|
[1]
|
Varricchi, G., Pecoraro, A., Marone, G., Criscuolo, G., Spadaro, G., Genovese, A., et al. (2018) Thymic Stromal Lymphopoietin Isoforms, Inflammatory Disorders, and Cancer. Frontiers in Immunology, 9, Article 1595. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhong, J., Sharma, J., Raju, R., Palapetta, S.M., Prasad, T.S.K., Huang, T., et al. (2014) TSLP Signaling Pathway Map: A Platform for Analysis of TSLP-Mediated Signaling. Database, 2014, bau007. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hasegawa, T., Oka, T. and Demehri, S. (2022) Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Frontiers in Immunology, 13, Article 876515. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pimpalwar, N., Celik, S., Karbalaei Sadegh, M., Czuba, T., Gidlöf, O. and Smith, J.G. (2024) Analysis of Genetic Variant Associated with Heart Failure Mortality Implicates Thymic Stromal Lymphopoietin as Mediator of Strain‐Induced Myocardial Fibroblast‐Mast Cell Crosstalk and Fibrosis. The FASEB Journal, 38, e23510. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Peng, Y., Meng, K., Jiang, L., Zhong, Y., Yang, Y., Lan, Y., et al. (2017) Thymic Stromal Lymphopoietin-Induced HOTAIR Activation Promotes Endothelial Cell Proliferation and Migration in Atherosclerosis. Bioscience Reports, 37, BSR20170351. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Smith, J.G., Felix, J.F., Morrison, A.C., Kalogeropoulos, A., Trompet, S., Wilk, J.B., et al. (2016) Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure. PLOS Genetics, 12, e1006034. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Matera, M.G., Rogliani, P., Calzetta, L. and Cazzola, M. (2020) TSLP Inhibitors for Asthma: Current Status and Future Prospects. Drugs, 80, 449-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Smolinska, S., Antolín-Amérigo, D., Popescu, F. and Jutel, M. (2023) Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. International Journal of Molecular Sciences, 24, Article 12725. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, S. and Zuo, Y. (2021) Thymic Stromal Lymphopoietin in Cutaneous Immune-Mediated Diseases. Frontiers in Immunology, 12, Article 698522. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gandolfo, S., Bulfoni, M., Fabro, C., Russi, S., Sansonno, D., Di Loreto, C., et al. (2019) Thymic Stromal Lymphopoietin Expression from Benign Lymphoproliferation to Malignant B-Cell Lymphoma in Primary Sjögren’s Syndrome. Clinical and Experimental Rheumatology, 37, 55-64.
|
|
[11]
|
Fornasa, G., Tsilingiri, K., Caprioli, F., Botti, F., Mapelli, M., Meller, S., et al. (2015) Dichotomy of Short and Long Thymic Stromal Lymphopoietin Isoforms in Inflammatory Disorders of the Bowel and Skin. Journal of Allergy and Clinical Immunology, 136, 413-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rochman, Y., Kashyap, M., Robinson, G.W., Sakamoto, K., Gomez-Rodriguez, J., Wagner, K., et al. (2010) Thymic Stromal Lymphopoietin-Mediated STAT5 Phosphorylation via Kinases JAK1 and JAK2 Reveals a Key Difference from Il-7-Induced Signaling. Proceedings of the National Academy of Sciences of the United States of America, 107, 19455-19460. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Arima, K., Watanabe, N., Hanabuchi, S., Chang, M., Sun, S. and Liu, Y. (2010) Distinct Signal Codes Generate Dendritic Cell Functional Plasticity. Science Signaling, 3, ra4. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kabata, H., Moro, K. and Koyasu, S. (2018) The Group 2 Innate Lymphoid Cell (ILC2) Regulatory Network and Its Underlying Mechanisms. Immunological Reviews, 286, 37-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bjerkan, L., Sonesson, A. and Schenck, K. (2016) Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP). Pharmaceuticals, 9, Article 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wolf, D. and Ley, K. (2019) Immunity and Inflammation in Atherosclerosis. Circulation Research, 124, 315-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhao, H., Li, M., Wang, L., Su, Y., Fang, H., Lin, J., et al. (2012) Angiotensin II Induces TSLP via an AT1 Receptor/NF-κB Pathway, Promoting Th17 Differentiation. Cellular Physiology and Biochemistry, 30, 1383-1397. