SGLT2抑制剂在CKD贫血中的治疗进展
Treatment Progress of SGLT2 Inhibitors in Anemia of CKD
摘要: 贫血是CKD患者的重要并发症,传统治疗依赖EPO、铁剂、HIF-PHI,但存在疗效局限性及副作用。SGLT2is因其肾脏保护作用备受关注,近年研究发现其对CKD贫血具有潜在改善作用,本文综述SGLT2is改善贫血的机制、临床证据及未来研究方向。
Abstract: Anemia is an important complication in patients with CKD, traditional treatment relies on EPO, iron and HIF-PHI, but has limited efficacy and side effects. SGLT2is has attracted much attention due to its renal protective effect. Recent studies have found that SGLT2is has a potential effect on improving anemia in CKD. This article reviews the mechanism, clinical evidence, and future research directions of SGLT2is in improving anemia.
文章引用:张润智, 解徳琼. SGLT2抑制剂在CKD贫血中的治疗进展[J]. 临床医学进展, 2025, 15(4): 671-677. https://doi.org/10.12677/acm.2025.154981

1. 引言

慢性肾脏病(Chronic kidney disease, CKD)是全球范围内日益严重的公共卫生问题,贫血是CKD患者严重的并发症之一,是其发生心血管事件及死亡的独立危险因素,主要由促红细胞生成素(Erythropoietin, EPO)生成不足及活性降低、铁代谢紊乱、营养不良、红细胞寿命缩短、炎症反应、慢性失血等多个机制共同作用[1]。我国成年人群中CKD患病率约为10.8%,约50%合并贫血,随肾功能进展,贫血的发病率逐渐上升,纠正CKD贫血可延缓肾脏病进展、减少心血管事件及死亡风险[1] [2]。CKD贫血传统治疗方法主要包括EPO、低氧诱导因子–脯氨酰羟化酶抑制剂(Hypoxia inducible factor prolyl hydroxylase inhibitor, HIF-PHI)、铁剂等[1],但可能带来铁过载、心血管事件,部分患者存在低反应性等,CKD贫血治疗存在一定困难,迫切需要一种新的治疗手段在不增加心血管事件风险同时有效纠正贫血、延缓CKD进展。钠–葡萄糖共转运蛋白2抑制剂(Sodium-glucose cotransporter 2 inhibitors, SGLT2is)是一种新型降糖药物,通过减少肾小管对葡萄糖的重吸收从而降低血糖。近年来,越来越多的证据证实SGLT2is具有心肾保护作用[3]-[5],同时还可能通过多途径改善CKD贫血,为CKD贫血治疗带来了新希望,本文将从其可能作用机制、临床研究证据、未来展望等方面进行综述,以期为CKD贫血治疗提供新的治疗思路。

2. SGLT2与SGLT2is

体内负责葡萄糖的转运蛋白分为葡萄糖转运蛋白(glucose transporter, GLUT)和钠–葡萄糖转运蛋白(Sodium-glucose transporter, SGLT)。SGLT1在小肠、骨骼肌、心脏、肾脏等部位均有分布,具有低容量、高亲和力的特点,以2:1的比例转运Na+和葡萄糖,SGLT2主要分布在S1和S2段,具有低亲和力、高容量的特点,以1:1的比例转运Na+和葡萄糖入基底细胞,然后经基底侧的葡萄糖转运蛋白2 (glucose transporter 2, GLUT2)将葡萄糖交换至组织间隙,正常生理条件下,SGLT2介导约97%葡萄糖在肾脏重吸收,剩下的3%则由SGLT1介导[6]-[9]。SGLT2is通过抑制SGLT2在肾脏处的表达减少肾小管对葡萄糖的重吸收,降低葡萄糖的肾阈值,从而增加尿糖排泄、降低血糖水平。目前上市的SGLT2is主要包括:达格列净(dapagliflozin)、卡格列净(canagliflozin)、恩格列净(empagliflozin)、托格列净(toagliflozin)、鲁格列净(lugliflozin)、伊格列净(igagliflozin)、埃格列净(eragliflozin)等。

