深度学习在肝细胞癌中的应用进展
Advances in the Application of Deep Learning in Hepatocellular Carcinoma
DOI: 10.12677/acm.2025.1541004, PDF, HTML, XML,   
作者: 刘萧萧, 袁振国*:山东第一医科大学附属省立医院医学影像科,山东 济南
关键词: 肝细胞癌人工智能深度学习应用进展Hepatocellular Carcinoma Artificial Intelligence Deep Learning Advances in Application
摘要: 肝细胞癌(Hepatocellular Carcinoma, HCC)是全球最常见的癌症之一,发病率与死亡率大致相当。尽管经过几十年的研究和新治疗方案的开发,肝癌患者的总体结局仍然很差。近年来,人工智能在医学领域得到了快速发展,肝脏疾病领域也不例外。其中,深度学习(Deep Learning, DL)已经成为肝癌计算机辅助诊断的一股蓬勃发展的力量,在临床诊疗中显示出广阔的应用前景。本文对近年来国内外有关DL技术的代表性研究成果进行综述,介绍了DL技术在肝癌领域的研究现状及进展。
Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with its incidence rate roughly paralleling its mortality rate. Despite decades of research and the development of new treatment options, the overall outcomes for patients with liver cancer remain poor. In recent years, artificial intelligence has seen rapid advancement in the medical field, and the domain of liver diseases is no exception. Among these advancements, deep learning (DL) has emerged as a burgeoning force in the computer-aided diagnosis of liver cancer, demonstrating vast potential for application in clinical diagnosis and treatment. This article reviews representative research achievements in DL technology from both domestic and international studies in recent years, and introduces the current state and progress of DL technology in the field of liver cancer research.
文章引用:刘萧萧, 袁振国. 深度学习在肝细胞癌中的应用进展[J]. 临床医学进展, 2025, 15(4): 850-856. https://doi.org/10.12677/acm.2025.1541004

1. 引言

肝细胞癌(HCC)是最常见的恶性肿瘤之一,也是癌症相关死亡的主要原因[1]。然而,超过1/2的患者在初次诊断时已处于中晚期[2],且HCC的预后很差,发病率和死亡率大致相当[3]。尽管多年来对HCC的研究发展出了新的筛查模式、非侵入性诊断模式以及各种综合治疗模式,HCC的总体结局仍较差[1]。因此,急需一种新技术来满足HCC患者对风险预测、早期检测、预后评估和个体化治疗的需求。

近年来,人工智能(AI)正以惊人的速度发展,现广泛应用于医学,特别是成像领域。AI在医学成像领域的两大研究方法包括深度学习(DL)和放射组学[4]。深度学习是机器学习(ML)的一个子集,与传统的机器学习方法需要从输入中手工提取特征不同,深度学习方法是人工智能的更高级策略,可以直接从样本数据中学习特征。一些常用的DL技术包括卷积神经网络(CNN)、深度自动编码器(DAE),深度信念网络(DBN)和递归神经网络(RNN)等[5]。基于DL算法构建的模型可以帮助临床更早的识别疾病,更准确的对疾病进行分类、并提供额外的预后信息来指导临床策略的制定。因此,深度学习系统也可以成为HCC的辅助诊疗系统。本文将从深度学习在肝癌诊断、治疗、预后评估等的应用进行概述,并对其未来的发展方向进行展望。

