|
[1]
|
Carey, J.S., Laffan, D., Thomson, C. and Williams, M.T. (2006) Analysis of the Reactions Used for the Preparation of Drug Candidate Molecules. Organic & Biomolecular Chemistry, 4, 2337-2347. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J. (1998) A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. Journal of Combinatorial Chemistry, 1, 55-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Roughley, S.D. and Jordan, A.M. (2011) The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. Journal of Medicinal Chemistry, 54, 3451-3479. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Charville, H., Jackson, D.A., Hodges, G., Whiting, A. and Wilson, M.R. (2011) The Uncatalyzed Direct Amide Formation Reaction—Mechanism Studies and the Key Role of Carboxylic Acid H‐Bonding. European Journal of Organic Chemistry, 2011, 5981-5990. [Google Scholar] [CrossRef]
|
|
[5]
|
Perreux, L., Loupy, A. and Volatron, F. (2002) Solvent-Free Preparation of Amides from Acids and Primary Amines under Microwave Irradiation. Tetrahedron, 58, 2155-2162. [Google Scholar] [CrossRef]
|
|
[6]
|
Lanigan, R.M. and Sheppard, T.D. (2013) Recent Developments in Amide Synthesis: Direct Amidation of Carboxylic Acids and Transamidation Reactions. European Journal of Organic Chemistry, 2013, 7453-7465. [Google Scholar] [CrossRef]
|
|
[7]
|
Lanigan, R.M. and Sheppard, T.D. (2013) Recent Developments in Amide Synthesis: Direct Amidation of Carboxylic Acids and Transamidation Reactions. European Journal of Organic Chemistry, 2013, 7453-7465. [Google Scholar] [CrossRef]
|
|
[8]
|
Han, S. and Kim, Y. (2004) Recent Development of Peptide Coupling Reagents in Organic Synthesis. Tetrahedron, 60, 2447-2467. [Google Scholar] [CrossRef]
|
|
[9]
|
El-Faham, A. and Albericio, F. (2011) Peptide Coupling Reagents, More than a Letter Soup. Chemical Reviews, 111, 6557-6602. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dunetz, J.R., Magano, J. and Weisenburger, G.A. (2016) Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Organic Process Research & Development, 20, 140-177. [Google Scholar] [CrossRef]
|
|
[11]
|
Valeur, E. and Bradley, M. (2009) Amide Bond Formation: Beyond the Myth of Coupling Reagents. Chemical Society Reviews, 38, 606-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Montalbetti, C.A.G.N. and Falque, V. (2005) Amide Bond Formation and Peptide Coupling. Tetrahedron, 61, 10827-10852. [Google Scholar] [CrossRef]
|
|
[13]
|
de Figueiredo, R.M., Suppo, J. and Campagne, J. (2016) Nonclassical Routes for Amide Bond Formation. Chemical Reviews, 116, 12029-12122. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chandrudu, S., Simerska, P. and Toth, I. (2013) Chemical Methods for Peptide and Protein Production. Molecules, 18, 4373-4388. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Constable, D.J.C., Dunn, P.J., Hayler, J.D., Humphrey, G.R., Leazer, Jr., J.L., Linderman, R.J., et al. (2007) Key Green Chemistry Research Areas—A Perspective from Pharmaceutical Manufacturers. Green Chem., 9, 411-420. [Google Scholar] [CrossRef]
|
|
[16]
|
Zuo, Z., Ahneman, D.T., Chu, L., Terrett, J.A., Doyle, A.G. and MacMillan, D.W.C. (2014) Merging Photoredox with Nickel Catalysis: Coupling of α-Carboxyl Sp3-Carbons with Aryl Halides. Science, 345, 437-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zuo, Z., Cong, H., Li, W., Choi, J., Fu, G.C. and MacMillan, D.W.C. (2016) Enantioselective Decarboxylative Arylation of Α-Amino Acids via the Merger of Photoredox and Nickel Catalysis. Journal of the American Chemical Society, 138, 1832-1835. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, G., Zhou, S., Fu, L., Chen, P., Li, Y., Zou, J., et al. (2020) Asymmetric Coupling of Carbon‐Centered Radicals Adjacent to Nitrogen: Copper‐catalyzed Cyanation and Etherification of Enamides. Angewandte Chemie International Edition, 59, 20439-20444. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ji, C., Zhai, X., Fang, Q., Zhu, C., Han, J. and Xie, J. (2023) Photoinduced Activation of Alkyl Chlorides. Chemical Society Reviews, 52, 6120-6138. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fairbanks, B.D., Macdougall, L.J., Mavila, S., Sinha, J., Kirkpatrick, B.E., Anseth, K.S., et al. (2021) Photoclick Chemistry: A Bright Idea. Chemical Reviews, 121, 6915-6990. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Romero, N.A. and Nicewicz, D.A. (2016) Organic Photoredox Catalysis. Chemical Reviews, 116, 10075-10166. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, J. and Rueping, M. (2023) Metallaphotoredox Catalysis for Sp3 C-H Functionalizations through Hydrogen Atom Transfer (HAT). Chemical Society Reviews, 52, 4099-4120. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chen, C. and Hong, S.H. (2011) Oxidative Amide Synthesis Directly from Alcohols with Amines. Organic & Biomolecular Chemistry, 9, 20-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dobereiner, G.E. and Crabtree, R.H. (2009) Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis. Chemical Reviews, 110, 681-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, Y., Chen, C., Ghosh, S.C., Li, Y. and Hong, S.H. (2010) Well-Defined N-Heterocyclic Carbene Based Ruthenium Catalysts for Direct Amide Synthesis from Alcohols and Amines. Organometallics, 29, 1374-1378. [Google Scholar] [CrossRef]
|
|
[26]
|
Fujita, K., Takahashi, Y., Owaki, M., Yamamoto, K. and Yamaguchi, R. (2004) Synthesis of Five-, Six-, and Seven-Membered Ring Lactams by Cp*Rh Complex-Catalyzed Oxidative N-Heterocyclization of Amino Alcohols. Organic Letters, 6, 2785-2788. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ghosh, S.C. and Hong, S.H. (2010) Simple RuCl3‐Catalyzed Amide Synthesis from Alcohols and Amines. European Journal of Organic Chemistry, 2010, 4266-4270. [Google Scholar] [CrossRef]
|
|
[28]
|
Chen, C. and Hong, S.H. (2012) Selective Catalytic Sp3 C-O Bond Cleavage with C-N Bond Formation in 3-Alkoxy-1-Propanols. Organic Letters, 14, 2992-2995. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Watson, A.J.A., Wakeham, R.J., Maxwell, A.C. and Williams, J.M.J. (2014) Ruthenium-Catalysed Oxidation of Alcohols to Amides Using a Hydrogen Acceptor. Tetrahedron, 70, 3683-3690. [Google Scholar] [CrossRef]
|
|
[30]
|
Schley, N.D., Dobereiner, G.E. and Crabtree, R.H. (2011) Oxidative Synthesis of Amides and Pyrroles via Dehydrogenative Alcohol Oxidation by Ruthenium Diphosphine Diamine Complexes. Organometallics, 30, 4174-4179. [Google Scholar] [CrossRef]
|
|
[31]
|
Mielby, J., Riisager, A., Fristrup, P. and Kegnæs, S. (2013) Mechanistic Investigation of the One-Pot Formation of Amides by Oxidative Coupling of Alcohols with Amines in Methanol. Catalysis Today, 203, 211-216. [Google Scholar] [CrossRef]
|
|
[32]
|
Srimani, D., Balaraman, E., Hu, P., Ben‐David, Y. and Milstein, D. (2013) Formation of Tertiary Amides and Dihydrogen by Dehydrogenative Coupling of Primary Alcohols with Secondary Amines Catalyzed by Ruthenium Bipyridine‐based Pincer Complexes. Advanced Synthesis & Catalysis, 355, 2525-2530. [Google Scholar] [CrossRef]
|
|
[33]
|
Gunanathan, C., Ben-David, Y. and Milstein, D. (2007) Direct Synthesis of Amides from Alcohols and Amines with Liberation of H 2. Science, 317, 790-792. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Muthaiah, S., Ghosh, S.C., Jee, J., Chen, C., Zhang, J. and Hong, S.H. (2010) Direct Amide Synthesis from Either Alcohols or Aldehydes with Amines: Activity of Ru(II) Hydride and Ru(0) Complexes. The Journal of Organic Chemistry, 75, 3002-3006. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zweifel, T., Naubron, J. and Grützmacher, H. (2008) Catalyzed Dehydrogenative Coupling of Primary Alcohols with Water, Methanol, or Amines. Angewandte Chemie International Edition, 48, 559-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ghosh, S.C., Ngiam, J.S.Y., Seayad, A.M., Tuan, D.T., Johannes, C.W. and Chen, A. (2013) Tandem Oxidative Amidation of Benzyl Alcohols with Amine Hydrochloride Salts Catalysed by Iron Nitrate. Tetrahedron Letters, 54, 4922-4925. [Google Scholar] [CrossRef]