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lin, J., Chang, W., Dong, J., Zhang, F., Mohabeer, N., Kushwaha, K.K., et al. (2013) Thymic Stromal Lymphopoietin Over-Expressed in Human Atherosclerosis: Potential Role in Th17 Differentiation. Cellular Physiology and Biochemistry, 31, 305-318. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wu, C., He, S., Peng, Y., Kushwaha, K.K., Lin, J., Dong, J., et al. (2014) TSLPR Deficiency Attenuates Atherosclerotic Lesion Development Associated with the Inhibition of TH17 Cells and the Promotion of Regulator T Cells in ApoE-Deficient Mice. Journal of Molecular and Cellular Cardiology, 76, 33-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yu, K., Zhu, P., Dong, Q., Zhong, Y., Zhu, Z., Lin, Y., et al. (2013) Thymic Stromal Lymphopoietin Attenuates the Development of Atherosclerosis in ApoE−/− Mice. Journal of the American Heart Association, 2, e000391. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Fioranelli, M., Bottaccioli, A.G., Bottaccioli, F., Bianchi, M., Rovesti, M. and Roccia, M.G. (2018) Stress and Inflammation in Coronary Artery Disease: A Review Psychoneuroendocrineimmunology-Based. Frontiers in Immunology, 9, Article 2031. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bentzon, J.F., Otsuka, F., Virmani, R. and Falk, E. (2014) Mechanisms of Plaque Formation and Rupture. Circulation Research, 114, 1852-1866. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, B., Peng, Y., Dong, J., Lin, J., Wu, C., Su, Y., et al. (2013) Human Platelets Express Functional Thymic Stromal Lymphopoietin Receptors: A Potential Role in Platelet Activation in Acute Coronary Syndrome. Cellular Physiology and Biochemistry, 32, 1741-1750. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ai, H. (2022) GSEA-SDBE: A Gene Selection Method for Breast Cancer Classification Based on GSEA and Analyzing Differences in Performance Metrics. PLOS ONE, 17, e0263171. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, D., Guo, M., Zhou, P., Xiao, J. and Ji, X. (2019) TSLP Promote M2 Macrophages Polarization and Cardiac Healing after Myocardial Infarction. Biochemical and Biophysical Research Communications, 516, 437-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Goswami, I., Coutermarsh-Ott, S., Morrison, R.G., Allen, I.C., Davalos, R.V., Verbridge, S.S., et al. (2017) Irreversible Electroporation Inhibits Pro-Cancer Inflammatory Signaling in Triple Negative Breast Cancer Cells. Bioelectrochemistry, 113, 42-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hofmann, U., Beyersdorf, N., Weirather, J., Podolskaya, A., Bauersachs, J., Ertl, G., et al. (2012) Activation of CD4+ T Lymphocytes Improves Wound Healing and Survival after Experimental Myocardial Infarction in Mice. Circulation, 125, 1652-1663. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gladow, N., Hollmann, C., Weirather, J., Ding, X., Burkard, M., Uehlein, S., et al. (2024) Role of CD4+ T-Cells for Regulating Splenic Myelopoiesis and Monocyte Differentiation after Experimental Myocardial Infarction. Basic Research in Cardiology, 119, 261-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, X., Zheng, Q., Zha, L., Zhang, L., Huang, M., Zhang, S., et al. (2024) Thymic Stromal Lymphopoietin Modulates T Cell Response and Improves Cardiac Repair Post-Myocardial Infarction. Frontiers in Immunology, 15, Article 1467095. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
