|
[1]
|
Fehlings, M.G., Tetreault, L., Nater, A., Choma, T., Harrop, J., Mroz, T., et al. (2015) The Aging of the Global Population. Neurosurgery, 77, S1-S5. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Aizawa, T., Kokubun, S., Ozawa, H., Kusakabe, T., Tanaka, Y., Hoshikawa, T., et al. (2016) Increasing Incidence of Degenerative Spinal Diseases in Japan during 25 Years: The Registration System of Spinal Surgery in Tohoku University Spine Society. The Tohoku Journal of Experimental Medicine, 238, 153-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, M., Peng, D., Hou, W., Li, Y., Li, J. and Zhang, H. (2023) Study of Quality of Life and Its Correlated Factors in Patients after Lumbar Fusion for Lumbar Degenerative Disc Disease. Frontiers in Surgery, 9, Article 939591. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhao, X., Ma, H., Geng, B., Zhou, H. and Xia, Y. (2021) Early Clinical Evaluation of Percutaneous Full-Endoscopic Transforaminal Lumbar Interbody Fusion with Pedicle Screw Insertion for Treating Degenerative Lumbar Spinal Stenosis. Orthopaedic Surgery, 13, 328-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Amiot, L., Labelle, H., DeGuise, J.A., Sati, M., Brodeur, P. and Rivard, C. (1995) Computer-Assisted Pedicle Screw Fixation—A Feasibility Study. Spine, 20, 1208-1212. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Fan, Y., Peng Du, J., Liu, J.J., Zhang, J.N., Liu, S.C. and Hao, D.J. (2018) Radiological and Clinical Differences among Three Assisted Technologies in Pedicle Screw Fixation of Adult Degenerative Scoliosis. Scientific Reports, 8, Article No. 890. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hagan, M.J., Remacle, T., Leary, O.P., Feler, J., Shaaya, E., Ali, R., et al. (2022) Navigation Techniques in Endoscopic Spine Surgery. BioMed Research International, 2022, Article 8419739. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
D'Souza, M., Gendreau, J., Feng, A., Kim, L.H., Ho, A.L. and Veeravagu, A. (2019) Robotic-Assisted Spine Surgery: History, Efficacy, Cost, and Future Trends. Robotic Surgery: Research and Reviews, 6, 9-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Abdel-Malek, K., McGowan, D.P., Goel, V.K., Kowalski, D. and Smith, S.B. (1997) Bone Registration Method for Robot Assisted Surgery: Pedicle Screw Insertion. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 211, 221-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fan, N., Yuan, S., Du, P., Zhu, W., Li, L., Hai, Y., et al. (2020) Design of a Robot-Assisted System for Transforaminal Percutaneous Endoscopic Lumbar Surgeries: Study Protocol. Journal of Orthopaedic Surgery and Research, 15, Article No. 479. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Guillotte, A., LeBeau, G., Alvarado, A. and Davis, J. (2023) Feasibility of Outpatient Robot Assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion. North American Spine Society Journal (NASSJ), 13, Article 100192. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, J., Fan, Y., He, X., Liu, T. and Hao, D. (2020) Comparison of Robot-Assisted and Freehand Pedicle Screw Placement for Lumbar Revision Surgery. International Orthopaedics, 45, 1531-1538. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mobbs, R.J., Phan, K., Malham, G., Seex, K. and Rao, P.J. (2015) Lumbar Interbody Fusion: Techniques, Indications and Comparison of Interbody Fusion Options Including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. Journal of Spine Surgery (Hong Kong), 1, 2-18.
