畴;后期损伤肾脏,有水肿、神疲乏力,甚至呕恶、尿少尿闭等表现时,中医属“溺毒、水肿、关格”等范畴。与肝、肾功能密不可分。先天禀赋不足、正气虚弱,加之外邪侵袭、饮食劳伤均可使得内脏功能失调;患者忧思过多,起居无常,损耗阴液,致使肝阴不足,血运及津液输布失常内留痰湿,瘀阻脉络,日久发为肾疾[46]-[48]。董教授[49]将痛风性肾病分为四型辨证论治:1) 湿热阻络型:关节红肿热痛伴发热烦躁,尿黄便秘,舌红苔黄腻,实验室检查示尿酸、肌酐升高。治以四妙散加凉血利湿之品;2) 湿聚血停型:关节变形僵痛伴痛风石,舌暗脉涩,影像学可见结石。以桃红四物汤合利尿排石药治疗;3) 脾肾气虚型:下肢浮肿乏力伴腰酸纳差,治用香砂六君子汤健脾益气;4) 脾肾阳虚型:畏寒便溏伴尿味口臭,予右归丸合二陈汤温阳化浊。各型均根据虚实夹杂特点,在清热利湿、活血通络的基础上,分别侧重健脾补肾、温阳祛浊之法,结合实验室指标调整用药。治疗强调分期分型论治,兼顾标实证与脾肾本虚,体现中医整体调治特色。

7. 痛风性肾病的西医治疗

对于痛风,西方国家倾向于观察,而亚洲国家则更积极的治疗。关于HUA的治疗,各国看法不一,尤其是无症状HUA的病患是否需用药物治疗更是存有异议。中国专家建议:血尿酸 ≥ 540 μmol/L的无并发症HUA患者,就应开始干预治疗;若血尿酸 ≥ 480 μmol/L并伴随如高血压、血糖异常等并发症时,则需要启动治疗[40]。旨在调节尿酸代谢、缓解病情的治疗药物有抑制尿酸生成和促进尿酸排泄两种。

① 作用机制在于通过抑制嘌呤分解代谢途径上的关键酶,抑制尿酸生成的药物(黄嘌呤氧化酶抑制剂——别嘌醇、奥昔嘌醇、托洛司他、非布司他等)。近期多项研究成果表明,在治疗HUA后可以预防和缓解CKD的形成和发展。在李春胜等人探讨G3期慢性肾脏病(CKD)伴无症状高尿酸血症(HUA)应用非布司他治疗时,观察组治疗有效率为96.77%明显高于对照组的89.25% (P < 0.05,差异有统计学意义),在疗程3、6个月时的血尿酸(SUA)达标率分别为53.76%和68.82%,也显著高于对照组的38.71%和53.76% (P < 0.05,差异有统计学意义),因此非布司他对于G3期CKD-HUA的疗效较为显著,可以有效降低患者的SUA水平,同时改善肾功能损伤,安全性较高[50]。另有一项研究显示,别嘌醇在治疗无症状高尿酸血症(HUA)时,不仅能有效降低尿酸水平,且安全性高,不会引发严重不良反应,更是对肾脏能够起到保护作用[51]。尽管当前研究认为降UA治疗的益处可能源于减少UA本身或由黄嘌呤氧化酶(XOD)抑制引起,但仍需进一步实验验证[52]

② 促进尿酸排泄的药物是降低血尿酸水平的重要手段,是一类通过抑制肾小管对MSU重吸收的药物,以加快尿酸的代谢。如已被广泛应用的苯溴马隆和丙磺舒、一种非选择性尿酸盐/有机阴离子交换体-1 (URAT-1)抑制药,还有正处于临床试验阶段的新型选择性URAT-1抑制药RDEA-594,都有望为尿酸管理提供新选择。

对于合并高脂血症、高血压、糖代谢异常的患者,阿托伐他汀钙、氯沙坦、二甲双胍等药物在降低相关指标的同时,也具有降低尿酸的作用。但需注意,这些药物在尿酸排出量超过一定范围时禁用。利尿剂、糖皮质激素等药物应在慢性尿酸盐肾病患者临床治疗中避免使用,因为该类药物可能导致SUA水平升高加重病情。对于高尿酸血症并需要使用利尿剂治疗的患者,在碱化尿液、多饮水并且保证每日尿量超过2000 mL的前提下,也应避免使用可能加重尿酸排泄负担的利尿剂。总的来说,合理的药物选择和管理对于控制尿酸水平、预防尿酸相关疾病具有重要意义。

