[1]
|
Varricchi, G., Pecoraro, A., Marone, G., Criscuolo, G., Spadaro, G., Genovese, A., et al. (2018) Thymic Stromal Lymphopoietin Isoforms, Inflammatory Disorders, and Cancer. Frontiers in Immunology, 9, Article 1595. https://doi.org/10.3389/fimmu.2018.01595
|
[2]
|
Zhong, J., Sharma, J., Raju, R., Palapetta, S.M., Prasad, T.S.K., Huang, T., et al. (2014) TSLP Signaling Pathway Map: A Platform for Analysis of TSLP-Mediated Signaling. Database, 2014, bau007. https://doi.org/10.1093/database/bau007
|
[3]
|
Hasegawa, T., Oka, T. and Demehri, S. (2022) Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Frontiers in Immunology, 13, Article 876515. https://doi.org/10.3389/fimmu.2022.876515
|
[4]
|
Pimpalwar, N., Celik, S., Karbalaei Sadegh, M., Czuba, T., Gidlöf, O. and Smith, J.G. (2024) Analysis of Genetic Variant Associated with Heart Failure Mortality Implicates Thymic Stromal Lymphopoietin as Mediator of Strain‐Induced Myocardial Fibroblast‐Mast Cell Crosstalk and Fibrosis. The FASEB Journal, 38, e23510. https://doi.org/10.1096/fj.202302000rr
|
[5]
|
Peng, Y., Meng, K., Jiang, L., Zhong, Y., Yang, Y., Lan, Y., et al. (2017) Thymic Stromal Lymphopoietin-Induced HOTAIR Activation Promotes Endothelial Cell Proliferation and Migration in Atherosclerosis. Bioscience Reports, 37, BSR20170351. https://doi.org/10.1042/bsr20170351
|
[6]
|
Smith, J.G., Felix, J.F., Morrison, A.C., Kalogeropoulos, A., Trompet, S., Wilk, J.B., et al. (2016) Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure. PLOS Genetics, 12, e1006034. https://doi.org/10.1371/journal.pgen.1006034
|
[7]
|
Matera, M.G., Rogliani, P., Calzetta, L. and Cazzola, M. (2020) TSLP Inhibitors for Asthma: Current Status and Future Prospects. Drugs, 80, 449-458. https://doi.org/10.1007/s40265-020-01273-4
|
[8]
|
Smolinska, S., Antolín-Amérigo, D., Popescu, F. and Jutel, M. (2023) Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. International Journal of Molecular Sciences, 24, Article 12725. https://doi.org/10.3390/ijms241612725
|
[9]
|
Wang, S. and Zuo, Y. (2021) Thymic Stromal Lymphopoietin in Cutaneous Immune-Mediated Diseases. Frontiers in Immunology, 12, Article 698522. https://doi.org/10.3389/fimmu.2021.698522
|
[10]
|
Gandolfo, S., Bulfoni, M., Fabro, C., Russi, S., Sansonno, D., Di Loreto, C., et al. (2019) Thymic Stromal Lymphopoietin Expression from Benign Lymphoproliferation to Malignant B-Cell Lymphoma in Primary Sjögren’s Syndrome. Clinical and Experimental Rheumatology, 37, 55-64.
|
[11]
|
Fornasa, G., Tsilingiri, K., Caprioli, F., Botti, F., Mapelli, M., Meller, S., et al. (2015) Dichotomy of Short and Long Thymic Stromal Lymphopoietin Isoforms in Inflammatory Disorders of the Bowel and Skin. Journal of Allergy and Clinical Immunology, 136, 413-422. https://doi.org/10.1016/j.jaci.2015.04.011
|
[12]
|
Rochman, Y., Kashyap, M., Robinson, G.W., Sakamoto, K., Gomez-Rodriguez, J., Wagner, K., et al. (2010) Thymic Stromal Lymphopoietin-Mediated STAT5 Phosphorylation via Kinases JAK1 and JAK2 Reveals a Key Difference from Il-7-Induced Signaling. Proceedings of the National Academy of Sciences of the United States of America, 107, 19455-19460. https://doi.org/10.1073/pnas.1008271107
|
[13]
|
Arima, K., Watanabe, N., Hanabuchi, S., Chang, M., Sun, S. and Liu, Y. (2010) Distinct Signal Codes Generate Dendritic Cell Functional Plasticity. Science Signaling, 3, ra4. https://doi.org/10.1126/scisignal.2000567
|
[14]
|
Kabata, H., Moro, K. and Koyasu, S. (2018) The Group 2 Innate Lymphoid Cell (ILC2) Regulatory Network and Its Underlying Mechanisms. Immunological Reviews, 286, 37-52. https://doi.org/10.1111/imr.12706
|
[15]
|
Bjerkan, L., Sonesson, A. and Schenck, K. (2016) Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP). Pharmaceuticals, 9, Article 41. https://doi.org/10.3390/ph9030041
|
[16]
|
Wolf, D. and Ley, K. (2019) Immunity and Inflammation in Atherosclerosis. Circulation Research, 124, 315-327. https://doi.org/10.1161/circresaha.118.313591
