[1]
|
中国医师协会肾脏内科医师分会肾性贫血指南工作组. 中国肾性贫血诊治临床实践指南[J]. 中华医学杂志, 2021, 101(20): 1463-1502.
|
[2]
|
Matsushita, K., Ballew, S.H., Wang, A.Y., Kalyesubula, R., Schaeffner, E. and Agarwal, R. (2022) Epidemiology and Risk of Cardiovascular Disease in Populations with Chronic Kidney Disease. Nature Reviews Nephrology, 18, 696-707. https://doi.org/10.1038/s41581-022-00616-6
|
[3]
|
The EMPA-KIDNEY Collaborative Group (2023) Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 388, 117-127. https://doi.org/10.1056/nejmoa2204233
|
[4]
|
Cody, J.D. and Hodson, E.M. (2016) Recombinant Human Erythropoietin versus Placebo or No Treatment for the Anaemia of Chronic Kidney Disease in People Not Requiring Dialysis. Cochrane Database of Systematic Reviews, No. 1, CD003266. https://doi.org/10.1002/14651858.cd003266.pub3
|
[5]
|
Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446. https://doi.org/10.1056/nejmoa2024816
|
[6]
|
Wright, E.M., Loo, D.D.F. and Hirayama, B.A. (2011) Biology of Human Sodium Glucose Transporters. Physiological Reviews, 91, 733-794. https://doi.org/10.1152/physrev.00055.2009
|
[7]
|
Chen, J., Williams, S., Ho, S., Loraine, H., Hagan, D., Whaley, J.M., et al. (2010) Quantitative PCR Tissue Expression Profiling of the Human SGLT2 Gene and Related Family Members. Diabetes Therapy, 1, 57-92. https://doi.org/10.1007/s13300-010-0006-4
|
[8]
|
Rieg, T., Masuda, T., Gerasimova, M., Mayoux, E., Platt, K., Powell, D.R., et al. (2014) Increase in SGLT1-Mediated Transport Explains Renal Glucose Reabsorption during Genetic and Pharmacological SGLT2 Inhibition in Euglycemia. American Journal of Physiology-Renal Physiology, 306, F188-F193. https://doi.org/10.1152/ajprenal.00518.2013
|
[9]
|
Hummel, C.S., Lu, C., Loo, D.D.F., Hirayama, B.A., Voss, A.A. and Wright, E.M. (2011) Glucose Transport by Human Renal Na+/D-Glucose Cotransporters SGLT1 and SGLT2. American Journal of Physiology-Cell Physiology, 300, C14-C21. https://doi.org/10.1152/ajpcell.00388.2010
|
[10]
|
Sano, M. and Goto, S. (2019) Possible Mechanism of Hematocrit Elevation by Sodium Glucose Cotransporter 2 Inhibitors and Associated Beneficial Renal and Cardiovascular Effects. Circulation, 139, 1985-1987. https://doi.org/10.1161/circulationaha.118.038881
|
[11]
|
Brady, J.A. and Hallow, K.M. (2017) Model‐Based Evaluation of Proximal Sodium Reabsorption through SGLT2 in Health and Diabetes and the Effect of Inhibition with Canagliflozin. The Journal of Clinical Pharmacology, 58, 377-385. https://doi.org/10.1002/jcph.1030
|
[12]
|
Packer, M. (2023) Mechanisms of Enhanced Renal and Hepatic Erythropoietin Synthesis by Sodium-Glucose Cotransporter 2 Inhibitors. European Heart Journal, 44, 5027-5035. https://doi.org/10.1093/eurheartj/ehad235
|
[13]
|
Packer, M. (2022) Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation, 146, 1383-1405. https://doi.org/10.1161/circulationaha.122.061732
|
[14]
|
Uribarri, J., del Castillo, M.D., de la Maza, M.P., Filip, R., Gugliucci, A., Luevano-Contreras, C., et al. (2015) Dietary Advanced Glycation End Products and Their Role in Health and Disease. Advances in Nutrition, 6, 461-473. https://doi.org/10.3945/an.115.008433
|
[15]
|
Fishbane, S. and Coyne, D.W. (2020) How I Treat Renal Anemia. Blood, 136, 783-789. https://doi.org/10.1182/blood.2019004330
|
[16]
|
Hasegawa, T., Zhao, J., Fuller, D.S., Bieber, B., Zee, J., Morgenstern, H., et al. (2017) Erythropoietin Hyporesponsiveness in Dialysis Patients: Possible Role of Statins. American Journal of Nephrology, 46, 11-17. https://doi.org/10.1159/000477217
|
[17]
|
Sui, Z., Wang, M. and Zuo, L. (2019) Statin Therapy and Erythropoiesis-Stimulating Agent Hyporesponsiveness in Patients with Nondialysis Chronic Kidney Disease: A Retrospective Study in Beijing, China. Medicine, 98, e13981. https://doi.org/10.1097/md.0000000000013981
|
[18]
|
O’Hara, D.V., Lam, C.S.P., McMurray, J.J.V., Yi, T.W., Hocking, S., Dawson, J., et al. (2024) Applications of SGLT2 Inhibitors Beyond Glycaemic Control. Nature Reviews Nephrology, 20, 513-529. https://doi.org/10.1038/s41581-024-00836-y
|
[19]
|
李嘉慧, 王建平. 钠-葡萄糖协同转运蛋白2抑制剂与糖尿病大血管病变氧化应激的关系研究进展[J]. 中华糖尿病杂志, 2021, 13(1): 98-102.