8. 痛风性肾病的中医治疗

按疾病发展的不同时期需采取不同的治疗措施。无症状时需以降尿酸为主要治则,可选用降尿酸药物,如土茯苓、蚕沙、石韦、萆薢等。安琦等[53]认为痛风性肾病的主要病机在于脾肾亏虚,主要以“急则治其标”为原则。急性期时以缓解关节疼痛为主,辅以“清热解毒、化浊祛湿、祛瘀散结”为辅[54],再根据患者病情变化及时调整治疗方案。间歇期以治肾为本,预防后期肾损伤。尿路结石者选用如滑石、鸡内金、海金沙、金钱草、瞿麦等祛湿排石药物;合并高脂血症者可选用山楂、麦芽等化浊降脂药物;若合并水肿者,可选用茯苓、猪苓、薏苡仁、泽泻等利水消肿药物。

9. 结语

HUA患病率呈逐年上升趋势,属临床常见“三高”代谢性疾病(高血压、高血糖、高血脂)之后出现的“第四高”[55];且越来越多的证据表明,无论年龄,HUA均属CKD发病的独立危险因素[56] [57]。因此对于UA至HUA,再至GA,终至GN的研究过程对于预防和延缓CKD的发生具有重要的临床意义。

痛风性关节炎早期往往为轻症,并无太多不适感,因此没有及时重视,未予相关诊治终致肾损伤。饮食注意:多饮水,多食蔬菜、海藻等碱性食物,减少嘌呤摄入,如:动物内脏、海鲜、高汤等。也需要关注家庭自测法(一查二看三闻):一查当日总尿量(正常人的尿量为1.0 L~2.5 L),若尿量明显减少则说明肾流量减少,影响了正常的尿酸排泄,需重视起来,以免MSU长期积累引发痛风性关节炎,久则致肾损伤成为隐患;二看尿色(清亮透明还是深黄色),若出现黄色或深黄则为身体缺水的征兆,或伴随腰部偶尔刺痛、尿急、尿频等其他症状,都是不利于尿酸排泄的,提示着痛风的形成和肾损伤;三闻尿液气味(正常是无味的——除去饮食刺激性食物,或是晨起后尿液因浓缩带有异常气味),尿中大蒜味道、烂苹果味、复合的臭味等饮水后未见改善的需引起重视,为防止病情进展和肾损伤需要及时去医院进一步检查治疗[58]