|
[17]
|
Zhao, H., Li, M., Wang, L., Su, Y., Fang, H., Lin, J., et al. (2012) Angiotensin II Induces TSLP via an AT1 Receptor/NF-κB Pathway, Promoting Th17 Differentiation. Cellular Physiology and Biochemistry, 30, 1383-1397. https://doi.org/10.1159/000343327
|
[18]
|
Lin, J., Chang, W., Dong, J., Zhang, F., Mohabeer, N., Kushwaha, K.K., et al. (2013) Thymic Stromal Lymphopoietin Over-Expressed in Human Atherosclerosis: Potential Role in Th17 Differentiation. Cellular Physiology and Biochemistry, 31, 305-318. https://doi.org/10.1159/000343369
|
[19]
|
Wu, C., He, S., Peng, Y., Kushwaha, K.K., Lin, J., Dong, J., et al. (2014) TSLPR Deficiency Attenuates Atherosclerotic Lesion Development Associated with the Inhibition of TH17 Cells and the Promotion of Regulator T Cells in ApoE-Deficient Mice. Journal of Molecular and Cellular Cardiology, 76, 33-45. https://doi.org/10.1016/j.yjmcc.2014.07.003
|
[20]
|
Yu, K., Zhu, P., Dong, Q., Zhong, Y., Zhu, Z., Lin, Y., et al. (2013) Thymic Stromal Lymphopoietin Attenuates the Development of Atherosclerosis in ApoE−/− Mice. Journal of the American Heart Association, 2, e000391. https://doi.org/10.1161/jaha.113.000391
|
[21]
|
Fioranelli, M., Bottaccioli, A.G., Bottaccioli, F., Bianchi, M., Rovesti, M. and Roccia, M.G. (2018) Stress and Inflammation in Coronary Artery Disease: A Review Psychoneuroendocrineimmunology-Based. Frontiers in Immunology, 9, Article 2031. https://doi.org/10.3389/fimmu.2018.02031
|
[22]
|
Bentzon, J.F., Otsuka, F., Virmani, R. and Falk, E. (2014) Mechanisms of Plaque Formation and Rupture. Circulation Research, 114, 1852-1866. https://doi.org/10.1161/circresaha.114.302721
|
[23]
|
Wang, B., Peng, Y., Dong, J., Lin, J., Wu, C., Su, Y., et al. (2013) Human Platelets Express Functional Thymic Stromal Lymphopoietin Receptors: A Potential Role in Platelet Activation in Acute Coronary Syndrome. Cellular Physiology and Biochemistry, 32, 1741-1750. https://doi.org/10.1159/000356608
|
[24]
|
Ai, H. (2022) GSEA-SDBE: A Gene Selection Method for Breast Cancer Classification Based on GSEA and Analyzing Differences in Performance Metrics. PLOS ONE, 17, e0263171. https://doi.org/10.1371/journal.pone.0263171
|
[25]
|
Liu, D., Guo, M., Zhou, P., Xiao, J. and Ji, X. (2019) TSLP Promote M2 Macrophages Polarization and Cardiac Healing after Myocardial Infarction. Biochemical and Biophysical Research Communications, 516, 437-444. https://doi.org/10.1016/j.bbrc.2019.06.041
|
[26]
|
Goswami, I., Coutermarsh-Ott, S., Morrison, R.G., Allen, I.C., Davalos, R.V., Verbridge, S.S., et al. (2017) Irreversible Electroporation Inhibits Pro-Cancer Inflammatory Signaling in Triple Negative Breast Cancer Cells. Bioelectrochemistry, 113, 42-50. https://doi.org/10.1016/j.bioelechem.2016.09.003
|
[27]
|
Hofmann, U., Beyersdorf, N., Weirather, J., Podolskaya, A., Bauersachs, J., Ertl, G., et al. (2012) Activation of CD4+ T Lymphocytes Improves Wound Healing and Survival after Experimental Myocardial Infarction in Mice. Circulation, 125, 1652-1663. https://doi.org/10.1161/circulationaha.111.044164
|
[28]
|
Gladow, N., Hollmann, C., Weirather, J., Ding, X., Burkard, M., Uehlein, S., et al. (2024) Role of CD4+ T-Cells for Regulating Splenic Myelopoiesis and Monocyte Differentiation after Experimental Myocardial Infarction. Basic Research in Cardiology, 119, 261-275. https://doi.org/10.1007/s00395-024-01035-3
|
[29]
|
Wang, X., Zheng, Q., Zha, L., Zhang, L., Huang, M., Zhang, S., et al. (2024) Thymic Stromal Lymphopoietin Modulates T Cell Response and Improves Cardiac Repair Post-Myocardial Infarction. Frontiers in Immunology, 15, Article 1467095. https://doi.org/10.3389/fimmu.2024.1467095
|
[30]
|
López, B., Ravassa, S., Moreno, M.U., José, G.S., Beaumont, J., González, A., et al. (2021) Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nature Reviews Cardiology, 18, 479-498. https://doi.org/10.1038/s41569-020-00504-1
|
[31]
|
