[1]
|
Janoutová, J., Kovalová, M., Machaczka, O., Ambroz, P., Zatloukalová, A., Němček, K., et al. (2021) Risk Factors for Alzheimer’s Disease: An Epidemiological Study. Current Alzheimer Research, 18, 372-379. https://doi.org/10.2174/1567205018666210820124135
|
[2]
|
王英全, 梁景宏, 贾瑞霞, 等. 2020-2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病, 2019, 2(1): 289-298.
|
[3]
|
Atri, A., Frölich, L., Ballard, C., Tariot, P.N., Molinuevo, J.L., Boneva, N., et al. (2018) Effect of Idalopirdine as Adjunct to Cholinesterase Inhibitors on Change in Cognition in Patients with Alzheimer Disease: Three Randomized Clinical Trials. JAMA, 319, 130-142. https://doi.org/10.1001/jama.2017.20373
|
[4]
|
Isik, A.T., Soysal, P., Solmi, M. and Veronese, N. (2018) Bidirectional Relationship between Caregiver Burden and Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease: A Narrative Review. International Journal of Geriatric Psychiatry, 34, 1326-1334. https://doi.org/10.1002/gps.4965
|
[5]
|
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590. https://doi.org/10.1016/s0140-6736(20)32205-4
|
[6]
|
Giraldo-Berrio, D., Mendivil-Perez, M., Velez-Pardo, C. and Jimenez-Del-Rio, M. (2024) Rotenone Induces a Neuropathological Phenotype in Cholinergic-Like Neurons Resembling Parkinson’s Disease Dementia (PDD). Neurotoxicity Research, 42, Article No. 28. https://doi.org/10.1007/s12640-024-00705-3
|
[7]
|
Luu, L., Ciccotosto, G.D. and Cappai, R. (2021) The Alzheimer’s Disease Amyloid Precursor Protein and Its Neuritogenic Actions. Current Alzheimer Research, 18, 772-786. https://doi.org/10.2174/1567205018666211208141017
|
[8]
|
Shcherbinin, S., Evans, C.D., Lu, M., Andersen, S.W., Pontecorvo, M.J., Willis, B.A., et al. (2022) Association of Amyloid Reduction after Donanemab Treatment with Tau Pathology and Clinical Outcomes: The TRAILBLAZER-ALZ Randomized Clinical Trial. JAMA Neurology, 79, 1015-1024. https://doi.org/10.1001/jamaneurol.2022.2793
|
[9]
|
Karran, E., Mercken, M. and Strooper, B.D. (2011) The Amyloid Cascade Hypothesis for Alzheimer’s Disease: An Appraisal for the Development of Therapeutics. Nature Reviews Drug Discovery, 10, 698-712. https://doi.org/10.1038/nrd3505
|
[10]
|
Galvão, F., Grokoski, K.C., da Silva, B.B., Lamers, M.L. and Siqueira, I.R. (2019) The Amyloid Precursor Protein (APP) Processing as a Biological Link between Alzheimer’s Disease and Cancer. Ageing Research Reviews, 49, 83-91. https://doi.org/10.1016/j.arr.2018.11.007
|
[11]
|
Gouras, G.K., Olsson, T.T. and Hansson, O. (2015) β-Amyloid Peptides and Amyloid Plaques in Alzheimer’s Disease. Neurotherapeutics, 12, 3-11. https://doi.org/10.1007/s13311-014-0313-y
|
[12]
|
Luo, Z., Xu, H., Liu, L., Ohulchanskyy, T.Y. and Qu, J. (2021) Optical Imaging of β-Amyloid Plaques in Alzheimer’s Disease. Biosensors, 11, Article 255. https://doi.org/10.3390/bios11080255
|
[13]
|
Ossenkoppele, R., van der Kant, R. and Hansson, O. (2022) Tau Biomarkers in Alzheimer’s Disease: Towards Implementation in Clinical Practice and Trials. The Lancet Neurology, 21, 726-734. https://doi.org/10.1016/s1474-4422(22)00168-5