纵观全文,对于GN的临床研究或动物实验还不够完善,未来仍需不断深入探究其病理机制与诊断标准、诊疗措施,且要注重应用于临床,为整个GA期至GN的患者提供更有效的诊治方案。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ponticelli, C., Podestà, M.A. and Moroni, G. (2020) Hyperuricemia as a Trigger of Immune Response in Hypertension and Chronic Kidney Disease. Kidney International, 98, 1149-1159.
https://doi.org/10.1016/j.kint.2020.05.056
[2] 张玲, 黎颖, 张太君, 等. 慢性高尿酸血症肾病的中医防治研究进展[J]. 实用中西医结合临床, 2019, 19(6): 179-180.
[3] Bao, R., Liu, M., Wang, D., Wen, S., Yu, H., Zhong, Y., et al. (2019) Effect of Eurycoma longifolia Stem Extract on Uric Acid Excretion in Hyperuricemia Mice. Frontiers in Pharmacology, 10, Article No. 1464.
https://doi.org/10.3389/fphar.2019.01464
[4] Li, X., Liu, J., Ma, L. and Fu, P. (2019) Pharmacological Urate-Lowering Approaches in Chronic Kidney Disease. European Journal of Medicinal Chemistry, 166, 186-196.
https://doi.org/10.1016/j.ejmech.2019.01.043
[5] Xu, W., Huang, Y., Li, L., Sun, Z., Shen, Y., Xing, J., et al. (2016) Hyperuricemia Induces Hypertension through Activation of Renal Epithelial Sodium Channel (ENaC). Metabolism, 65, 73-83.
https://doi.org/10.1016/j.metabol.2015.10.026
[6] Ghasemi, A. (2021) Uric Acid‐Induced Pancreatic β-Cell Dysfunction. BMC Endocrine Disorders, 21, Article No. 24.
https://doi.org/10.1186/s12902-021-00698-6
[7] Zoccali, C. and Mallamaci, F. (2017) Uric Acid in Chronic Kidney Disease: The Quest for Causality Continues. Nephrology Dialysis Transplantation, 33, 193-195.
https://doi.org/10.1093/ndt/gfx341
[8] Liu, C., Ke, S., Tseng, G., Wu, Y. and Hwang, J. (2021) Elevated Serum Uric Acid Is Associated with Incident Hypertension in the Health According to Various Contemporary Blood Pressure Guidelines. Nutrition, Metabolism and Cardiovascular Diseases, 31, 1209-1218.
https://doi.org/10.1016/j.numecd.2021.01.003
[9] Kim, W., Go, T., Kang, D., Lee, J., et al. (2020) Age and Sex Dependent Association of Uric Acid and Incident Hypertension. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 31, 1200-1208.
[10] Cheung, K.W.K., van Groen, B.D., Spaans, E., van Borselen, M.D., de Bruijn, A.C.J.M., Simons‐Oosterhuis, Y., et al. (2019) A Comprehensive Analysis of Ontogeny of Renal Drug Transporters: mRNA Analyses, Quantitative Proteomics, and Localization. Clinical Pharmacology & Therapeutics, 106, 1083-1092.
https://doi.org/10.1002/cpt.1516
[11] Arakawa, H., Amezawa, N., Kawakatsu, Y. and Tamai, I. (2020) Renal Reabsorptive Transport of Uric Acid Precursor Xanthine by URAT1 and GLUT9. Biological and Pharmaceutical Bulletin, 43, 1792-1798.
https://doi.org/10.1248/bpb.b20-00597
[12] Xin, Y., Wang, K., Jia, Z., Xu, T., Xu, Q., Zhang, C., et al. (2018) Zurampic Protects Pancreatic β-Cells from High Uric Acid Induced-Damage by Inhibiting URAT1 and Inactivating the ROS/AMPK/ERK Pathways. Cellular Physiology and Biochemistry, 47, 1074-1083.
https://doi.org/10.1159/000490184
[13] Yong, T., Chen, S., Xie, Y., Chen, D., Su, J., Shuai, O., et al. (2018) Hypouricemic Effects of Ganoderma applanatum in Hyperuricemia Mice through OAT1 and GLUT9. Frontiers in Pharmacology, 8, Article No. 996.
https://doi.org/10.3389/fphar.2017.00996
[14] Jin, Y., Lin, Z., Zhang, B. and Bai, Y. (2018) Effects of Chicory on Serum Uric Acid, Renal Function, and GLUT9 Expression in Hyperuricaemic Rats with Renal Injury and in Vitro Verification with Cells. Evidence-Based Complementary and Alternative Medicine: eCAM, 2018, Article ID: 1764212.