3. SGLT2is改善CKD贫血的机制

3.1. 促进EPO生成

EPO是由肾皮质肾小管周围间质细胞和肝脏分泌的一种激素样物质,能够促进红细胞生成,CKD患者由于肾间质纤维化,导致肾脏产生EPO减少,加重贫血。CKD患者存在肾素–血管紧张素–醛固酮系统(Renin-angiotensin-aldosterone system, RAAS)过度激活,增加近端小管钠的重吸收,致使近端小管线粒体的氧气消耗增加,肾皮质的组织氧分压下降,研究发现,肾近端小管水平的缺氧可能导致生成EPO的成纤维细胞转化为肌成纤维细胞,从而失去产生EPO的能力[10]。SGLT2is通过抑制肾近端小管的钠–葡萄糖重吸收[11],致使流经致密斑处的Na+浓度升高,通过管球反馈使入球小动脉收缩,从而降低肾小球内压,改善其高滤过状态,抑制RASS系统的激活[11],同时降低肾小管细胞Na+-K+-ATP酶活性,缓解近端小管中的缺氧状态,可能会在一定程度上允许肌成纤维细胞逆转为成纤维细胞,增加EPO的生成[10] [12]。SGLT2is还可促进肝脏沉默信息调节因子-1 (sirtuin-1, SIRT1)表达上调[13],促进肝脏中过氧化物酶体增殖物激活受体-γ共激活因子-1α (peroxisome proliferator-activated receptor-1α, PGC-1α)与肝细胞核因子4 (hepatocyte nuclear factor 4, HNF4)结合,形成PGC-1α-HNF4复合体,从而促进EPO基因的转录和EPO的合成[12]

3.2. 减轻炎症及氧化应激

CKD患者合并大量尿毒症毒素如晚期糖基化终末产物(advanced glycation end products, AGEs)蓄积,AGEs与其受体结合,通过还原性辅酶II氧化酶增加活性氧(reactive oxygen species, ROS),进一步激活核转录因子(nuclear factor-kappa B, NF-κB)通路,诱导氧化应激(oxidative stress, OS)和炎症,引起大量炎症因子,如白介素-1 (interleukin 1, IL-1)、白介素-6 (interleukin 6, IL-6)、白介素-8 (interleukin 8, IL-8)、肿瘤坏死因子α (tumor necrosis factor-α, TNF-α)等的释放,进而通过抑制EPO生成、抑制骨髓红系增生、增加红细胞吞噬及肝脏分泌铁调素(hepcidin)增加等多种途径促进贫血[14] [15]

研究发现[16] [17],改善CKD患者炎症状态,可以增加EPO反应性,减少EPO抵抗对CKD贫血治疗的影响,从而改善肾性贫血。高血糖可引起体内ROS水平的增加及AGEs蓄积,SGLT2is通过抑制葡萄糖在肾近端小管处的重吸收,增加尿糖排泄,从而降低血糖,减少高血糖引发的线粒体功能障碍及AGEs生成,从而抑制NFκB通路激活[18] [19]。SGLT2is还可下调人内皮细胞和巨噬细胞中的toll样受体4 (toll-like receptor 4, TLR4)表达,减少NF-κB活化,从而降低IL-6、IL-8等炎症因子水平,改善CKD患者炎症状态[20] [21]。同时,SGLT2is可以通过减少Na+内流,防止Ca2+过载,从而减少ROS产生,减轻氧化应激,SGLT2is降低了促炎介质细胞间黏附分子1 (intercellular adhesion molecule 1, ICAM1)和单核细胞趋化蛋白1 (monocyte chemoattractant protein 1, MCP1)的水平,促进酮体生成,进而阻断NLPR3 (nod-like receptor protein3)炎性小体以减少促炎因子释放[22]-[25]。不同的SGLT2is减轻炎症和氧化应激的机制可能存在差距,动物研究发现,恩格列净、达格列净主要通过抑制NFκB通路激活抑制炎症因子表达,而卡格列净主要通过降低己糖激酶II (Hexokinase II,HKII)和阻断细胞外信号调节激酶(extracellular regulated protein kinases, ERK)磷酸化来减少促炎细胞因子[26]