2. 深度学习在HCC诊断及鉴别诊断中的应用

目前HCC诊断仍以病理学为参考标准,由于影像学检查具有方便、无创、低成本等优点,可为诊断HCC提供独立、准确的证据[6]。用于图像分类最突出的DL模型为CNN [7],基于超声(US)、计算机断层扫描(CT)和磁共振成像(MRI)图像上训练的CNN算法在HCC的诊断及鉴别中展现出优异的性能[8]。Kim等[9]采用肝胆相磁共振图像数据,使用微调的CNN算法来检测和分类HCC,实现了87%的灵敏度和93%的特异性,AUC为0.90。Zhou等[10]建立了一种基于超声并结合临床特征的深度学习模型(US-DLM + Clin),旨在肝硬化背景下区分HCC与其他恶性肿瘤,该模型在训练和测试队列中均表现出良好的诊断性能,AUC分别为0.93和0.81。Oestmann等[11]为区分HCC和非HCC病变,基于多相对比增强MRI (CE-MRI)数据训练3D卷积神经网络(3D CNN)模型,模型的总体准确率达87.3%,对HCC的敏感性为92.7%,特异性为82.0%。Liu等[12]基于T2WI-MRI图像,提出了一种半分段预处理方法(Semi-SP)和SFFNet模型,来区分肿块型肝内胆管细胞癌(MF-ICC)和HCC,该模型的总体准确率为92.26%,AUC为0.968,对MF-ICC具有高灵敏度(86.21%)和特异性(94.70%)。

3. 深度学习在HCC图像分割中的应用

在某些情况下,HCC与其周围存在的坏死肝组织具有非常相似的视觉外观,使得肝细胞癌区域难以被人眼识别。在影像图像上分割HCC对于确定肿瘤范围和制订治疗方案是非常重要的,但是图像的手动轮廓勾画非常耗时,并且受到观察者间可变性的影响。近年来,随着DL技术在图像分割领域方面的应用,大大提高了需要手动勾画肝脏病变诊断的工作流程效率。Bousabarah等[13]基于CE-MRI数据训练出具有U-Net架构的深度卷积神经网络(DCNN),证明该模型可以成功地应用于CE-MRI,并自动检测和分割肝脏与HCC病变,使LI-RADS的工作流程更高效。Brehar等[14]提出一种轻量级的多分辨率卷积神经网络(CNN)模型,用于在超声图像内区分HCC与在HCC基础上发展的肝硬化实质(PAR),并将这种深度学习模型与其他CNN模型、传统的机器学习模型进行比较,结果显示该模型的准确率、灵敏度和AUC均大于90%,特异性也达到了88%以上,证明深度学习法方法较传统的机器方法具有更好的分类性能。除了在超声图像上检测HCC之外,该研究还试图分析非HCC的患者肝实质的超声图像来预测未来发展成HCC的风险。

4. 深度学习在HCC术前病理分级预测中的应用

近年来,尽管HCC的治愈性治疗取得了进展,术后复发使5年生存率仍较低[15] [16]。组织病理学分级是HCC术后复发的重要危险因素[17],病理学高级别的肿瘤患者预后不良,有较大复发风险,因此术中扩大手术切缘和术后更频繁的随访是必要的[18]。术前组织病理学分级可为HCC患者个体化治疗方案提供强有力指导。然而,目前组织病理学分级诊断的金标准依赖于术后病理检查,这阻碍了术前个体化方案的制订。随着DL在肝脏病变中的研究日益完善,CNN越来越成为研究人员分析医学图像的首选技术[7],已被应用于预测HCC组织病理学分级,为计算机辅助病理诊断开辟了新途径。Wei等[19]利用术前对比增强计算机断层扫描(CE-CT)图像开发并评估了一种基于多尺度、多区域和注意力机制的深度学习模型(MSMR-Dense CNN),通过对肿瘤实质和肿瘤周围微环境区域的分析,发现该模型对延迟期(DP)的预测能力最佳,达到了最高的AUC (0.867),灵敏度达75.5%,特异性相对较高,为78.6%。Lin等[20]使用来自113名HCC患者的多光子显微镜图像来训练CNN,所得HCC分化等级的分类准确度达90%以上,减少了诊断所需时间并提高了识别精度。