|
[20]
|
Abdollahi, E., Keyhanfar, F., Delbandi, A., Falak, R., Hajimiresmaiel, S.J. and Shafiei, M. (2022) Dapagliflozin Exerts Anti-Inflammatory Effects via Inhibition of LPS-Induced TLR-4 Overexpression and NF-κB Activation in Human Endothelial Cells and Differentiated Macrophages. European Journal of Pharmacology, 918, Article 174715. https://doi.org/10.1016/j.ejphar.2021.174715
|
[21]
|
Niu, Y., Zhang, Y., Zhang, W., Lu, J., Chen, Y., Hao, W., et al. (2022) Canagliflozin Ameliorates NLRP3 Inflammasome-Mediated Inflammation through Inhibiting NF-κB Signaling and Upregulating BIF-1. Frontiers in Pharmacology, 13, Article 820541. https://doi.org/10.3389/fphar.2022.820541
|
[22]
|
Skrabic, R., Kumric, M., Vrdoljak, J., Rusic, D., Skrabic, I., Vilovic, M., et al. (2022) SGLT2 Inhibitors in Chronic Kidney Disease: From Mechanisms to Clinical Practice. Biomedicines, 10, Article 2458. https://doi.org/10.3390/biomedicines10102458
|
[23]
|
Androutsakos, T., Nasiri-Ansari, N., Bakasis, A., Kyrou, I., Efstathopoulos, E., Randeva, H.S., et al. (2022) SGLT-2 Inhibitors in NAFLD: Expanding Their Role Beyond Diabetes and Cardioprotection. International Journal of Molecular Sciences, 23, Article 3107. https://doi.org/10.3390/ijms23063107
|
[24]
|
Youm, Y., Nguyen, K.Y., Grant, R.W., Goldberg, E.L., Bodogai, M., Kim, D., et al. (2015) The Ketone Metabolite β-Hydroxybutyrate Blocks NLRP3 Inflammasome-Mediated Inflammatory Disease. Nature Medicine, 21, 263-269. https://doi.org/10.1038/nm.3804
|
[25]
|
Swanson, K.V., Deng, M. and Ting, J.P.-Y. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. https://doi.org/10.1038/s41577-019-0165-0
|
[26]
|
Lee, N., Heo, Y.J., Choi, S., Jeon, J.Y., Han, S.J., Kim, D.J., et al. (2021) Anti-Inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. Journal of Immunology Research, 2021, Article ID: 9944880. https://doi.org/10.1155/2021/9944880
|
[27]
|
杨钧岚, 邢婕, 韦致远(综述), 张晓良(审校). 铁调素及相关干预药物的研究进展[J]. 肾脏病与透析肾移植杂志, 2024, 33(1): 71-75.
|
[28]
|
Smith, C.L., Arvedson, T.L., Cooke, K.S., Dickmann, L.J., Forte, C., Li, H., et al. (2013) IL-22 Regulates Iron Availability in vivo through the Induction of Hepcidin. The Journal of Immunology, 191, 1845-1855. https://doi.org/10.4049/jimmunol.1202716
|
[29]
|
Marques, O., Horvat, N., Zechner, L., Colucci, S., Sparla, R., Zimmermann, S., et al. (2024) Inflammation-Driven NFκB Signaling Represses Ferroportin Transcription in Macrophages via HDAC 1 and 3. Blood, 144, 9. https://doi.org/10.1182/blood-2024-210131
|
[30]
|
Ali, R.B., Ahmed, M.H., Ibrahim, H.K., et al. (2022) Tracking Hepcidin Level in Induced Type 2 Diabetic Rats and How Empagliflozin Affects Its Level. Journal of Population Therapeutics and Clinical Pharmacology, 29, e158-e166.