3.3. 调节铁代谢

铁参与人体内细胞增殖、免疫、营养代谢等多种基本功能,分为功能铁和贮存铁,是合成血红蛋白必要原料物质,铁缺乏及代谢障碍是导致肾脏疾病合并贫血的重要因素,而铁过载可催化自由基产生、氧化应激、抑制免疫功能等,维持铁稳态与维持机体健康密切相关。人体缺乏大量排泄铁的途径,铁调素是铁代谢的关键负向调节激素,主要由肝脏合成、分泌,通过调节肠道、巨噬细胞及肝细胞中铁的转运蛋白直接影响铁的吸收和释放,从而影响体内铁的平衡,铁过载、炎症等均可促进肝脏铁调素的表达,缺氧、EPO的生成则可抑制铁调素生成[27]。CKD患者处于慢性炎症状态,体内铁调素水平异常升高、铁代谢异常,进而出现难治性贫血。炎症主要通过IL-6刺激Janus激酶–信号转导及转录激活因子3 (Janus kinase-Signal transducer and activator of transcription 3, JAK-STAT3)通路,使活化的STAT3与细胞核内的铁调素基因(hepcidin antimicrobial peptide, HAMP)启动子结合,促进铁调素合成[28],从而调节体内铁代谢。SGLT2is可以通过抑制NFκB通路激活减少IL-6水平,从而抑制JAK-STAT3通路,降低肝脏合成铁调素,增强十二指肠对铁的吸收,以及巨噬细胞和肝细胞的铁的释放[18] [28] [29]。在动物实验中,恩格列净处理后的小鼠铁调素水平明显下降[30]

3.4. 调节低氧诱导因子(Hypoxia Inducible Factor, HIF)通路

HIF是机体适应氧稳态失衡的核心调节因子,是由α亚基(HIF-α)和β亚基(HIF-β)组成的二聚复合体转录因子,包括HIF-1α、HIF-2α、HIF-3α、HIF-1β,其中HIF-2α可以抑制炎症发生,主要参与机体内EPO合成及铁代谢过程调节,可以促进肝脏和肾脏合成EPO,促进铁的吸收和利用,从而抑制肝脏分泌合成铁调素,而HIF-1α的长期上调可能促进炎症发生,加速心脏和肾脏损伤的进展[31] [32]。研究发现,SGLT2is可以减少HIF-1α的表达[33]-[36],上调SIRT1表达,有选择地激活HIF-2α [13] [37] [38]

4. 临床研究证据

4.1. CREDENCE研究

CREDENCE是一项随机、双盲、安慰剂对照的试验,纳入来自34个国家共4401名参与者,主要研究卡格列净对糖尿病肾病患者预后的影响,在对CREDENCE研究的事后分析中发现[39],经过52周卡格列净治疗后,与安慰剂组相比,卡格列净组致使总铁结合力(total iron binding capacity, TIBC)显著升高2.1%,铁蛋白(ferritin)下降11.5%,血清铁及转铁蛋白饱和度(transferrin saturation, TSAT)没有明显影响,无论是否合并缺铁,卡格列净均可升高红细胞比容,这提示卡格列净除了显著降低肾脏和心血管事件风险,还可以改善铁代谢,增加血红蛋白水平,改善CKD贫血。然而,该试验仅在随机治疗后52周测量总铁结合力、铁蛋白、转铁蛋白饱和度等指标,并未进行早期测量,也并未纳入其他(如超敏C反应蛋白、叶酸、维生素B12等)与炎症和红细胞生成相关的实验室指标,SGLT2is是否能在更早期对铁代谢进行调节或通过其他作用途径改善贫血需进一步验证。

4.2. DAPA-CKD研究

DAPA-CKD是一项国际多中心、随机、双盲、安慰剂对照临床试验,旨在评估达格列净在CKD患者中的疗效和安全性,共纳入4303名参与者。在对DAPA-CKD研究的事后分析中[40],4303名参与者中有4292名(99.7%)具有基线红细胞比容数据,将其随机分配为达格列净组和安慰剂组;研究将贫血定义为男性血细胞比容 < 39%,女性血细胞比容 < 36%,其中1716名(40%)合并基线贫血(达格列净组、安慰剂组合并基线贫血均为858名),2576名未合并基线贫血(达格列净组1289名,安慰剂组858名);在进行2.4年的中位随访后,在基线贫血患者中,达格列净组血细胞亚积、血红蛋白水平更高,与安慰组相比,达格列净组血细胞比容增加了3.0%或更高,在基线无贫血的患者中,达格列净组中10.4%出现突发性贫血,而安慰剂组为23.7%,这提示达格列净可以降低CKD患者贫血发生率,改善CKD贫血。然而,该研究仅采用血细胞比容阈值来定义贫血,而红细胞比容检测结果受到多种生理、病理及检测技术因素的影响,该研究并未结合连续的血红蛋白浓度、转铁蛋白饱和度、铁蛋白水平、EPO或铁调素等相关实验室指标进一步评估,可能会对实验结果产生一定影响。