|
|
[14]
|
Ruetten, S. and Komp, M. (2020) Endoscopic Lumbar Decompression. Neurosurgery Clinics of North America, 31, 25-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, K., Choi, K., Song, M., Jabri, H., Lokanath, Y.K. and Kim, J. (2020) Hybrid Interlaminar Endoscopic Lumbar Decompression in Disc Herniation Combined with Spinal Stenosis. Operative Neurosurgery, 20, E168-E174. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kim, H., Sharma, S.B., Raorane, H.D., Kim, K. and Jang, I. (2021) Early Results of Full-Endoscopic Decompression of Lumbar Central Canal Stenosis by Outside-In Technique. Medicine, 100, e27356. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Heo, D.H., Hong, Y.H., Lee, D.C., Chung, H.J. and Park, C.K. (2020) Technique of Biportal Endoscopic Transforaminal Lumbar Interbody Fusion. Neurospine, 17, S129-S137. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jahng, T., Fu, T. and Kim, D.H. (2004) Open versus Endoscopic Lumbar Pedicle Screw Fixation and Posterolateral Fusion in a Sheep Model: A Feasibility Study. The Spine Journal, 4, 519-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cui, G., Han, X., Wei, Y., Liu, Y., He, D., Sun, Y., et al. (2021) Robot-Assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion in the Treatment of Lumbar Spondylolisthesis. Orthopaedic Surgery, 13, 1960-1968. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhao, X., Ma, H., Geng, B., Zhou, H. and Xia, Y. (2021) Percutaneous Endoscopic Unilateral Laminotomy and Bilateral Decompression for Lumbar Spinal Stenosis. Orthopaedic Surgery, 13, 641-650. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Burström, G., Balicki, M., Patriciu, A., Kyne, S., Popovic, A., Holthuizen, R., et al. (2020) Feasibility and Accuracy of a Robotic Guidance System for Navigated Spine Surgery in a Hybrid Operating Room: A Cadaver Study. Scientific Reports, 10, Article No. 7522. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Burström, G., Nachabe, R., Persson, O., Edström, E. and Elmi Terander, A. (2019) Augmented and Virtual Reality Instrument Tracking for Minimally Invasive Spine Surgery. Spine, 44, 1097-1104. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
周庆, 周宇, 刘跃洪, 陈曦, 覃炜, 张德盛, 王志聪. 机器人辅助全内镜下腰椎减压融合技术在单节段腰椎融合术中的应用[J]. 华西医学, 2022, 37(10): 1465-1470.
|
|
[24]
|
Yu, L., Chen, X., Margalit, A., Peng, H., Qiu, G. and Qian, W. (2018) Robot-Assisted vs Freehand Pedicle Screw Fixation in Spine Surgery—A Systematic Review and a Meta-Analysis of Comparative Studies. The International Journal of Medical Robotics and Computer Assisted Surgery, 14, e1892. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jamshidi, A.M., Massel, D.H., Liounakos, J.I., Silman, Z., Good, C.R., Schroerlucke, S.R., et al. (2020) Fluoroscopy Time Analysis of a Prospective, Multi-Centre Study Comparing Robotic and Fluoroscopic-Guided Placement of Percutaneous Pedicle Screw Instrumentation for Short Segment Minimally Invasive Lumbar Fusion Surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 17, e2188. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, Y.D., Deng, Q., Han, L.X., Zhang, K.D., Zhang, Y.j., Peng, R.D., et al. (2024) A Retrospective Comparative Study of Robot-Assisted Unilateral Biportal Endoscopic Lumbar Decompression and Fusion Surgery versus Percutaneous Endoscopic Lumbar Decompression and Fusion Surgery. Medicine, 103, e39664. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chang, M., Wang, L., Yuan, S., Tian, Y., Zhao, Y. and Liu, X. (2022) Percutaneous Endoscopic Robot-Assisted Transforaminal Lumbar Interbody Fusion (PE RA-TLIF) for Lumbar Spondylolisthesis: A Technical Note and Two Years Clinical Results. Pain Physician, 25, E73-E86.
|
|
[28]
|
McIntosh, M.K. and Christie, S. (2023) Opportunities and Challenges for Robotic-Assisted Spine Surgery: Feasible Indications for the MAZOR X Stealth Edition. 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, 24-27 July 2023, 1-4. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Huang, M., Tetreault, T.A., Vaishnav, A., York, P.J. and Staub, B.N. (2021) The Current State of Navigation in Robotic Spine Surgery. Annals of Translational Medicine, 9, 86. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lefranc, M. and Peltier, J. (2016) Evaluation of the ROSA Spine Robot for Minimally Invasive Surgical Procedures. Expert Review of Medical Devices, 13, 899-906. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Deng, H.L., Gao, W.J., Zhu, J.W., Wang, X.D. and Zhou, J.S. (2018) Percutaneous Transforaminal Endoscopic TESSYS Technique for the Treatment of Bilateral Lumbar Disc Herniation in Single Segment. China Journal of Orthopaedics and Traumatology, 31, 1041-1045.