Qin, W., Cao, L. and Massey, I.Y. (2021) Role of PI3K/Akt Signaling Pathway in Cardiac Fibrosis. Molecular and Cellular Biochemistry, 476, 4045-4059. https://doi.org/10.1007/s11010-021-04219-w
|
[32]
|
Goumans, M. and ten Dijke, P. (2017) TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harbor Perspectives in Biology, 10, a022210. https://doi.org/10.1101/cshperspect.a022210
|
[33]
|
Oh, M., Oh, S.Y., Yu, J., Myers, A.C., Leonard, W.J., Liu, Y.J., et al. (2011) IL-13 Induces Skin Fibrosis in Atopic Dermatitis by Thymic Stromal Lymphopoietin. The Journal of Immunology, 186, 7232-7242. https://doi.org/10.4049/jimmunol.1100504
|
[34]
|
Hoeft, K., Schaefer, G.J.L., Kim, H., Schumacher, D., Bleckwehl, T., Long, Q., et al. (2023) Platelet-Instructed SPP1+ Macrophages Drive Myofibroblast Activation in Fibrosis in a CXCL4-Dependent Manner. Cell Reports, 42, Article ID: 112131. https://doi.org/10.1016/j.celrep.2023.112131
|
[35]
|
Gergely, T.G., Drobni, Z.D., Kallikourdis, M., Zhu, H., Meijers, W.C., Neilan, T.G., et al. (2024) Immune Checkpoints in Cardiac Physiology and Pathology: Therapeutic Targets for Heart Failure. Nature Reviews Cardiology, 21, 443-462. https://doi.org/10.1038/s41569-023-00986-9
|
[36]
|
Liu, Y., Soumelis, V., Watanabe, N., Ito, T., Wang, Y., de Waal Malefyt, R., et al. (2007) TSLP: An Epithelial Cell Cytokine That Regulates T Cell Differentiation by Conditioning Dendritic Cell Maturation. Annual Review of Immunology, 25, 193-219. https://doi.org/10.1146/annurev.immunol.25.022106.141718
|
[37]
|
Bansal, S.S., Ismahil, M.A., Goel, M., Zhou, G., Rokosh, G., Hamid, T., et al. (2019) Dysfunctional and Proinflammatory Regulatory T-Lymphocytes Are Essential for Adverse Cardiac Remodeling in Ischemic Cardiomyopathy. Circulation, 139, 206-221. https://doi.org/10.1161/circulationaha.118.036065
|
[38]
|
Zhang, Z., Zhao, L., Zhou, X., Meng, X. and Zhou, X. (2023) Role of Inflammation, Immunity, and Oxidative Stress in Hypertension: New Insights and Potential Therapeutic Targets. Frontiers in Immunology, 13, Article 1098725. https://doi.org/10.3389/fimmu.2022.1098725
|
[39]
|
Kaur, D., Doe, C., Woodman, L., Heidi Wan, W., Sutcliffe, A., Hollins, F., et al. (2012) Mast Cell-Airway Smooth Muscle Crosstalk. Chest, 142, 76-85. https://doi.org/10.1378/chest.11-1782
|
[40]
|
Redhu, N.S., Shan, L., Movassagh, H. and Gounni, A.S. (2013) Thymic Stromal Lymphopoietin Induces Migration in Human Airway Smooth Muscle Cells. Scientific Reports, 3, Article No. 2301. https://doi.org/10.1038/srep02301
|
[41]
|
Yeung, J., Li, W. and Holinstat, M. (2018) Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacological Reviews, 70, 526-548. https://doi.org/10.1124/pr.117.014530
|
[42]
|
Khodadi, E. (2019) Platelet Function in Cardiovascular Disease: Activation of Molecules and Activation by Molecules. Cardiovascular Toxicology, 20, 1-10. https://doi.org/10.1007/s12012-019-09555-4
|
[43]
|
Storey, R. and Thomas, M. (2015) The Role of Platelets in Inflammation. Thrombosis and Haemostasis, 114, 449-458. https://doi.org/10.1160/th14-12-1067
|
[44]
|
Dong, J., Lin, J., Wang, B., He, S., Wu, C., Kushwaha, K.K., et al. (2015) Inflammatory Cytokine TSLP Stimulates Platelet Secretion and Potentiates Platelet Aggregation via a TSLPR-dependent PI3K/Akt Signaling Pathway. Cellular Physiology and Biochemistry, 35, 160-174. https://doi.org/10.1159/000369684
|
[45]
|
Mao, Y., Peng, Y., Zeng, Q., Cheng, L., Wang, B., Mao, X., et al. (2015) A Potential Mechanism of High-Dose Ticagrelor in Modulating Platelet Activity and Atherosclerosis Mediated by Thymic Stromal Lymphopoietin Receptor. PLOS ONE, 10, e0141464. https://doi.org/10.1371/journal.pone.0141464
|
[46]
|
Fu, L., MacKeigan, D.T., Gong, Q., Che, D., Xu, Y., Pi, L., et al. (2022) Thymic Stromal Lymphopoietin Induces Platelet Mitophagy and Promotes Thrombosis in Kawasaki Disease. British Journal of Haematology, 200, 776-791. https://doi.org/10.1111/bjh.18531
|