4.3. 其他研究

一项纳入13,799名参与者的队列研究[41]发现,在2.5年的中位随访期后,与接受胰高血糖素样肽-1受体激动剂(glucagon-like peptide-1 receptor agonists, GLP-1 Ras)的患者相比,接受SGLT2is的患者复合性贫血结果的发病率较低,SGLT2is可以降低突发性贫血事件的发病率。一项纳入2063名患者的回顾性研究[42]发现,在晚期CKD患者中使用SGLT2is与较高的血红蛋白有关,且SGLT2is的使用会降低贫血的发病率。

5. 未来研究方向

SGLT2is改善CKD贫血具有多靶点特征,其中包括对HIF通路的调节,脯氨酰羟化酶(prolyl hydroxylase domain, PHD)是HIF的主要氧感应信号,HIF-PHI可以通过抑制PHD活性稳定HIF的表达,促进EPO及EPO受体表达、增加肠道对铁的吸收、下调铁调素水平[43],其部分选择性地抑制HIF-1α和HIF-2α的降解[44],其中HIF-1α水平升高则可能是HIF-PHI出现心血管事件风险原因之一[45]。SGLT2is可以减少HIF-1α的表达,有选择地激活HIF-2α,联合SGLT2is与HIF-PHI治疗是否可以在不增加患者心血管事件风险同时更为有效纠正贫血、延缓CKD进展,提高CKD患者生活质量,两者的联合治疗具有重要研究价值。

6. 结论

充分纠正CKD贫血,可以提高CKD患者的生活质量、降低心血管事件风险及死亡率、改善长期预后,是CKD患者管理中不可或缺的一部分,SGLT2is可以延缓CKD进展及减少心血管风险,同时,其可能通过改善肾脏缺氧、减轻炎症、调节铁代谢、促进EPO合成、调节HIF通路等多方面改善CKD贫血,但尚需更多的临床研究直接验证,且其目前在肾脏替代治疗的终末期肾脏病(end-stage renal disease, ESRD)人群中的安全性尚未得到有效研究,未来需关注其在ESRD人群中的应用,并探索联合治疗方案,以实现CKD贫血的精准治疗。