5. 深度学习在HCC预后评估中的应用

手术治疗被认为是HCC患者的主要治愈性治疗[21]。然而,术后复发和转移仍然是HCC患者预后的主要障碍[22]。血管侵犯是决定HCC患者预后的关键因素。多项针对微血管浸润(MVI)的研究报告称,MVI是预测肿瘤复发和不良存活相关的独立因素[23] [24],MVI阳性者通常在2年内复发[25]。对于MVI阳性患者,术中扩大切除边缘可以通过根除微转移来提高患者生存率[26] [27]。因此,术前预测MVI状态对手术决策和其他治疗策略的制定具有重要的临床意义。然而,术前MVI的评估具有挑战性,因为它只能通过病理诊断来证实,DL的发展为评估MVI提供了新思路。Liu等[28]使用动脉期(AP)的CT图像和/或临床因素构建了深度学习模型(ResNet-18)和机器学习(支持向量机)模型,系统地比较它们的性能,并使用梯度加权类激活图(Grad-CAM)可视化最佳模型的可解释性,结果显示,基于AP图像和临床因素构建的ResNet-18模型优于其他模型,实现了0.845的最高AUC,在外部集(其他医院)的AUC为0.777,接近其在验证集上的性能,该研究对预测模型进行了外部验证,进一步证明了ResNet-18在预测MVI方面的通用性和鲁棒性。Chen等[29]构建了MVI-DL模型用于HCC患者的MVI评估,在内、外部队列的验证集中,MVI-DL模型的AUC分别为0.904和0.871,并通过聚类和可视化来识别关键组织学特征,结果显示,具有丰富血窦、丰富肿瘤间质和高肿瘤内异质性的大小梁结构是MVI阳性相关的关键特征,而严重的免疫浸润和高分化肿瘤细胞与MVI阴性相关。Jiang等[30]回顾性分析405例患者的CT图像,构建了放射学–放射学–临床(RRC)模型和三维卷积神经网络(3D-CNN)模型,在训练集和验证集中,RRC模型和3D-CNN模型的AUC分别为0.952、0.980和0.887、0.906,但该研究为单中心研究,样本量相对较少,结果有待进一步验证。

对于发生肝外转移或大血管浸润(定义为侵袭性PD)的患者,治疗更具挑战性。一旦发生侵袭性PD,可加速患者肝功能和体力状态的恶化,从而阻碍后续治疗。预测侵袭性PD的风险有助于制定更合理的随访计划,从而为高危人群提供早期发现和治疗的额外机会。Fu等[31]基于多中心数据库,回顾性收集了366例临床或病理诊断为HCC患者的CT图像,采用MTnet构建了三个深度学习模型,结果显示在训练和验证队列中,放射学模型(Model DR)、临床/放射学模型(Model CR)、组合模型(Model CR-DR)的AUC值分别为0.751、0.822、0.877和0.624、0.770、0.836,且Model CR-DR模型在校准和决策曲线方面均取得了令人满意的结果。但本研究的人群主要为HBV相关HCC患者,该模型对其他病因的HCC的适用性需要进一步验证。