|
|
[37]
|
Zultanski, S.L., Zhao, J. and Stahl, S.S. (2016) Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines. Journal of the American Chemical Society, 138, 6416-6419. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wu, Z. and Hull, K.L. (2016) Rhodium-catalyzed Oxidative Amidation of Allylic Alcohols and Aldehydes: Effective Conversion of Amines and Anilines into Amides. Chemical Science, 7, 969-975. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kumar Achar, T. and Mal, P. (2015) Transformation of Contact‐Explosives Primary Amines and Iodine(III) into a Successful Chemical Reaction under Solvent‐Free Ball Milling Conditions. Advanced Synthesis & Catalysis, 357, 3977-3985. [Google Scholar] [CrossRef]
|
|
[40]
|
Ishihara, K. and Yano, T. (2004) Synthesis of Carboxamides by LDA-Catalyzed Haller-Bauer and Cannizzaro Reactions. Organic Letters, 6, 1983-1986. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mamaghani, M., Shirini, F., Sheykhan, M. and Mohsenimehr, M. (2015) Synthesis of a Copper(II) Complex Covalently Anchoring a (2-Iminomethyl)phenol Moiety Supported on HAp-Encapsulated-α-Fe2O3 as an Inorganic-Organic Hybrid Magnetic Nanocatalyst for the Synthesis of Primary and Secondary Amides. RSC Advances, 5, 44524-44529. [Google Scholar] [CrossRef]
|
|
[42]
|
Achar, T.K. and Mal, P. (2014) Radical-Induced Metal and Solvent-Free Cross-Coupling Using TBAI-TBHP: Oxidative Amidation of Aldehydes and Alcohols with n-Chloramines via C-H Activation. The Journal of Organic Chemistry, 80, 666-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
De Sarkar, S. and Studer, A. (2010) Oxidative Amidation and Azidation of Aldehydes by NHC Catalysis. Organic Letters, 12, 1992-1995. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Vora, H.U. and Rovis, T. (2007) Nucleophilic Carbene and Hoat Relay Catalysis in an Amide Bond Coupling: An Orthogonal Peptide Bond Forming Reaction. Journal of the American Chemical Society, 129, 13796-13797. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Whittaker, A.M. and Dong, V.M. (2014) Nickel‐Catalyzed Dehydrogenative Cross‐Coupling: Direct Transformation of Aldehydes into Esters and Amides. Angewandte Chemie International Edition, 54, 1312-1315. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bode, J.W. and Sohn, S.S. (2007) N-heterocyclic Carbene-Catalyzed Redox Amidations of α-Functionalized Aldehydes with Amines. Journal of the American Chemical Society, 129, 13798-13799. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Alanthadka, A. and Maheswari, C.U. (2015) N‐Heterocyclic Carbene‐Catalyzed Oxidative Amidation of Aldehydes with Amines. Advanced Synthesis & Catalysis, 357, 1199-1203. [Google Scholar] [CrossRef]
|
|
[48]
|
Seo, S. and Marks, T.J. (2007) Mild Amidation of Aldehydes with Amines Mediated by Lanthanide Catalysts. Organic Letters, 10, 317-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ekoue-Kovi, K. and Wolf, C. (2007) Metal-Free One-Pot Oxidative Amination of Aldehydes to Amides. Organic Letters, 9, 3429-3432. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ghosh, S.C., Ngiam, J.S.Y., Chai, C.L.L., Seayad, A.M., Dang, T.T. and Chen, A. (2012) Iron‐Catalyzed Efficient Synthesis of Amides from Aldehydes and Amine Hydrochloride Salts. Advanced Synthesis & Catalysis, 354, 1407-1412. [Google Scholar] [CrossRef]
|
|
[51]
|
Yoo, W. and Li, C. (2006) Highly Efficient Oxidative Amidation of Aldehydes with Amine Hydrochloride Salts. Journal of the American Chemical Society, 128, 13064-13065. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Qian, C., Zhang, X., Zhang, Y. and Shen, Q. (2010) Heterobimetallic Complexes of Lanthanide and Lithium Metals with Dianionic Guanidinate Ligands: Syntheses, Structures and Catalytic Activity for Amidation of Aldehydes with Amines. Journal of Organometallic Chemistry, 695, 747-752. [Google Scholar] [CrossRef]
|
|
[53]
|