NOTES

*通讯作者。

参考文献

[1] 中国医师协会肾脏内科医师分会肾性贫血指南工作组. 中国肾性贫血诊治临床实践指南[J]. 中华医学杂志, 2021, 101(20): 1463-1502.
[2] Matsushita, K., Ballew, S.H., Wang, A.Y., Kalyesubula, R., Schaeffner, E. and Agarwal, R. (2022) Epidemiology and Risk of Cardiovascular Disease in Populations with Chronic Kidney Disease. Nature Reviews Nephrology, 18, 696-707.
https://doi.org/10.1038/s41581-022-00616-6
[3] The EMPA-KIDNEY Collaborative Group (2023) Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 388, 117-127.
https://doi.org/10.1056/nejmoa2204233
[4] Cody, J.D. and Hodson, E.M. (2016) Recombinant Human Erythropoietin versus Placebo or No Treatment for the Anaemia of Chronic Kidney Disease in People Not Requiring Dialysis. Cochrane Database of Systematic Reviews, No. 1, CD003266.
https://doi.org/10.1002/14651858.cd003266.pub3
[5] Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/nejmoa2024816
[6] Wright, E.M., Loo, D.D.F. and Hirayama, B.A. (2011) Biology of Human Sodium Glucose Transporters. Physiological Reviews, 91, 733-794.
https://doi.org/10.1152/physrev.00055.2009
[7] Chen, J., Williams, S., Ho, S., Loraine, H., Hagan, D., Whaley, J.M., et al. (2010) Quantitative PCR Tissue Expression Profiling of the Human SGLT2 Gene and Related Family Members. Diabetes Therapy, 1, 57-92.
https://doi.org/10.1007/s13300-010-0006-4
[8] Rieg, T., Masuda, T., Gerasimova, M., Mayoux, E., Platt, K., Powell, D.R., et al. (2014) Increase in SGLT1-Mediated Transport Explains Renal Glucose Reabsorption during Genetic and Pharmacological SGLT2 Inhibition in Euglycemia. American Journal of Physiology-Renal Physiology, 306, F188-F193.
https://doi.org/10.1152/ajprenal.00518.2013
[9] Hummel, C.S., Lu, C., Loo, D.D.F., Hirayama, B.A., Voss, A.A. and Wright, E.M. (2011) Glucose Transport by Human Renal Na+/D-Glucose Cotransporters SGLT1 and SGLT2. American Journal of Physiology-Cell Physiology, 300, C14-C21.
https://doi.org/10.1152/ajpcell.00388.2010
[10] Sano, M. and Goto, S. (2019) Possible Mechanism of Hematocrit Elevation by Sodium Glucose Cotransporter 2 Inhibitors and Associated Beneficial Renal and Cardiovascular Effects. Circulation, 139, 1985-1987.
https://doi.org/10.1161/circulationaha.118.038881
[11] Brady, J.A. and Hallow, K.M. (2017) Model‐Based Evaluation of Proximal Sodium Reabsorption through SGLT2 in Health and Diabetes and the Effect of Inhibition with Canagliflozin. The Journal of Clinical Pharmacology, 58, 377-385.
https://doi.org/10.1002/jcph.1030
[12] Packer, M. (2023) Mechanisms of Enhanced Renal and Hepatic Erythropoietin Synthesis by Sodium-Glucose Cotransporter 2 Inhibitors. European Heart Journal, 44, 5027-5035.
https://doi.org/10.1093/eurheartj/ehad235
[13] Packer, M. (2022) Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation, 146, 1383-1405.
https://doi.org/10.1161/circulationaha.122.061732
[14] Uribarri, J., del Castillo, M.D., de la Maza, M.P., Filip, R., Gugliucci, A., Luevano-Contreras, C., et al. (2015) Dietary Advanced Glycation End Products and Their Role in Health and Disease. Advances in Nutrition, 6, 461-473.
https://doi.org/10.3945/an.115.008433
[15] Fishbane, S. and Coyne, D.W. (2020) How I Treat Renal Anemia. Blood, 136, 783-789.
https://doi.org/10.1182/blood.2019004330
[16] Hasegawa, T., Zhao, J., Fuller, D.S., Bieber, B., Zee, J., Morgenstern, H., et al. (2017) Erythropoietin Hyporesponsiveness in Dialysis Patients: Possible Role of Statins. American Journal of Nephrology, 46, 11-17.
https://doi.org/10.1159/000477217