https://doi.org/10.1155/2018/1764212
[15] Zhou, Y., Zhang, X., Li, C., Yuan, X., Han, L., Li, Z., et al. (2018) Research on the Pharmacodynamics and Mechanism of Fraxini Cortex on Hyperuricemia Based on the Regulation of URAT1 and GLUT9. Biomedicine & Pharmacotherapy, 106, 434-442.
https://doi.org/10.1016/j.biopha.2018.06.163
[16] Yu, X., Zhang, L., Zhang, P., Zhi, J., Xing, R. and He, L. (2020) Lycium barbarum Polysaccharides Protect Mice from Hyperuricaemia through Promoting Kidney Excretion of Uric Acid and Inhibiting Liver Xanthine Oxidase. Pharmaceutical Biology, 58, 944-949.
https://doi.org/10.1080/13880209.2020.1817951
[17] Deng, J., Jiang, W., Chen, C., Lee, L., Li, P., Huang, W., et al. (2020) Cordyceps cicadae Mycelia Ameliorate Cisplatin-Induced Acute Kidney Injury by Suppressing the TLR4/NF-B/MAPK and Activating the HO-1/Nrf2 and Sirt-1/AMPK Pathways in Mice. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 7912763.
https://doi.org/10.1155/2020/7912763
[18] Fan, Y., Liang, Z., Zhang, J. and You, G. (2021) Oral Proteasomal Inhibitors Ixazomib, Oprozomib, and Delanzomib Upregulate the Function of Organic Anion Transporter 3 (OAT3): Implications in OAT3-Mediated Drug-Drug Interactions. Pharmaceutics, 13, Article No. 314.
https://doi.org/10.3390/pharmaceutics13030314
[19] Kobayashi, M., Mizutani, A., Okamoto, T., Muranaka, Y., Nishi, K., Nishii, R., et al. (2021) Assessment of Drug Transporters Involved in the Urinary Secretion of [99mtc]dimercaptosuccinic Acid. Nuclear Medicine and Biology, 94, 92-97.
https://doi.org/10.1016/j.nucmedbio.2021.01.004
[20] Chen, C., Tseng, C., Yen, J., Chang, J., Chou, W., Chu, H., et al. (2018) ABCG2 Contributes to the Development of Gout and Hyperuricemia in a Genome-Wide Association Study. Scientific Reports, 8, Article No. 3137.
https://doi.org/10.1038/s41598-018-21425-7
[21] Li, X., Chu, F., Jiang, S., et al. (2021) Preliminary Study on Effect of Phellinus igniarius Ethanol Extract on Serum Uric Acid Metabolism and Gut Microbiome in Rats. China Journal of Chinese Materia Medica, 46, 177-182.
[22] Gao, Y., Sun, J., Zhang, Y., Shao, T., Li, H., Wang, M., et al. (2020) Effect of a Traditional Chinese Medicine Formula (CoTOL) on Serum Uric Acid and Intestinal Flora in Obese Hyperuricemic Mice Inoculated with Intestinal Bacteria. Evidence-Based Complementary and Alternative Medicine: eCAM, 2020, Article ID: 8831937.
https://doi.org/10.1155/2020/8831937
[23] Xiong, C., Deng, J., Wang, X., Shao, X., Zhou, Q., Zou, H., et al. (2021) Pharmacologic Targeting of BET Proteins Attenuates Hyperuricemic Nephropathy in Rats. Frontiers in Pharmacology, 12, Article ID: 636154.
https://doi.org/10.3389/fphar.2021.636154
[24] Leask, M.P., Sumpter, N.A., Lupi, A.S., Vazquez, A.I., Reynolds, R.J., Mount, D.B., et al. (2020) The Shared Genetic Basis of Hyperuricemia, Gout, and Kidney Function. Seminars in Nephrology, 40, 586-599.
https://doi.org/10.1016/j.semnephrol.2020.12.002
[25] Otani, N., Kurata, Y., Maharani, N., Kuwabara, M., Ikeda, N., Notsu, T., et al. (2020) Evidence for Urate Uptake through Monocarboxylate Transporter 9 Expressed in Mammalian Cells and Its Enhancement by Heat Shock. Circulation Reports, 2, 425-432.
https://doi.org/10.1253/circrep.cr-20-0016