|
[14]
|
Wegmann, S., Biernat, J. and Mandelkow, E. (2021) A Current View on Tau Protein Phosphorylation in Alzheimer’s Disease. Current Opinion in Neurobiology, 69, 131-138. https://doi.org/10.1016/j.conb.2021.03.003
|
[15]
|
Karikari, T.K., Pascoal, T.A., Ashton, N.J., Janelidze, S., Benedet, A.L., Rodriguez, J.L., et al. (2020) Blood Phosphorylated Tau 181 as a Biomarker for Alzheimer’s Disease: A Diagnostic Performance and Prediction Modelling Study Using Data from Four Prospective Cohorts. The Lancet Neurology, 19, 422-433. https://doi.org/10.1016/s1474-4422(20)30071-5
|
[16]
|
Guha, S., Johnson, G.V.W. and Nehrke, K. (2020) The Crosstalk between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer’s Disease. Molecular Neurobiology, 57, 5103-5120. https://doi.org/10.1007/s12035-020-02084-0
|
[17]
|
Horie, K., Barthélemy, N.R., Sato, C. and Bateman, R.J. (2020) CSF Tau Microtubule Binding Region Identifies Tau Tangle and Clinical Stages of Alzheimer’s Disease. Brain, 144, 515-527. https://doi.org/10.1093/brain/awaa373
|
[18]
|
Thakur, S., Dhapola, R., Sarma, P., Medhi, B. and Reddy, D.H. (2022) Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation, 46, 1-17. https://doi.org/10.1007/s10753-022-01721-1
|
[19]
|
Rajesh, Y. and Kanneganti, T. (2022) Innate Immune Cell Death in Neuroinflammation and Alzheimer’s Disease. Cells, 11, Article 1885. https://doi.org/10.3390/cells11121885
|
[20]
|
Singh, D. (2022) Astrocytic and Microglial Cells as the Modulators of Neuroinflammation in Alzheimer’s Disease. Journal of Neuroinflammation, 19, Article No. 206. https://doi.org/10.1186/s12974-022-02565-0
|
[21]
|
Wang, C., Chen, S., Guo, H., Jiang, H., Liu, H., Fu, H., et al. (2022) Forsythoside a Mitigates Alzheimer’s-Like Pathology by Inhibiting Ferroptosis-Mediated Neuroinflammation via Nrf2/GPX4 Axis Activation. International Journal of Biological Sciences, 18, 2075-2090. https://doi.org/10.7150/ijbs.69714
|
[22]
|
Sweeney, M.D., Sagare, A.P. and Zlokovic, B.V. (2018) Blood-Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nature Reviews Neurology, 14, 133-150. https://doi.org/10.1038/nrneurol.2017.188
|
[23]
|
Alkhalifa, A.E., Al-Ghraiybah, N.F., Odum, J., Shunnarah, J.G., Austin, N. and Kaddoumi, A. (2023) Blood-Brain Barrier Breakdown in Alzheimer’s Disease: Mechanisms and Targeted Strategies. International Journal of Molecular Sciences, 24, Article 16288. https://doi.org/10.3390/ijms242216288
|
[24]
|
Ashleigh, T., Swerdlow, R.H. and Beal, M.F. (2022) The Role of Mitochondrial Dysfunction in Alzheimer’s Disease Pathogenesis. Alzheimer’s & Dementia, 19, 333-342. https://doi.org/10.1002/alz.12683
|
[25]
|
Bai, R., Guo, J., Ye, X., Xie, Y. and Xie, T. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619. https://doi.org/10.1016/j.arr.2022.101619
|
[26]
|
Ionescu-Tucker, A. and Cotman, C.W. (2021) Emerging Roles of Oxidative Stress in Brain Aging and Alzheimer’s Disease. Neurobiology of Aging, 107, 86-95. https://doi.org/10.1016/j.neurobiolaging.2021.07.014
|
[27]
|