[17] Sui, Z., Wang, M. and Zuo, L. (2019) Statin Therapy and Erythropoiesis-Stimulating Agent Hyporesponsiveness in Patients with Nondialysis Chronic Kidney Disease: A Retrospective Study in Beijing, China. Medicine, 98, e13981.
https://doi.org/10.1097/md.0000000000013981
[18] O’Hara, D.V., Lam, C.S.P., McMurray, J.J.V., Yi, T.W., Hocking, S., Dawson, J., et al. (2024) Applications of SGLT2 Inhibitors Beyond Glycaemic Control. Nature Reviews Nephrology, 20, 513-529.
https://doi.org/10.1038/s41581-024-00836-y
[19] 李嘉慧, 王建平. 钠-葡萄糖协同转运蛋白2抑制剂与糖尿病大血管病变氧化应激的关系研究进展[J]. 中华糖尿病杂志, 2021, 13(1): 98-102.
[20] Abdollahi, E., Keyhanfar, F., Delbandi, A., Falak, R., Hajimiresmaiel, S.J. and Shafiei, M. (2022) Dapagliflozin Exerts Anti-Inflammatory Effects via Inhibition of LPS-Induced TLR-4 Overexpression and NF-κB Activation in Human Endothelial Cells and Differentiated Macrophages. European Journal of Pharmacology, 918, Article 174715.
https://doi.org/10.1016/j.ejphar.2021.174715
[21] Niu, Y., Zhang, Y., Zhang, W., Lu, J., Chen, Y., Hao, W., et al. (2022) Canagliflozin Ameliorates NLRP3 Inflammasome-Mediated Inflammation through Inhibiting NF-κB Signaling and Upregulating BIF-1. Frontiers in Pharmacology, 13, Article 820541.
https://doi.org/10.3389/fphar.2022.820541
[22] Skrabic, R., Kumric, M., Vrdoljak, J., Rusic, D., Skrabic, I., Vilovic, M., et al. (2022) SGLT2 Inhibitors in Chronic Kidney Disease: From Mechanisms to Clinical Practice. Biomedicines, 10, Article 2458.
https://doi.org/10.3390/biomedicines10102458
[23] Androutsakos, T., Nasiri-Ansari, N., Bakasis, A., Kyrou, I., Efstathopoulos, E., Randeva, H.S., et al. (2022) SGLT-2 Inhibitors in NAFLD: Expanding Their Role Beyond Diabetes and Cardioprotection. International Journal of Molecular Sciences, 23, Article 3107.
https://doi.org/10.3390/ijms23063107
[24] Youm, Y., Nguyen, K.Y., Grant, R.W., Goldberg, E.L., Bodogai, M., Kim, D., et al. (2015) The Ketone Metabolite β-Hydroxybutyrate Blocks NLRP3 Inflammasome-Mediated Inflammatory Disease. Nature Medicine, 21, 263-269.
https://doi.org/10.1038/nm.3804
[25] Swanson, K.V., Deng, M. and Ting, J.P.-Y. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489.
https://doi.org/10.1038/s41577-019-0165-0
[26] Lee, N., Heo, Y.J., Choi, S., Jeon, J.Y., Han, S.J., Kim, D.J., et al. (2021) Anti-Inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. Journal of Immunology Research, 2021, Article ID: 9944880.
https://doi.org/10.1155/2021/9944880
[27] 杨钧岚, 邢婕, 韦致远(综述), 张晓良(审校). 铁调素及相关干预药物的研究进展[J]. 肾脏病与透析肾移植杂志, 2024, 33(1): 71-75.
[28] Smith, C.L., Arvedson, T.L., Cooke, K.S., Dickmann, L.J., Forte, C., Li, H., et al. (2013) IL-22 Regulates Iron Availability in vivo through the Induction of Hepcidin. The Journal of Immunology, 191, 1845-1855.
https://doi.org/10.4049/jimmunol.1202716
[29] Marques, O., Horvat, N., Zechner, L., Colucci, S., Sparla, R., Zimmermann, S., et al. (2024) Inflammation-Driven NFκB Signaling Represses Ferroportin Transcription in Macrophages via HDAC 1 and 3. Blood, 144, 9.
https://doi.org/10.1182/blood-2024-210131
[30] Ali, R.B., Ahmed, M.H., Ibrahim, H.K., et al. (2022) Tracking Hepcidin Level in Induced Type 2 Diabetic Rats and How Empagliflozin Affects Its Level. Journal of Population Therapeutics and Clinical Pharmacology, 29, e158-e166.
[31] Packer, M. (2023) Mechanistic and Clinical Comparison of the Erythropoietic Effects of SGLT2 Inhibitors and Prolyl Hydroxylase Inhibitors in Patients with Chronic Kidney Disease and Renal Anemia. American Journal of Nephrology, 55, 255-259.
https://doi.org/10.1159/000531084
