|
[1]
|
Ouyang, D., Chung, Y., Liu, J., Bai, J., Zhou, Y., Chen, S., et al. (2025) Characteristics and Mechanisms of as Well as Evaluation Methods and Countermeasures for Thermal Runaway Propagation in Lithium-Ion Batteries. Progress in Energy and Combustion Science, 108, Article ID: 101209. [Google Scholar] [CrossRef]
|
|
[2]
|
Gao, P., Song, L., Jia, Z., Li, J., Sun, J., Qin, P., et al. (2025) Revealing the Contribution of Flame Spread to Vertical Thermal Runaway Propagation for Energy Storage Systems. Journal of Power Sources, 628, Article ID: 235897. [Google Scholar] [CrossRef]
|
|
[3]
|
Zuo, K., Li, Z., Liang, H., Wang, Z. and Ouyang, T. (2025) An Integrated Scheme to Prevent the Propagation of Li-Ion Battery Thermal Runaway. International Journal of Heat and Mass Transfer, 241, Article ID: 126725. [Google Scholar] [CrossRef]
|
|
[4]
|
Chen, L., Pereira, C., Pannala, S., Munjurulimana, D. and Goossens, H. (2025) Mitigation of Cylindrical Lithium Ion Battery Thermal Runaway Propagation with a Flame Retardant Polypropylene Thermal Barrier. Journal of Energy Storage, 108, Article ID: 115042. [Google Scholar] [CrossRef]
|
|
[5]
|
Mao, B., Lu, J., Zhang, Y., Chen, N., Lai, Z., Zhu, L., et al. (2025) Mitigating the Cascading Effects of Thermal Runaway and Fire Propagation in Enclosed Clusters of 18,650-Type Lithium-Ion Batteries. International Journal of Heat and Mass Transfer, 239, Article ID: 126577. [Google Scholar] [CrossRef]
|
|
[6]
|
Han, X., Li, C., Lyu, P., Li, M., Wen, C. and Rao, Z. (2025) Research on Thermal Runaway Propagation of Lithium-Ion Batteries Based on Cold Plate Cooling and Flame-Retardant Materials. Journal of Energy Storage, 110, Article ID: 115271. [Google Scholar] [CrossRef]
|
|
[7]
|
Yang, J., Tong, J., Yang, Y., Zhang, Q. and Niu, J. (2025) Characteristics of Thermal Runaway and Propagation for 18650 Lithium Batteries in Top-Confined Space. International Journal of Heat and Mass Transfer, 241, Article ID: 126663. [Google Scholar] [CrossRef]
|
|
[8]
|
Dang, Y., Yu, Y., Wang, Z., Liu, P., Zhou, X., Zhao, Y., et al. (2025) Blocking Thermal Runaway Propagation in Large-Format Sodium-Ion Battery System through Localized Energy Release. Journal of Energy Chemistry, 104, 514-526. [Google Scholar] [CrossRef]
|
|
[9]
|
Peng, R., Kong, D., Ping, P., Gao, W., Wang, G., Gong, S., et al. (2025) Experimental Investigation of the Influence of Venting Gases on Thermal Runaway Propagation in Lithium-Ion Batteries with Enclosed Packaging. eTransportation, 23, Article ID: 100388. [Google Scholar] [CrossRef]
|
|
[10]
|
Huang, Z., Duan, Q., Li, J., Yang, F., Sun, J. and Wang, Q. (2025) Experimental and Numerical Investigation of Heating Power Effect on Thermal Runaway Propagation within Large-Format Lithium Iron Phosphate Battery. Journal of Energy Storage, 109, Article ID: 115098. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhang, L., Liu, Y., Huang, X. and Huang, X. (2025) Intra-cell Thermal Runaway Propagation within a Cylindrical Battery Induced by Nail Penetration. International Journal of Thermal Sciences, 210, Article ID: 109633. [Google Scholar] [CrossRef]
|
|
[12]
|
Liu, Y., Chen, Y., Chang, Z., Wu, X., Jiang, Z. and Tang, S. (2025) Role of Porous Metal Foam on Temperature Control and Thermal Runaway Propagation of Integrated Battery Thermal Management Systems. Applied Thermal Engineering, 267, Article ID: 125712. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhang, J., Wang, Z., Jiang, T., Liu, P., Sun, Z., Shan, T., et al. (2025) Investigation of Battery Safety States Based on Thermal Propagation and Expansion Analysis: Experimental Studies on Different Packaging Forms. Applied Thermal Engineering, 258, Article ID: 124800. [Google Scholar] [CrossRef]
|
|
[14]
|
Dong, W., Xu, C., Huang, W., Peng, Y., Zhang, M., Wang, H., et al. (2025) Dynamic Simulation on the Deformation of the Battery Module under Thermal Runaway Propagation Based on Internal Pressure. Process Safety and Environmental Protection, 195, Article ID: 106733. [Google Scholar] [CrossRef]
|
|
[15]
|
Li, Z., Cheng, Z., Yu, Y., Wang, J., Wang, L., Mei, W., et al. (2025) Thermal Runaway Comparison and Assessment between Sodium-Ion and Lithium-Ion Batteries. Process Safety and Environmental Protection, 193, 842-855. [Google Scholar] [CrossRef]
|
|
[16]
|
Wang, J., Yang, J., Bai, W., Wang, Z., Yu, K., Lu, Y., et al. (2025) Thermal Runaway and Jet Flame Features of Libs Undergone High-Rate Charge/discharge: An Investigation. Journal of Energy Chemistry, 103, 826-837. [Google Scholar] [CrossRef]
|
|
[17]
|
Chen, L., Li, K., Cao, Y., Feng, X. and Wu, W. (2025) Multidimensional Signal Fusion Strategy for Battery Thermal Runaway Warning towards Multiple Application Scenarios. Applied Energy, 377, Article ID: 124512. [Google Scholar] [CrossRef]
|
|
[18]
|
Zhang, Y., Ping, P., Dai, X., Li, C., Li, Z., Zhuo, P., et al. (2025) Failure Mechanism and Thermal Runaway Behavior of Lithium-Ion Battery Induced by Arc Faults. Renewable and Sustainable Energy Reviews, 207, Article ID: 114914. [Google Scholar] [CrossRef]
|
|
[19]
|
Ping, P., Li, C., Zhang, Y., Zhuo, P., Tang, L. and Kong, D. (2025) Experimental Study on the Effect of Heating Position on Thermal Runaway Behavior of Semi-Solid Li-Ion Batteries. Journal of Energy Storage, 105, Article ID: 114701. [Google Scholar] [CrossRef]
|
|
[20]
|
Lou, Z., Huang, J., Su, Z., Zhang, D., Wei, X. and Yao, H. (2025) Effects of Ventilation Conditions on Thermal Runaway of Lithium-Ion Batteries Packs in an Energy-Storage Cabin. Process Safety and Environmental Protection, 196, Article ID: 106899. [Google Scholar] [CrossRef]
|
|
[21]
|
Cheng, Z., Min, Y., Qin, P., Zhang, Y., Li, J., Mei, W., et al. (2025) A Distributed Thermal-Pressure Coupling Model of Large-Format Lithium Iron Phosphate Battery Thermal Runaway. Applied Energy, 378, Article ID: 124875. [Google Scholar] [CrossRef]
|