Alitalo, K. (2011) The Lymphatic Vasculature in Disease. Nature Medicine, 17, 1371-1380. https://doi.org/10.1038/nm.2545
|
[28]
|
Oliver, G., Kipnis, J., Randolph, G.J. and Harvey, N.L. (2020) The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell, 182, 270-296. https://doi.org/10.1016/j.cell.2020.06.039
|
[29]
|
Louveau, A., Smirnov, I., Keyes, T.J., Eccles, J.D., Rouhani, S.J., Peske, J.D., et al. (2015) Structural and Functional Features of Central Nervous System Lymphatic Vessels. Nature, 523, 337-341. https://doi.org/10.1038/nature14432
|
[30]
|
Aspelund, A., Antila, S., Proulx, S.T., Karlsen, T.V., Karaman, S., Detmar, M., et al. (2015) A Dural Lymphatic Vascular System That Drains Brain Interstitial Fluid and Macromolecules. Journal of Experimental Medicine, 212, 991-999. https://doi.org/10.1084/jem.20142290
|
[31]
|
de Leon, M.J., Li, Y., Okamura, N., Tsui, W.H., Saint-Louis, L.A., Glodzik, L., et al. (2017) Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic Pet. Journal of Nuclear Medicine, 58, 1471-1476. https://doi.org/10.2967/jnumed.116.187211
|
[32]
|
Nur, İ.H., Keleş, H., Ünlükal, N., Solmaz, M., Erdoğan, E. and Pérez, W. (2021) A New Definition about the Relationship of Intercellular Fluid in the Brain with the Mandibular and Parotid Lymph Nodes. Microscopy Research and Technique, 85, 220-232. https://doi.org/10.1002/jemt.23898
|
[33]
|
Absinta, M., Ha, S., Nair, G., Sati, P., Luciano, N.J., Palisoc, M., et al. (2017) Human and Nonhuman Primate Meninges Harbor Lymphatic Vessels That Can Be Visualized Noninvasively by MRI. eLife, 6, e29738. https://doi.org/10.7554/elife.29738
|
[34]
|
Yang, F., Wang, Z., Shi, W., Wang, M., Ma, R., Zhang, W., et al. (2024) Advancing Insights into in Vivo Meningeal Lymphatic Vessels with Stereoscopic Wide-Field Photoacoustic Microscopy. Light: Science & Applications, 13, Article No. 96. https://doi.org/10.1038/s41377-024-01450-0
|
[35]
|
Son, J.H., Min, J.H., Kim, I.H., Lee, S.Y. and Lee, C. (2023) The Clinical Usefulness of Ultrasonographic Measurement Technique in Patients with Lower Extremity Lymphedema. Lymphatic Research and Biology, 21, 20-27. https://doi.org/10.1089/lrb.2021.0089
|
[36]
|
Wang, R., Han, H., Shi, K., Alberts, I.L., Rominger, A., Yang, C., et al. (2021) The Alteration of Brain Interstitial Fluid Drainage with Myelination Development. Aging and disease, 12, 1729-1740. https://doi.org/10.14336/ad.2021.0305
|
[37]
|
Da Mesquita, S., Louveau, A., Vaccari, A., Smirnov, I., Cornelison, R.C., Kingsmore, K.M., et al. (2018) Functional Aspects of Meningeal Lymphatics in Ageing and Alzheimer’s Disease. Nature, 560, 185-191. https://doi.org/10.1038/s41586-018-0368-8
|
[38]
|
Zeppenfeld, D.M., Simon, M., Haswell, J.D., D’Abreo, D., Murchison, C., Quinn, J.F., et al. (2017) Association of Perivascular Localization of Aquaporin-4 with Cognition and Alzheimer Disease in Aging Brains. JAMA Neurology, 74, 91-99. https://doi.org/10.1001/jamaneurol.2016.4370
|
[39]
|
Xia, M., Yang, L., Sun, G., Qi, S. and Li, B. (2016) Mechanism of Depression as a Risk Factor in the Development of Alzheimer’s Disease: The Function of AQP4 and the Glymphatic System. Psychopharmacology, 234, 365-379. https://doi.org/10.1007/s00213-016-4473-9