[32] Koury, M.J. and Haase, V.H. (2015) Anaemia in Kidney Disease: Harnessing Hypoxia Responses for Therapy. Nature Reviews Nephrology, 11, 394-410.
https://doi.org/10.1038/nrneph.2015.82
[33] Bessho, R., Takiyama, Y., Takiyama, T., Kitsunai, H., Takeda, Y., Sakagami, H., et al. (2019) Hypoxia-Inducible Factor-1α Is the Therapeutic Target of the SGLT2 Inhibitor for Diabetic Nephropathy. Scientific Reports, 9, Article No. 14754.
https://doi.org/10.1038/s41598-019-51343-1
[34] Cai, T., Ke, Q., Fang, Y., Wen, P., Chen, H., Yuan, Q., et al. (2020) Sodium-Glucose Cotransporter 2 Inhibition Suppresses HIF-1α-Mediated Metabolic Switch from Lipid Oxidation to Glycolysis in Kidney Tubule Cells of Diabetic Mice. Cell Death & Disease, 11, Article No. 390.
https://doi.org/10.1038/s41419-020-2544-7
[35] Huang, X., Guo, X., Yan, G., Zhang, Y., Yao, Y., Qiao, Y., et al. (2022) Dapagliflozin Attenuates Contrast-Induced Acute Kidney Injury by Regulating the HIF-1α/HE4/ NF-κB Pathway. Journal of Cardiovascular Pharmacology, 79, 904-913.
https://doi.org/10.1097/fjc.0000000000001268
[36] Chang, D., Li, X., Chen, M. and Zhao, M. (2021) Dapagliflozin Ameliorates Diabetic Kidney Disease via Upregulating Crry and Alleviating Complement Over-Activation in db/db Mice. Frontiers in Pharmacology, 12, Article 729334.
https://doi.org/10.3389/fphar.2021.729334
[37] Chen, R., Xu, M., Hogg, R.T., Li, J., Little, B., Gerard, R.D., et al. (2012) The Acetylase/Deacetylase Couple CREB-Binding Protein/Sirtuin 1 Controls Hypoxia-Inducible Factor 2 Signaling. Journal of Biological Chemistry, 287, 30800-30811.
https://doi.org/10.1074/jbc.m111.244780
[38] Yang, Z., Li, T., Xian, J., Chen, J., Huang, Y., Zhang, Q., et al. (2022) SGLT2 Inhibitor Dapagliflozin Attenuates Cardiac Fibrosis and Inflammation by Reverting the HIF‐2α Signaling Pathway in Arrhythmogenic Cardiomyopathy. The FASEB Journal, 36, e22410.
https://doi.org/10.1096/fj.202200243r
[39] Koshino, A., Heerspink, H.J.L., Jongs, N., Badve, S.V., Arnott, C., Neal, B., et al. (2024) Canagliflozin and Iron Metabolism in the CREDENCE Trial. Nephrology Dialysis Transplantation, gfae198.
https://doi.org/10.1093/ndt/gfae198
[40] Koshino, A., Schechter, M., Chertow, G.M., Vart, P., Jongs, N., Toto, R.D., et al. (2023) Dapagliflozin and Anemia in Patients with Chronic Kidney Disease. NEJM Evidence, 2.
https://doi.org/10.1056/evidoa2300049
[41] Hu, J., Shao, S., Tsai, D.H., Chuang, A.T., Liu, K. and Lai, E.C. (2024) Use of SGLT2 Inhibitors vs GLP-1 Ras and Anemia in Patients with Diabetes and CKD. JAMA Network Open, 7, e240946.
https://doi.org/10.1001/jamanetworkopen.2024.0946
[42] Murashima, M., Tanaka, T., Kasugai, T., Tomonari, T., Ide, A., Ono, M., et al. (2021) Sodium-Glucose Cotransporter 2 Inhibitors and Anemia among Diabetes Patients in Real Clinical Practice. Journal of Diabetes Investigation, 13, 638-646.
https://doi.org/10.1111/jdi.13717
[43] 中国研究型医院学会肾脏病学专业委员会. 罗沙司他治疗肾性贫血中国专家共识[J]. 中华医学杂志, 2022, 102(24): 1802-1810.
[44] Zuk, A., Si, Z., Loi, S., Bommegowda, S., Hoivik, D., Danthi, S., et al. (2022) Preclinical Characterization of Vadadustat (AKB-6548), an Oral Small Molecule Hypoxia-Inducible Factor Prolyl-4-Hydroxylase Inhibitor, for the Potential Treatment of Renal Anemia. The Journal of Pharmacology and Experimental Therapeutics, 383, 11-24.
https://doi.org/10.1124/jpet.122.001126
[45] Chertow, G.M., Pergola, P.E., Farag, Y.M.K., Agarwal, R., Arnold, S., Bako, G., et al. (2021) Vadadustat in Patients with Anemia and Non-Dialysis-Dependent CKD. New England Journal of Medicine, 384, 1589-1600.
https://doi.org/10.1056/nejmoa2035938