6. 深度学习在HCC治疗反应中的应用

目前,肝移植(LT)、手术切除和射频消融(RFA)是早期HCC的根治性疗法[23]。对于中晚期无法进行根治性手术的患者,经动脉化疗栓塞(TACE)是不可切除肝细胞癌最常见的治疗选择,可作为肝移植的桥梁[32]-[34]。此外,HCC患者还可选择其他动脉内治疗、靶向、免疫等全身治疗以及各种综合治疗方案[35]。近年来有大量文献利用放射学数据的DL模型预测HCC 患者对各种治疗方案的反应,旨在协助临床制订更精确的个体化治疗方案。Wang等[36]利用术前CT图像建立了一个基于EfficientNetV2的预后模型,旨在预测中期HCC患者TACE的进展时间(TTP)和总生存期(OS),在训练、验证和测试数据集中,模型评分 ≤ 0.5患者的TTP优于评分较高的患者,且评分 ≤ 0.5患者的OS更好(38.8个月vs 20.9个月);该研究还将此模型的预后性能与目前临床实践中使用的放射组学和临床模型的预后性能进行比较,在测试数据集中,基于EfficientNetV2的模型显示了更好的生存预后,该结果将为HCC患者更个体化的TACE治疗提供有力依据。但该研究仅纳入了未经治疗的中期HCC患者,模型的可扩展性有待进一步证实。Peng等[37]基于310名接受TACE治疗的中期HCC患者的CT图像,开发了五个放射组学CML模型和一个DL模型,在训练和验证队列中,模型均显示出显著的准确性,DL模型最佳,AUC分别为0.981、0.972,该研究进一步证实了五个CML模型和DL模型之间的显著相关性,在此基础上提出了CML和DL的组合模型,实现了最高准确度(AUC分别为0.995、0.994),该研究将组学与深度学习模型进行整合,为预测中期HCC患者TACE初始治疗反应提供新思路。Xu等[38]开发了一种非侵入性深度学习放射性诺模图(DLRN),使用治疗前对比增强CT图像来预测HCC患者对肝动脉灌注化疗(HAIC)的反应,在训练队列和内、外部验证队列中,AUC分别为0.988、0.915、0.896,DLRN显示出出色的预测能力,可作为针对晚期HCC患者制订个性化治疗方案的潜在工具,但该模型未将HAIC的治疗周期数纳入研究,后续研究需进一步完善。Zhang等[39]将临床特征和基于CE-CT的深度学习特征结合起来,构建了一个综合诺模图,以改善TACE联合索拉非尼治疗的HCC患者的总体生存预测,在训练集和验证集的C指数分别为0.717、0.714,且该诺模图预测性能显著优于临床诺模图(训练集:0.739 vs. 0.664,验证集:0.730 vs. 0.679),可以作为识别可能受益于这种联合治疗的HCC患者的潜在工具,由于收集的数据有限,有必要对BCLC B期人群进行进一步研究。

7. 深度学习在HCC应用中的局限性及未来发展方向

过去几年见证了人工智能的繁荣,深度学习的应用无疑是非凡的转变,与传统的机器学习相比,深度学习具有更多的优势和更大的潜力,但其应用仍面临诸多挑战。首先,深度学习模型的性能高度依赖于大规模高质量标注数据,而医学图像的标注需要专业医生的参与,成本高且耗时长,同时标注过程易受主观性影响,导致数据质量不一致。其次,HCC数据还存在类别不均衡问题,例如早期病例较少,可能影响模型对罕见情况的识别能力。且深度学习模型的泛化能力不足,在不同医疗机构、设备或患者群体中表现可能不稳定,这主要源于数据分布的差异,例如不同医院的影像设备参数、扫描协议或患者群体的多样性。HCC的异质性(如肿瘤形态、大小和位置的多样性)进一步增加了模型泛化的难度。此外,深度学习模型的“黑箱”特性使其决策过程缺乏透明性,医生难以理解模型的推理过程,从而限制了其在临床决策中的应用,甚至可能引发法律和伦理问题。最后,HCC的精准诊疗需要整合多模态数据,包括影像数据(如CT、MRI)、病理学数据、基因组学数据以及临床数据,然而不同模态数据的格式、分辨率和特征空间差异较大,如何有效融合这些数据并提取有价值的信息是一个技术难题。

为应对这些局限性,研究者提出了多种解决方案。针对数据稀缺问题,数据增强技术(如旋转、缩放、翻转等)可以扩充训练数据集,提高模型的鲁棒性,而迁移学习则允许模型在预训练的基础上进行微调,从而减少对大规模标注数据的依赖[40]。生成对抗网络(GANs) [41]可以生成合成数据,进一步缓解数据不均衡问题。为提高模型的泛化能力,多中心协作框架被广泛采用,通过整合来自不同医疗机构的数据,模型能够学习到更广泛的特征分布。联邦学习(Federated Learning) [42]则允许在不共享原始数据的情况下联合训练模型,既保护了数据隐私,又提升了模型的适应性。在可解释性方面,可解释AI (XAI)技术[43]为增强模型透明性提供了重要工具,例如注意力机制可以突出模型关注的关键区域,梯度加权类激活映射(Grad-CAM)可以可视化模型的决策依据,这些技术不仅帮助医生理解模型的推理过程,还为模型的优化提供了指导。在多模态数据融合方面,深度学习模型可以通过设计特定的网络架构(如图卷积网络、多流网络)来整合不同模态的数据[44],例如影像数据可以与基因组学数据结合,用于预测肿瘤的生物学行为;临床数据可以与影像数据结合,用于个性化治疗方案的制定。

