[1]
|
Lan, Z., Li, X. and Zhang, X. (2024) Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. International Journal of Molecular Sciences, 25, Article 3040. https://doi.org/10.3390/ijms25053040
|
[2]
|
Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathologica, 131, 803-820. https://doi.org/10.1007/s00401-016-1545-1
|
[3]
|
Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251. https://doi.org/10.1093/neuonc/noab106
|
[4]
|
D’Angelo, L., Armocida, D., Sampirisi, L., Paglia, F., Berra, L.V. and Santoro, A. (2020) Role of Endoscopic Surgical Biopsy in Diagnoses of Intraventricular/Periventricular Tumors: Review of Literature Including a Monocentric Case Series. Acta Neurologica Belgica, 120, 517-530. https://doi.org/10.1007/s13760-020-01299-1
|
[5]
|
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., et al. (2012) Radiomics: The Process and the Challenges. Magnetic Resonance Imaging, 30, 1234-1248. https://doi.org/10.1016/j.mri.2012.06.010
|
[6]
|
Du, P., Liu, X., Wu, X., Chen, J., Cao, A. and Geng, D. (2023) Predicting Histopathological Grading of Adult Gliomas Based on Preoperative Conventional Multimodal MRI Radiomics: A Machine Learning Model. Brain Sciences, 13, Article 912. https://doi.org/10.3390/brainsci13060912
|
[7]
|
Gutta, S., Acharya, J., Shiroishi, M.S., Hwang, D. and Nayak, K.S. (2020) Improved Glioma Grading Using Deep Convolutional Neural Networks. American Journal of Neuroradiology, 42, 233-239. https://doi.org/10.3174/ajnr.a6882
|
[8]
|
Guo, J., Ren, J., Shen, J., Cheng, R. and He, Y. (2021) Do the Combination of Multiparametric MRI-Based Radiomics and Selected Blood Inflammatory Markers Predict the Grade and Proliferation in Glioma Patients? Diagnostic and Interventional Radiology, 27, 440-449. https://doi.org/10.5152/dir.2021.20154
|
[9]
|
Li, Y., Ammari, S., Lawrance, L., Quillent, A., Assi, T., Lassau, N., et al. (2022) Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion. Cancers, 14, Article 1778. https://doi.org/10.3390/cancers14071778
|
[10]
|
Fan, X., Li, J., Huang, B., Lu, H., Lu, C., Pan, M., et al. (2023) Noninvasive Radiomics Model Reveals Macrophage Infiltration in Glioma. Cancer Letters, 573, Article 216380. https://doi.org/10.1016/j.canlet.2023.216380
|
[11]
|
Narang, S., Kim, D., Aithala, S., Heimberger, A.B., Ahmed, S., Rao, D., et al. (2017) Tumor Image-Derived Texture Features Are Associated with CD3 T-Cell Infiltration Status in Glioblastoma. Oncotarget, 8, 101244-101254. https://doi.org/10.18632/oncotarget.20643
|
[12]
|
Rauch, P., Stefanits, H., Aichholzer, M., Serra, C., Vorhauer, D., Wagner, H., et al. (2023) Deep Learning-Assisted Radiomics Facilitates Multimodal Prognostication for Personalized Treatment Strategies in Low-Grade Glioma. Scientific Reports, 13, Article No. 9494. https://doi.org/10.1038/s41598-023-36298-8
|
[13]
|
Kim, J.Y., Park, J.E., Jo, Y., Shim, W.H., Nam, S.J., Kim, J.H., et al. (2018) Incorporating Diffusion and Perfusion-Weighted MRI into a Radiomics Model Improves Diagnostic Performance for Pseudoprogression in Glioblastoma Patients. Neuro-Oncology, 21, 404-414. https://doi.org/10.1093/neuonc/noy133
|
[14]
|