[26] Kasahara, M., Kuwabara, Y., Moriyama, T., Tanabe, K., Satoh-Asahara, N., Katsuya, T., et al. (2019) Intensive Uric Acid-Lowering Therapy in CKD Patients: The Protocol for a Randomized Controlled Trial. Clinical and Experimental Nephrology, 24, 235-241.
https://doi.org/10.1007/s10157-019-01815-5
[27] Martinon, F. (2009) Mechanisms of Uric Acid Crystal‐Mediated Autoinflammation. Immunological Reviews, 233, 218-232.
https://doi.org/10.1111/j.0105-2896.2009.00860.x
[28] Amaral, F.A., Costa, V.V., Tavares, L.D., Sachs, D., Coelho, F.M., Fagundes, C.T., et al. (2012) NLRP3 Inflammasome-Mediated Neutrophil Recruitment and Hypernociception Depend on Leukotriene B4 in a Murine Model of Gout. Arthritis & Rheumatism, 64, 474-484.
https://doi.org/10.1002/art.33355
[29] Chen, Z., Sun, X., Li, X., Xu, Z., Yang, Y., Lin, Z., et al. (2020) Polydatin Attenuates Renal Fibrosis in Diabetic Mice through Regulating the Cx32-Nox4 Signaling Pathway. Acta Pharmacologica Sinica, 41, 1587-1596.
https://doi.org/10.1038/s41401-020-0475-6
[30] Chen, X., Ge, H., Lei, S., Jiang, Z., Su, J., He, X., et al. (2020) Dendrobium officinalis Six Nostrum Ameliorates Urate Under-Excretion and Protects Renal Dysfunction in Lipid Emulsion-Induced Hyperuricemic Rats. Biomedicine & Pharmacotherapy, 132, Article ID: 110765.
https://doi.org/10.1016/j.biopha.2020.110765
[31] Piani, F. and Johnson, R.J. (2021) Does Gouty Nephropathy Exist, and Is It More Common than We Think? Kidney International, 99, 31-33.
https://doi.org/10.1016/j.kint.2020.10.015
[32] Lu, X., Zeng, R., Lin, J., Hu, J., Rong, Z., Xu, W., et al. (2019) Pharmacological Basis for Use of Madecassoside in Gouty Arthritis: Anti-Inflammatory, Anti-Hyperuricemic, and NLRP3 Inhibition. Immunopharmacology and Immunotoxicology, 41, 277-284.
https://doi.org/10.1080/08923973.2019.1590721
[33] Ma, C., Kang, L., Ren, H., Zhang, D. and Kong, L. (2015) Simiao Pill Ameliorates Renal Glomerular Injury via Increasing Sirt1 Expression and Suppressing NF-κB/NLRP3 Inflammasome Activation in High Fructose-Fed Rats. Journal of Ethnopharmacology, 172, 108-117.
https://doi.org/10.1016/j.jep.2015.06.015
[34] Lv, Y., Bing, Q., Lv, Z., Xue, J., Li, S., Han, B., et al. (2020) Imidacloprid-Induced Liver Fibrosis in Quails via Activation of the TGF-Beta1/Smad Pathway. Science of the Total Environment, 705, Article ID: 135915.
https://doi.org/10.1016/j.scitotenv.2019.135915
[35] Kim, S., Lee, S., Kim, Y., Kim, S., Seo, J., Choi, Y., et al. (2015) Hyperuricemia-Induced NLRP3 Activation of Macrophages Contributes to the Progression of Diabetic Nephropathy. American Journal of Physiology-Renal Physiology, 308, F993-F1003.
https://doi.org/10.1152/ajprenal.00637.2014
[36] Tan, J., Wan, L., Chen, X., Li, X., Hao, X., Li, X., et al. (2019) Conjugated Linoleic Acid Ameliorates High Fructose‐Induced Hyperuricemia and Renal Inflammation in Rats via NLRP3 Inflammasome and TLR4 Signaling Pathway. Molecular Nutrition & Food Research, 63, e1801402.
https://doi.org/10.1002/mnfr.201801402
[37] Zhao, H., Xu, J., Wang, R., Tang, W., Kong, L., Wang, W., et al. (2021) Plantaginis Semen Polysaccharides Ameliorate Renal Damage through Regulating NLRP3 Inflammasome in Gouty Nephropathy Rats. Food & Function, 12, 2543-2553.
https://doi.org/10.1039/d0fo03143g