|
|
[32]
|
Lewandrowski, K., Tieber, F., Hellinger, S., Teixeira de Carvalho, P.S., Freitas Ramos, M.R., Xifeng, Z., et al. (2021) Durability of Endoscopes Used during Routine Lumbar Endoscopy: An Analysis of Use Patterns, Common Failure Modes, Impact on Patient Care, and Contingency Plans. International Journal of Spine Surgery, 15, 1147-1160. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hackethal, A., Ionesi-Pasacica, J., Eskef, K., Oehmke, F., Münstedt, K. and Tinneberg, H. (2010) Transvaginal NOTES with Semi-Rigid and Rigid Endoscopes That Allow Adjustable Viewing Angles. Archives of Gynecology and Obstetrics, 283, 131-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Van Isseldyk, F., Liu, Y., Kim, J.H., Correa, C., Quillo-Olvera, J. and Kim, J. (2023) Full-Endoscopic Foraminotomy in Low-Grade Degenerative and Isthmic Spondylolisthesis: A Patient-Specific Tailored Approach. European Spine Journal, 32, 2828-2844. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, Y., Xia, W., Gao, W., Xiao, X., Xiao, Y. and Gong, F. (2019) Direct Foraminoplasty in Endoscope-Assisted Transforaminal Lumbar Interbody Fusion for the Treatment of Lumbar Disc Herniation. Journal of International Medical Research, 48, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, X., Tian, Z., Mansuerjiang, M., Younusi, A., Xu, L., Xiang, H., et al. (2023) A Single-Arm Retrospective Study of the Clinical Efficacy of Unilateral Biportal Endoscopic Transforaminal Lumbar Interbody Fusion for Lumbar Spinal Stenosis. Frontiers in Surgery, 9, Article 1062451. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Heo, D.H., Lee, D.C., Kim, H.S., Park, C.K. and Chung, H. (2021) Clinical Results and Complications of Endoscopic Lumbar Interbody Fusion for Lumbar Degenerative Disease: A Meta-Analysis. World Neurosurgery, 145, 396-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wagner, R. and Haefner, M. (2021) Indications and Contraindications of Full-Endoscopic Interlaminar Lumbar Decompression. World Neurosurgery, 145, 657-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chen, K., Kim, J., Huang, A.P., Lin, M.H. and Chen, C. (2023) Current Indications for Spinal Endoscopic Surgery and Potential for Future Expansion. Neurospine, 20, 33-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhu, L., Cai, T., Shan, Y., Zhang, W., Zhang, L. and Feng, X. (2021) Comparison of Clinical Outcomes and Complications Between Percutaneous Endoscopic and Minimally Invasive Transforaminal Lumbar Interbody Fusion for Degenerative Lumbar Disease: A Systematic Review and Meta-Analysis. Pain Physician, 24, 441-452.
|
|
[41]
|
Sousa, J.M., Ribeiro, H., Silva, J.L., Nogueira, P. and Consciência, J.G. (2022) Clinical Outcomes, Complications and Fusion Rates in Endoscopic Assisted Intraforaminal Lumbar Interbody Fusion (ILIF) versus Minimally Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF): Systematic Review and Meta-Analysis. Scientific Reports, 12, Article No. 2101. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yao, Y., Chou, P., Lin, H., Wang, S., Liu, C. and Chang, M. (2020) Risk Factors of Cage Subsidence in Patients Received Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine, 45, E1279-E1285. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tempel, Z.J., Gandhoke, G.S., Okonkwo, D.O. and Kanter, A.S. (2015) Impaired Bone Mineral Density as a Predictor of Graft Subsidence Following Minimally Invasive Transpsoas Lateral Lumbar Interbody Fusion. European Spine Journal, 24, 414-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Oh, K.W., Lee, J.H., Lee, J., Lee, D. and Shim, H.J. (2017) The Correlation between Cage Subsidence, Bone Mineral Density, and Clinical Results in Posterior Lumbar Interbody Fusion. Clinical Spine Surgery: A Spine Publication, 30, E683-E689. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Tempel, Z.J., McDowell, M.M., Panczykowski, D.M., Gandhoke, G.S., Hamilton, D.K., Okonkwo, D.O., et al. (2018) Graft Subsidence as a Predictor of Revision Surgery Following Stand-Alone Lateral Lumbar Interbody Fusion. Journal of Neurosurgery: Spine, 28, 50-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Singhatanadgige, W., Sukthuayat, A., Tanaviriyachai, T., Kongtharvonskul, J., Tanasansomboon, T., Kerr, S.J., et al. (2021) Risk Factors for Polyetheretherketone Cage Subsidence Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Acta Neurochirurgica, 163, 2557-2565. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kolcun, J.P.G., Brusko, G.D., Basil, G.W., Epstein, R. and Wang, M.Y. (2019) Endoscopic Transforaminal Lumbar Interbody Fusion without General Anesthesia: Operative and Clinical Outcomes in 100 Consecutive Patients with a Minimum 1-Year Follow-Up. Neurosurgical Focus, 46, E14. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Pao, J. (2023) Biportal Endoscopic Transforaminal Lumbar Interbody Fusion Using Double Cages: Surgical Techniques and Treatment Outcomes. Neurospine, 20, 80-91. [Google Scholar] [CrossRef] [PubMed]
|