López, B., Ravassa, S., Moreno, M.U., José, G.S., Beaumont, J., González, A., et al. (2021) Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nature Reviews Cardiology, 18, 479-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Qin, W., Cao, L. and Massey, I.Y. (2021) Role of PI3K/Akt Signaling Pathway in Cardiac Fibrosis. Molecular and Cellular Biochemistry, 476, 4045-4059. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Goumans, M. and ten Dijke, P. (2017) TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harbor Perspectives in Biology, 10, a022210. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Oh, M., Oh, S.Y., Yu, J., Myers, A.C., Leonard, W.J., Liu, Y.J., et al. (2011) IL-13 Induces Skin Fibrosis in Atopic Dermatitis by Thymic Stromal Lymphopoietin. The Journal of Immunology, 186, 7232-7242. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hoeft, K., Schaefer, G.J.L., Kim, H., Schumacher, D., Bleckwehl, T., Long, Q., et al. (2023) Platelet-Instructed SPP1+ Macrophages Drive Myofibroblast Activation in Fibrosis in a CXCL4-Dependent Manner. Cell Reports, 42, Article ID: 112131. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gergely, T.G., Drobni, Z.D., Kallikourdis, M., Zhu, H., Meijers, W.C., Neilan, T.G., et al. (2024) Immune Checkpoints in Cardiac Physiology and Pathology: Therapeutic Targets for Heart Failure. Nature Reviews Cardiology, 21, 443-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, Y., Soumelis, V., Watanabe, N., Ito, T., Wang, Y., de Waal Malefyt, R., et al. (2007) TSLP: An Epithelial Cell Cytokine That Regulates T Cell Differentiation by Conditioning Dendritic Cell Maturation. Annual Review of Immunology, 25, 193-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Bansal, S.S., Ismahil, M.A., Goel, M., Zhou, G., Rokosh, G., Hamid, T., et al. (2019) Dysfunctional and Proinflammatory Regulatory T-Lymphocytes Are Essential for Adverse Cardiac Remodeling in Ischemic Cardiomyopathy. Circulation, 139, 206-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, Z., Zhao, L., Zhou, X., Meng, X. and Zhou, X. (2023) Role of Inflammation, Immunity, and Oxidative Stress in Hypertension: New Insights and Potential Therapeutic Targets. Frontiers in Immunology, 13, Article 1098725. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kaur, D., Doe, C., Woodman, L., Heidi Wan, W., Sutcliffe, A., Hollins, F., et al. (2012) Mast Cell-Airway Smooth Muscle Crosstalk. Chest, 142, 76-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Redhu, N.S., Shan, L., Movassagh, H. and Gounni, A.S. (2013) Thymic Stromal Lymphopoietin Induces Migration in Human Airway Smooth Muscle Cells. Scientific Reports, 3, Article No. 2301. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yeung, J., Li, W. and Holinstat, M. (2018) Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacological Reviews, 70, 526-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Khodadi, E. (2019) Platelet Function in Cardiovascular Disease: Activation of Molecules and Activation by Molecules. Cardiovascular Toxicology, 20, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Storey, R. and Thomas, M. (2015) The Role of Platelets in Inflammation. Thrombosis and Haemostasis, 114, 449-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Dong, J., Lin, J., Wang, B., He, S., Wu, C., Kushwaha, K.K., et al. (2015) Inflammatory Cytokine TSLP Stimulates Platelet Secretion and Potentiates Platelet Aggregation via a TSLPR-dependent PI3K/Akt Signaling Pathway. Cellular Physiology and Biochemistry, 35, 160-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Mao, Y., Peng, Y., Zeng, Q., Cheng, L., Wang, B., Mao, X., et al. (2015) A Potential Mechanism of High-Dose Ticagrelor in Modulating Platelet Activity and Atherosclerosis Mediated by Thymic Stromal Lymphopoietin Receptor. PLOS ONE, 10, e0141464. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Fu, L., MacKeigan, D.T., Gong, Q., Che, D., Xu, Y., Pi, L., et al. (2022) Thymic Stromal Lymphopoietin Induces Platelet Mitophagy and Promotes Thrombosis in Kawasaki Disease. British Journal of Haematology, 200, 776-791. [Google Scholar] [CrossRef] [PubMed]
|