[38] Grainger, R., McLaughlin, R.J., Harrison, A.A. and Harper, J.L. (2012) Hyperuricaemia Elevates Circulating CCL2 Levels and Primes Monocyte Trafficking in Subjects with Inter-Critical Gout. Rheumatology, 52, 1018-1021.
https://doi.org/10.1093/rheumatology/kes326
[39] Bahadoran, Z., Mirmiran, P., Kashfi, K. and Ghasemi, A. (2021) Hyperuricemia-Induced Endothelial Insulin Resistance: The Nitric Oxide Connection. Pflügers ArchivEuropean Journal of Physiology, 474, 83-98.
https://doi.org/10.1007/s00424-021-02606-2
[40] 中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019) [J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13.
[41] Khanna, P., Johnson, R.J., Marder, B., LaMoreaux, B. and Kumar, A. (2020) Systemic Urate Deposition: An Unrecognized Complication of Gout? Journal of Clinical Medicine, 9, Article No. 3204.
https://doi.org/10.3390/jcm9103204
[42] 万学红, 卢雪峰. 诊断学[M]. 第9版. 北京: 人民卫生出版社, 2018: 341-345.
[43] Stamp, L.K., Chapman, P.T., Barclay, M.L., Horne, A., Frampton, C., Tan, P., et al. (2017) A Randomised Controlled Trial of the Efficacy and Safety of Allopurinol Dose Escalation to Achieve Target Serum Urate in People with Gout. Annals of the Rheumatic Diseases, 76, 1522-1528.
https://doi.org/10.1136/annrheumdis-2016-210872
[44] 徐佩, 魏雪菲, 李菡, 等. 不同肾小球滤过率估算公式对估算慢性肾脏病患者肾小球滤过率的差异比较[J]. 现代医学, 2018, 46(9) : 978-983.
[45] 周妍, 李靖, 赵鑫宇, 等. 中西医结合治疗尿酸性肾病的随机对照试验中结局指标的选择[J]. 世界中医药, 2023, 18(9): 1260-1264.
[46] 邵忠林. 针药联合治疗湿热内蕴、肝肾不足型慢性尿酸性肾病的临床观察[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2020.
[47] 陈松鹤, 俞鸿晖, 方芝嫔, 等. 中医药治疗痛风性肾病的进展概述[J]. 中国中医急症, 2020, 29(10): 1877-1880.
[48] 林志帅, 鲁盈. 痛风性肾病中医辨治浅述[J]. 浙江中医杂志, 2019, 54(5): 382.
[49] 回鲁金, 董志刚. 董志刚辨治痛风性肾病经验[J]. 湖南中医杂志, 2016, 32(4): 32-33.
[50] 李春胜, 李卫东, 刘燕. 非布司他治疗G3期慢性肾脏病伴无症状高尿酸血症的临床效果及对患者肾功能的保护作用[J]. 中国临床药学杂志, 2021, 30(1): 1-4.
[51] Tien, Y., Shih, M., Tien, C., Huang, H. and Tu, Y. (2022) To Treat or Not to Treat? Effect of Urate-Lowering Therapy on Renal Function, Blood Pressure and Safety in Patients with Asymptomatic Hyperuricemia: A Systematic Review and Network Meta-Analysis. The Journal of the American Board of Family Medicine, 35, 140-151.
https://doi.org/10.3122/jabfm.2022.01.210273
[52] Waheed, Y., Yang, F. and Sun, D. (2021) Role of Asymptomatic Hyperuricemia in the Progression of Chronic Kidney Disease and Cardiovascular Disease. The Korean Journal of Internal Medicine, 36, 1281-1293.
https://doi.org/10.3904/kjim.2020.340
[53] 安琦, 王珂, 史恒军. 痛风辨证施治中顾护脾胃的探讨[J]. 陕西中医, 2015, 36(3): 385.
[54] 郝晓娟, 姜星, 范军. 中医治疗尿酸性肾病相关研究进展[J]. 中国现代医药杂志, 2020, 22(11): 100-103.
[55] 魏若妍, 张源, 张复亮, 等. 上海市徐家汇街道老年人高尿酸血症、痛风患病状况及影响因素研究[J]. 中国全科医学, 2019, 22(16): 1954-1959, 1972.
[56] Rodenbach, K.E., Schneider, M.F., Furth, S.L., Moxey-Mims, M.M., Mitsnefes, M.M., Weaver, D.J., et al. (2015) Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. American Journal of Kidney Diseases, 66, 984-992.
https://doi.org/10.1053/j.ajkd.2015.06.015
[57] Aiumtrakul, N., Wiputhanuphongs, P., Supasyndh, O. and Satirapoj, B. (2020) Hyperuricemia and Impaired Renal Function: A Prospective Cohort Study. Kidney Diseases, 7, 210-218.
https://doi.org/10.1159/000511196
[58] Fukuda, A., Wickman, L.T., Venkatareddy, M.P., Wang, S.Q., Chowdhury, M.A., Wiggins, J.E., et al. (2012) Urine Podocin: Nephrin mRNA Ratio (PNR) as a Podocyte Stress Biomarker. Nephrology Dialysis Transplantation, 27, 4079-4087.
https://doi.org/10.1093/ndt/gfs313