|
[40]
|
Ferreira, S.T. and Klein, W.L. (2011) The Aβ Oligomer Hypothesis for Synapse Failure and Memory Loss in Alzheimer’s Disease. Neurobiology of Learning and Memory, 96, 529-543. https://doi.org/10.1016/j.nlm.2011.08.003
|
[41]
|
Iliff, J.J., Wang, M., Zeppenfeld, D.M., Venkataraman, A., Plog, B.A., Liao, Y., et al. (2013) Cerebral Arterial Pulsation Drives Paravascular CSF-Interstitial Fluid Exchange in the Murine Brain. The Journal of Neuroscience, 33, 18190-18199. https://doi.org/10.1523/jneurosci.1592-13.2013
|
[42]
|
Pollay, M. (2010) The Function and Structure of the Cerebrospinal Fluid Outflow System. Cerebrospinal Fluid Research, 7, Article No. 9. https://doi.org/10.1186/1743-8454-7-9
|
[43]
|
Damkier, H.H., Brown, P.D. and Praetorius, J. (2013) Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiological Reviews, 93, 1847-1892. https://doi.org/10.1152/physrev.00004.2013
|
[44]
|
Peng, W., Achariyar, T.M., Li, B., Liao, Y., Mestre, H., Hitomi, E., et al. (2016) Suppression of Glymphatic Fluid Transport in a Mouse Model of Alzheimer’s Disease. Neurobiology of Disease, 93, 215-225. https://doi.org/10.1016/j.nbd.2016.05.015
|
[45]
|
Zhao, Z., Sagare, A.P., Ma, Q., Halliday, M.R., Kong, P., Kisler, K., et al. (2015) Central Role for PICALM in Amyloid-Β Blood-Brain Barrier Transcytosis and Clearance. Nature Neuroscience, 18, 978-987. https://doi.org/10.1038/nn.4025
|
[46]
|
Carare, R.O., Bernardes‐Silva, M., Newman, T.A., Page, A.M., Nicoll, J.A.R., Perry, V.H., et al. (2008) Solutes, But Not Cells, Drain from the Brain Parenchyma along Basement Membranes of Capillaries and Arteries: Significance for Cerebral Amyloid Angiopathy and Neuroimmunology. Neuropathology and Applied Neurobiology, 34, 131-144. https://doi.org/10.1111/j.1365-2990.2007.00926.x
|
[47]
|
Engelhardt, B. and Ransohoff, R.M. (2012) Capture, Crawl, Cross: The T Cell Code to Breach the Blood-Brain Barriers. Trends in Immunology, 33, 579-589. https://doi.org/10.1016/j.it.2012.07.004
|
[48]
|
Santisteban, M.M., Ahn, S.J., Lane, D., Faraco, G., Garcia-Bonilla, L., Racchumi, G., et al. (2020) Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension. Hypertension, 76, 795-807. https://doi.org/10.1161/hypertensionaha.120.15581
|
[49]
|
Mihara, M., Hara, H., Kawasaki, Y., Mitsuhashi, T., Orikasa, H., Ando, H., et al. (2023) Lymphatic Venous Anastomosis and Complex Decongestive Therapy for Lymphoedema: Randomized Clinical Trial. British Journal of Surgery, 111, znad372. https://doi.org/10.1093/bjs/znad372
|
[50]
|
Garza, R.M. and Chang, D.W. (2018) Lymphovenous Bypass for the Treatment of Lymphedema. Journal of Surgical Oncology, 118, 743-749. https://doi.org/10.1002/jso.25166
|
[51]
|
Onoda, S., Satake, T. and Hamada, E. (2023) Super-microsurgery Technique for Lymphaticovenular Anastomosis. Journal of Vascular Surgery: Venous and Lymphatic DISORDERS, 11, 177-181. https://doi.org/10.1016/j.jvsv.2022.08.008
|
[52]
|