Li, G., Kung, K.K. and Wong, M. (2012) Gold-Catalyzed Amide Synthesis from Aldehydes and Amines in Aqueous Medium. Chemical Communications, 48, 4112-4114. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Ghosh, S.C., Ngiam, J.S.Y., Seayad, A.M., Tuan, D.T., Chai, C.L.L. and Chen, A. (2012) Copper-Catalyzed Oxidative Amidation of Aldehydes with Amine Salts: Synthesis of Primary, Secondary, and Tertiary Amides. The Journal of Organic Chemistry, 77, 8007-8015. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Patel, O.P.S., Anand, D., Maurya, R.K. and Yadav, P.P. (2015) Copper-Catalyzed Highly Efficient Oxidative Amidation of Aldehydes with 2-Aminopyridines in an Aqueous Micellar System. Green Chemistry, 17, 3728-3732. [Google Scholar] [CrossRef]
|
|
[56]
|
Yang, S., Yan, H., Ren, X., Shi, X., Li, J., Wang, Y., et al. (2013) Copper-Catalyzed Dehydrogenative Reaction: Synthesis of Amide from Aldehydes and Aminopyridine. Tetrahedron, 69, 6431-6435. [Google Scholar] [CrossRef]
|
|
[57]
|
Kuwano, S., Harada, S., Oriez, R. and Yamada, K. (2012) Chemoselective Conversion of α-Unbranched Aldehydes to Amides, Esters, and Carboxylic Acids by NHC-Catalysis. Chem. Commun., 48, 145-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wang, J., Li, J., Xu, F. and Shen, Q. (2009) Anionic Bridged Bis(amidinate) Lithium Lanthanide Complexes: Efficient Bimetallic Catalysts for Mild Amidation of Aldehydes with Amines. Advanced Synthesis & Catalysis, 351, 1363-1370. [Google Scholar] [CrossRef]
|
|
[59]
|
Leow, D. (2014) Phenazinium Salt-Catalyzed Aerobic Oxidative Amidation of Aromatic Aldehydes. Organic Letters, 16, 5812-5815. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Gao, H., Guo, L., Zhu, Y., Yang, C. and Xia, W. (2023) Visible-Light-Induced Dehydrogenative Amidation of Aldehydes Enabled by Iron Salts. Chemical Communications, 59, 2771-2774. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Kumar, V., Patel, S.K., Vyas, V., Kumar, D., Subramaniam Iyer, E.S. and Indra, A. (2024) Deciphering Charge Transfer Dynamics of a Lead Halide Perovskite-Nickel(II) Complex for Visible Light Photoredox C-N Coupling. Chemical Science, 15, 13218-13226. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Al‐Zoubi, R.M., Marion, O. and Hall, D.G. (2008) Direct and Waste‐Free Amidations and Cycloadditions by Organocatalytic Activation of Carboxylic Acids at Room Temperature. Angewandte Chemie International Edition, 47, 2876-2879. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Sakakura, A., Ohkubo, T., Yamashita, R., Akakura, M. and Ishihara, K. (2011) Brønsted Base-Assisted Boronic Acid Catalysis for the Dehydrative Intramolecular Condensation of Dicarboxylic Acids. Organic Letters, 13, 892-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Nguyen, T.B., Sorres, J., Tran, M.Q., Ermolenko, L. and Al-Mourabit, A. (2012) Boric Acid: A Highly Efficient Catalyst for Transamidation of Carboxamides with Amines. Organic Letters, 14, 3202-3205. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Yamashita, R., Sakakura, A. and Ishihara, K. (2013) Primary Alkylboronic Acids as Highly Active Catalysts for the Dehydrative Amide Condensation of α-Hydroxycarboxylic Acids. Organic Letters, 15, 3654-3657. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Cohen, I., Mishra, A.K., Parvari, G., Edrei, R., Dantus, M., Eichen, Y., et al. (2017) Sunlight Assisted Direct Amide Formation via a Charge-Transfer Complex. Chemical Communications, 53, 10128-10131. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Mishra, A.K., Parvari, G., Santra, S.K., Bazylevich, A., Dorfman, O., Rahamim, J., et al. (2021) Solar and Visible Light Assisted Peptide Coupling. Angewandte Chemie International Edition, 60, 12406-12412. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Chhatwal, A.R., Lomax, H.V., Blacker, A.J., Williams, J.M.J. and Marcé, P. (2020) Direct Synthesis of Amides from Nonactivated Carboxylic Acids Using Urea as Nitrogen Source and Mg(NO3)2 or Imidazole as Catalysts. Chemical Science, 11, 5808-5818. [Google Scholar] [CrossRef] [PubMed]
|