未来,深度学习在HCC诊疗中的应用将朝着更加智能化、个性化和可解释化的方向发展。通过整合患者的影像、病理、基因组学和临床数据,深度学习模型可以为每位患者提供个性化的诊断和治疗建议,从而实现精准医疗。结合边缘计算和实时数据处理技术,深度学习模型可以在临床实践中实现实时辅助诊断,帮助医生快速做出决策。此外,跨学科协作将推动技术创新并加速其临床转化,深度学习在HCC中的应用需要计算机科学家、放射科医生、病理学家和肿瘤学家的紧密合作。随着深度学习在医疗领域的广泛应用,相关伦理和法规问题也亟待解决,例如如何确保患者数据隐私、如何界定模型错误的责任归属等。

8. 总结

综上所述,深度学习在HCC诊疗中的应用前景广阔,但仍需克服数据、泛化能力和可解释性等方面的挑战。通过技术创新和跨学科协作,深度学习有望在肝细胞癌的早期诊断、精准治疗和预后管理中发挥更大作用,最终改善患者预后并推动医疗行业的进步。

NOTES

*通讯作者。

参考文献

[1] Gilles, H., Garbutt, T. and Landrum, J. (2022) Hepatocellular Carcinoma. Critical Care Nursing Clinics of North America, 34, 289-301.
https://doi.org/10.1016/j.cnc.2022.04.004
[2] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[3] McGlynn, K.A., Petrick, J.L. and El‐Serag, H.B. (2020) Epidemiology of Hepatocellular Carcinoma. Hepatology, 73, 4-13.
https://doi.org/10.1002/hep.31288
[4] Chu, L.C., Park, S., Kawamoto, S., Yuille, A.L., Hruban, R.H. and Fishman, E.K. (2021) Current Status of Radiomics and Deep Learning in Liver Imaging. Journal of Computer Assisted Tomography, 45, 343-351.
https://doi.org/10.1097/rct.0000000000001169
[5] Puttagunta, M. and Ravi, S. (2021) Medical Image Analysis Based on Deep Learning Approach. Multimedia Tools and Applications, 80, 24365-24398.
https://doi.org/10.1007/s11042-021-10707-4
[6] Heimbach, J.K., Kulik, L.M., Finn, R.S., Sirlin, C.B., Abecassis, M.M., Roberts, L.R., et al. (2017) AASLD Guidelines for the Treatment of Hepatocellular Carcinoma. Hepatology, 67, 358-380.
https://doi.org/10.1002/hep.29086
[7] Lakshmipriya, B., Pottakkat, B. and Ramkumar, G. (2023) Deep Learning Techniques in Liver Tumour Diagnosis Using CT and MR Imaging—A Systematic Review. Artificial Intelligence in Medicine, 141, Article ID: 102557.
https://doi.org/10.1016/j.artmed.2023.102557
[8] Azer, S.A. (2019) Deep Learning with Convolutional Neural Networks for Identification of Liver Masses and Hepatocellular Carcinoma: A Systematic Review. World Journal of Gastrointestinal Oncology, 11, 1218-1230.
https://doi.org/10.4251/wjgo.v11.i12.1218
[9] Kim, J., Min, J.H., Kim, S.K., Shin, S. and Lee, M.W. (2020) Detection of Hepatocellular Carcinoma in Contrast-Enhanced Magnetic Resonance Imaging Using Deep Learning Classifier: A Multi-Center Retrospective Study. Scientific Reports, 10, Article No. 9458.
https://doi.org/10.1038/s41598-020-65875-4
[10] Zhou, H., Jiang, T., Li, Q., Zhang, C., Zhang, C., Liu, Y., et al. (2021) Us-based Deep Learning Model for Differentiating Hepatocellular Carcinoma (HCC) from Other Malignancy in Cirrhotic Patients. Frontiers in Oncology, 11, ARTICLE 672055.
https://doi.org/10.3389/fonc.2021.672055
[11] Oestmann, P.M., Wang, C.J., Savic, L.J., Hamm, C.A., Stark, S., Schobert, I., et al. (2021) Deep Learning-Assisted Differentiation of Pathologically Proven Atypical and Typical Hepatocellular Carcinoma (HCC) versus Non-HCC on Contrast-Enhanced MRI of the Liver. European Radiology, 31, 4981-4990.
https://doi.org/10.1007/s00330-020-07559-1