Onoda, S., Satake, T. and Kinoshita, M. (2022) Relationship between Lymphaticovenular Anastomosis Outcomes and the Number and Types of Anastomoses. Journal of Surgical Research, 269, 103-109. https://doi.org/10.1016/j.jss.2021.08.012
|
[53]
|
Alshomer, F., Jeong, H.H., Pak, C.J., Suh, H.P. and Hong, J.P. (2024) Identifying Functional Lymph Nodes in Lower Extremity Lymphedema Patients: The Role of High-Frequency Ultrasound. Journal of Reconstructive Microsurgery, 40, 527-534. https://doi.org/10.1055/a-2238-7985
|
[54]
|
Iwanaga, J., Lofton, C., He, P., Dumont, A.S. and Tubbs, R.S. (2020) Lymphatic System of the Head and Neck. Journal of Craniofacial Surgery, 32, 1901-1905. https://doi.org/10.1097/scs.0000000000007230
|
[55]
|
Yağmurlu, K., Sokolowski, J., Soldozy, S., Norat, P., Çırak, M., Tvrdik, P., et al. (2022) A Subset of Arachnoid Granulations in Humans Drain to the Venous Circulation via Intradural Lymphatic Vascular Channels. Journal of Neurosurgery, 136, 917-926. https://doi.org/10.3171/2021.2.jns204455
|
[56]
|
Shimbo, K., Kawamoto, H. and Koshima, I. (2023) Conservative Treatment versus Lymphaticovenular Anastomosis for Early-Stage Lower Extremity Lymphedema. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 11, 1231-1240. https://doi.org/10.1016/j.jvsv.2023.06.013
|
[57]
|
Ribeiro, E.B., Cobos, L.D., Rabelo, N.N., Frigeri, G. and Vale, F.A.C. (2021) Intracranial Pressure Waveform Changes in Alzheimer’s Disease and Mild Cognitive Impairment. Surgical Neurology International, 12, 172. https://doi.org/10.25259/sni_48_2021
|
[58]
|
Sun, B.L., Xia, Z.L., Wang, J.R., et al. (2006) Effects of Blockade of Cerebral Lymphatic Drainage on Regional Cerebral Blood Flow and Brain Edema after Subarachnoid Hemorrhage. Clinical Hemorheology and Microcirculation, 34, 227-232.
|
[59]
|
Tiwari, S., Atluri, V., Kaushik, A., Yndart, A. and Nair, M. (2019) Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Nanomedicine, 14, 5541-5554. https://doi.org/10.2147/ijn.s200490
|
[60]
|
Lin, Y., Su, A., Ng, S., Shen, M., Wu, Y., Chen, A., et al. (2024) Insights about Cervical Lymph Nodes: Evaluating Deep Learning–based Reconstruction for Head and Neck Computed Tomography Scan. European Journal of Radiology Open, 12, Article ID: 100534. https://doi.org/10.1016/j.ejro.2023.100534
|
[61]
|
Mohos, B., Czedik-Eysenberg, M., Steinbacher, J., Tinhofer, I., Meng, S. and Tzou, C.J. (2021) Long-term Use of Ultrasound for Locating Optimal LVA Sites: A Descriptive Data Analysis. Journal of Reconstructive Microsurgery, 38, 238-244. https://doi.org/10.1055/s-0041-1740124
|
[62]
|
Guo, X., Zhang, G., Peng, Q., Huang, L., Zhang, Z. and Zhang, Z. (2023) Emerging Roles of Meningeal Lymphatic Vessels in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 94, S355-S366. https://doi.org/10.3233/jad-221016
|
[63]
|
Soria Lopez, J.A., González, H.M. and Léger, G.C. (2019) Alzheimer’s Disease. Handbook of Clinical Neurology, 167, 231-255. https://doi.org/10.1016/b978-0-12-804766-8.00013-3
|
[64]
|
Alzheimer’s Association (2015) 2015 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 11, 332-384. https://doi.org/10.1016/j.jalz.2015.02.003
|