Ismail, M., Hill, V., Statsevych, V., Huang, R., Prasanna, P., Correa, R., et al. (2018) Shape Features of the Lesion Habitat to Differentiate Brain Tumor Progression from Pseudoprogression on Routine Multiparametric MRI: A Multisite Study. American Journal of Neuroradiology, 39, 2187-2193. https://doi.org/10.3174/ajnr.a5858
|
[15]
|
Ren, J., Zhai, X., Yin, H., Zhou, F., Hu, Y., Wang, K., et al. (2023) Multimodality MRI Radiomics Based on Machine Learning for Identifying True Tumor Recurrence and Treatment-Related Effects in Patients with Postoperative Glioma. Neurology and Therapy, 12, 1729-1743. https://doi.org/10.1007/s40120-023-00524-2
|
[16]
|
Sherminie, L.P.G., Jayatilake, M.L., Hewavithana, B., Weerakoon, B.S. and Vijithananda, S.M. (2023) Morphometry-based Radiomics for Predicting Therapeutic Response in Patients with Gliomas Following Radiotherapy. Frontiers in Oncology, 13, Article 1139902. https://doi.org/10.3389/fonc.2023.1139902
|
[17]
|
Wang, J., Zheng, X., Zhang, J., Xue, H., Wang, L., Jing, R., et al. (2021) An MRI-Based Radiomics Signature as a Pretreatment Noninvasive Predictor of Overall Survival and Chemotherapeutic Benefits in Lower-Grade Gliomas. European Radiology, 31, 1785-1794. https://doi.org/10.1007/s00330-020-07581-3
|
[18]
|
Zhou, H., Vallières, M., Bai, H.X., Su, C., Tang, H., Oldridge, D., et al. (2017) MRI Features Predict Survival and Molecular Markers in Diffuse Lower-Grade Gliomas. Neuro-Oncology, 19, 862-870. https://doi.org/10.1093/neuonc/now256
|
[19]
|
Liu, X., Li, Y., Qian, Z., Sun, Z., Xu, K., Wang, K., et al. (2018) A Radiomic Signature as a Non-Invasive Predictor of Progression-Free Survival in Patients with Lower-Grade Gliomas. NeuroImage: Clinical, 20, 1070-1077. https://doi.org/10.1016/j.nicl.2018.10.014
|
[20]
|
Pak, E., Choi, K.S., Choi, S.H., Park, C., Kim, T.M., Park, S., et al. (2021) Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI. Korean Journal of Radiology, 22, 1514-1524. https://doi.org/10.3348/kjr.2020.1433
|
[21]
|
Ferrari, R., Trinci, M., Casinelli, A., Treballi, F., Leone, E., Caruso, D., et al. (2024) Radiomics in Radiology: What the Radiologist Needs to Know about Technical Aspects and Clinical Impact. La radiologia medica, 129, 1751-1765. https://doi.org/10.1007/s11547-024-01904-w
|
[22]
|
Pati, S., Verma, R., Akbari, H., Bilello, M., Hill, V.B., Sako, C., et al. (2020) Reproducibility Analysis of Multi-Institutional Paired Expert Annotations and Radiomic Features of the Ivy Glioblastoma Atlas Project (ivy GAP) Dataset. Medical Physics, 47, 6039-6052. https://doi.org/10.1002/mp.14556
|
[23]
|
Ahanger, A.B., Aalam, S.W., Masoodi, T.A., Shah, A., Khan, M.A., Bhat, A.A., et al. (2025) Radiogenomics and Machine Learning Predict Oncogenic Signaling Pathways in Glioblastoma. Journal of Translational Medicine, 23, Article No. 121. https://doi.org/10.1186/s12967-025-06101-5
|
[24]
|
Niclou, S.P., Fack, F. and Rajcevic, U. (2010) Glioma Proteomics: Status and Perspectives. Journal of Proteomics, 73, 1823-1838. https://doi.org/10.1016/j.jprot.2010.03.007
|
[25]
|
Luo, J., Pan, M., Mo, K., Mao, Y. and Zou, D. (2023) Emerging Role of Artificial Intelligence in Diagnosis, Classification and Clinical Management of Glioma. Seminars in Cancer Biology, 91, 110-123. https://doi.org/10.1016/j.semcancer.2023.03.006
|