[12] Liu, Y., Wang, B., Mo, X., Tang, K., He, J. and Hao, J. (2022) A Deep Learning Workflow for Mass-Forming Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma Classification Based on MRI. Current Oncology, 30, 529-544.
https://doi.org/10.3390/curroncol30010042
[13] Bousabarah, K., Letzen, B., Tefera, J., Savic, L., Schobert, I., Schlachter, T., et al. (2020) Automated Detection and Delineation of Hepatocellular Carcinoma on Multiphasic Contrast-Enhanced MRI Using Deep Learning. Abdominal Radiology, 46, 216-225.
https://doi.org/10.1007/s00261-020-02604-5
[14] Brehar, R., Mitrea, D., Vancea, F., Marita, T., Nedevschi, S., Lupsor-Platon, M., et al. (2020) Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images. Sensors, 20, Article 3085.
https://doi.org/10.3390/s20113085
[15] Tabrizian, P., Jibara, G., Shrager, B., Schwartz, M. and Roayaie, S. (2015) Recurrence of Hepatocellular Cancer after Resection. Annals of Surgery, 261, 947-955.
https://doi.org/10.1097/sla.0000000000000710
[16] Marrero, J.A., Kulik, L.M., Sirlin, C.B., Zhu, A.X., Finn, R.S., Abecassis, M.M., et al. (2018) Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 68, 723-750.
https://doi.org/10.1002/hep.29913
[17] Okusaka, T., Okada, S., Ueno, H., Ikeda, M., Shimada, K., Yamamoto, J., et al. (2002) Satellite Lesions in Patients with Small Hepatocellular Carcinoma with Reference to Clinicopathologic Features. Cancer, 95, 1931-1937.
https://doi.org/10.1002/cncr.10892
[18] Bruix, J. and Sherman, M. (2011) Management of Hepatocellular Carcinoma: An UpdateΔσ. Hepatology, 53, 1020-1022.
https://doi.org/10.1002/hep.24199
[19] Wei, J., Ji, Q., Gao, Y., Yang, X., Guo, D., Gu, D., et al. (2022) A Multi‐Scale, Multi‐Region and Attention Mechanism‐based Deep Learning Framework for Prediction of Grading in Hepatocellular Carcinoma. Medical Physics, 50, 2290-2302.
https://doi.org/10.1002/mp.16127
[20] Lin, H., Wei, C., Wang, G., Chen, H., Lin, L., Ni, M., et al. (2019) Automated Classification of Hepatocellular Carcinoma Differentiation Using Multiphoton Microscopy and Deep Learning. Journal of Biophotonics, 12, e201800435.
https://doi.org/10.1002/jbio.201800435
[21] Zhou, J., Sun, H., Wang, Z., Cong, W., Wang, J., Zeng, M., et al. (2018) Guidelines for Diagnosis and Treatment of Primary Liver Cancer in China (2017 Edition). Liver Cancer, 7, 235-260.
https://doi.org/10.1159/000488035
[22] Han, H., Shehta, A., Ahn, S., Yoon, Y., Cho, J.Y. and Choi, Y. (2015) Laparoscopic versus Open Liver Resection for Hepatocellular Carcinoma: Case-Matched Study with Propensity Score Matching. Journal of Hepatology, 63, 643-650.
https://doi.org/10.1016/j.jhep.2015.04.005
[23] Cong, W., Bu, H., Chen, J., Dong, H., Zhu, Y., Feng, L., et al. (2016) Practice Guidelines for the Pathological Diagnosis of Primary Liver Cancer: 2015 Update. World Journal of Gastroenterology, 22, 9279-9287.
https://doi.org/10.3748/wjg.v22.i42.9279