|
[31]
|
Packer, M. (2023) Mechanistic and Clinical Comparison of the Erythropoietic Effects of SGLT2 Inhibitors and Prolyl Hydroxylase Inhibitors in Patients with Chronic Kidney Disease and Renal Anemia. American Journal of Nephrology, 55, 255-259. https://doi.org/10.1159/000531084
|
[32]
|
Koury, M.J. and Haase, V.H. (2015) Anaemia in Kidney Disease: Harnessing Hypoxia Responses for Therapy. Nature Reviews Nephrology, 11, 394-410. https://doi.org/10.1038/nrneph.2015.82
|
[33]
|
Bessho, R., Takiyama, Y., Takiyama, T., Kitsunai, H., Takeda, Y., Sakagami, H., et al. (2019) Hypoxia-Inducible Factor-1α Is the Therapeutic Target of the SGLT2 Inhibitor for Diabetic Nephropathy. Scientific Reports, 9, Article No. 14754. https://doi.org/10.1038/s41598-019-51343-1
|
[34]
|
Cai, T., Ke, Q., Fang, Y., Wen, P., Chen, H., Yuan, Q., et al. (2020) Sodium-Glucose Cotransporter 2 Inhibition Suppresses HIF-1α-Mediated Metabolic Switch from Lipid Oxidation to Glycolysis in Kidney Tubule Cells of Diabetic Mice. Cell Death & Disease, 11, Article No. 390. https://doi.org/10.1038/s41419-020-2544-7
|
[35]
|
Huang, X., Guo, X., Yan, G., Zhang, Y., Yao, Y., Qiao, Y., et al. (2022) Dapagliflozin Attenuates Contrast-Induced Acute Kidney Injury by Regulating the HIF-1α/HE4/ NF-κB Pathway. Journal of Cardiovascular Pharmacology, 79, 904-913. https://doi.org/10.1097/fjc.0000000000001268
|
[36]
|
Chang, D., Li, X., Chen, M. and Zhao, M. (2021) Dapagliflozin Ameliorates Diabetic Kidney Disease via Upregulating Crry and Alleviating Complement Over-Activation in db/db Mice. Frontiers in Pharmacology, 12, Article 729334. https://doi.org/10.3389/fphar.2021.729334
|
[37]
|
Chen, R., Xu, M., Hogg, R.T., Li, J., Little, B., Gerard, R.D., et al. (2012) The Acetylase/Deacetylase Couple CREB-Binding Protein/Sirtuin 1 Controls Hypoxia-Inducible Factor 2 Signaling. Journal of Biological Chemistry, 287, 30800-30811. https://doi.org/10.1074/jbc.m111.244780
|
[38]
|
Yang, Z., Li, T., Xian, J., Chen, J., Huang, Y., Zhang, Q., et al. (2022) SGLT2 Inhibitor Dapagliflozin Attenuates Cardiac Fibrosis and Inflammation by Reverting the HIF‐2α Signaling Pathway in Arrhythmogenic Cardiomyopathy. The FASEB Journal, 36, e22410. https://doi.org/10.1096/fj.202200243r
|
[39]
|
Koshino, A., Heerspink, H.J.L., Jongs, N., Badve, S.V., Arnott, C., Neal, B., et al. (2024) Canagliflozin and Iron Metabolism in the CREDENCE Trial. Nephrology Dialysis Transplantation, gfae198. https://doi.org/10.1093/ndt/gfae198
|
[40]
|
Koshino, A., Schechter, M., Chertow, G.M., Vart, P., Jongs, N., Toto, R.D., et al. (2023) Dapagliflozin and Anemia in Patients with Chronic Kidney Disease. NEJM Evidence, 2. https://doi.org/10.1056/evidoa2300049
|
[41]
|
Hu, J., Shao, S., Tsai, D.H., Chuang, A.T., Liu, K. and Lai, E.C. (2024) Use of SGLT2 Inhibitors vs GLP-1 Ras and Anemia in Patients with Diabetes and CKD. JAMA Network Open, 7, e240946. https://doi.org/10.1001/jamanetworkopen.2024.0946
|
[42]
|
Murashima, M., Tanaka, T., Kasugai, T., Tomonari, T., Ide, A., Ono, M., et al. (2021) Sodium-Glucose Cotransporter 2 Inhibitors and Anemia among Diabetes Patients in Real Clinical Practice. Journal of Diabetes Investigation, 13, 638-646. https://doi.org/10.1111/jdi.13717
|
[43]
|
中国研究型医院学会肾脏病学专业委员会. 罗沙司他治疗肾性贫血中国专家共识[J]. 中华医学杂志, 2022, 102(24): 1802-1810.
|
[44]
|
Zuk, A., Si, Z., Loi, S., Bommegowda, S., Hoivik, D., Danthi, S., et al. (2022) Preclinical Characterization of Vadadustat (AKB-6548), an Oral Small Molecule Hypoxia-Inducible Factor Prolyl-4-Hydroxylase Inhibitor, for the Potential Treatment of Renal Anemia. The Journal of Pharmacology and Experimental Therapeutics, 383, 11-24. https://doi.org/10.1124/jpet.122.001126
|
[45]
|
Chertow, G.M., Pergola, P.E., Farag, Y.M.K., Agarwal, R., Arnold, S., Bako, G., et al. (2021) Vadadustat in Patients with Anemia and Non-Dialysis-Dependent CKD. New England Journal of Medicine, 384, 1589-1600. https://doi.org/10.1056/nejmoa2035938
|