[24] Feng, L., Dong, H., Lau, W., Yu, H., Zhu, Y., Zhao, Y., et al. (2016) Novel Microvascular Invasion-Based Prognostic Nomograms to Predict Survival Outcomes in Patients after R0 Resection for Hepatocellular Carcinoma. Journal of Cancer Research and Clinical Oncology, 143, 293-303.
https://doi.org/10.1007/s00432-016-2286-1
[25] Erstad, D.J. and Tanabe, K.K. (2019) Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma. Annals of Surgical Oncology, 26, 1474-1493.
https://doi.org/10.1245/s10434-019-07227-9
[26] Tsilimigras, D.I., Sahara, K., Moris, D., Hyer, J.M., Paredes, A.Z., Bagante, F., et al. (2020) Effect of Surgical Margin Width on Patterns of Recurrence among Patients Undergoing R0 Hepatectomy for T1 Hepatocellular Carcinoma: An International Multi-Institutional Analysis. Journal of Gastrointestinal Surgery, 24, 1552-1560.
https://doi.org/10.1007/s11605-019-04275-0
[27] Han, J., Li, Z., Xing, H., Wu, H., Zhu, P., Lau, W.Y., et al. (2019) The Impact of Resection Margin and Microvascular Invasion on Long-Term Prognosis after Curative Resection of Hepatocellular Carcinoma: A Multi-Institutional Study. HPB, 21, 962-971.
https://doi.org/10.1016/j.hpb.2018.11.005
[28] Liu, S., Lai, J., Huang, J., Cho, C., Lee, P.H., Lu, M., et al. (2021) Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Deep Learning Model Validated across Hospitals. Cancer Imaging, 21, Article No. 56.
https://doi.org/10.1186/s40644-021-00425-3
[29] Chen, Q., Xiao, H., Gu, Y., Weng, Z., Wei, L., Li, B., et al. (2022) Deep Learning for Evaluation of Microvascular Invasion in Hepatocellular Carcinoma from Tumor Areas of Histology Images. Hepatology International, 16, 590-602.
https://doi.org/10.1007/s12072-022-10323-w
[30] Jiang, Y., Cao, S., Cao, S., Chen, J., Wang, G., Shi, W., et al. (2020) Preoperative Identification of Microvascular Invasion in Hepatocellular Carcinoma by XGBoost and Deep Learning. Journal of Cancer Research and Clinical Oncology, 147, 821-833.
https://doi.org/10.1007/s00432-020-03366-9
[31] Fu, S., Lai, H., Li, Q., Liu, Y., Zhang, J., Huang, J., et al. (2021) Multi-Task Deep Learning Network to Predict Future Macrovascular Invasion in Hepatocellular Carcinoma. eClinicalMedicine, 42, Article ID: 101201.
https://doi.org/10.1016/j.eclinm.2021.101201
[32] Chai, N.X. and Chapiro, J. (2020) Therapy of Intermediate-Stage Hepatocellular Carcinoma: Current Evidence and Clinical Practice. Seminars in Interventional Radiology, 37, 456-465.
https://doi.org/10.1055/s-0040-1719186
[33] Chen, M., Cao, J., Hu, J., Topatana, W., Li, S., Juengpanich, S., et al. (2021) Clinical-Radiomic Analysis for Pretreatment Prediction of Objective Response to First Transarterial Chemoembolization in Hepatocellular Carcinoma. Liver Cancer, 10, 38-51.
https://doi.org/10.1159/000512028
[34] Yang, J.D., Hainaut, P., Gores, G.J., Amadou, A., Plymoth, A. and Roberts, L.R. (2019) A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nature Reviews Gastroenterology & Hepatology, 16, 589-604.
https://doi.org/10.1038/s41575-019-0186-y
[35] Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362.
https://doi.org/10.1016/s0140-6736(22)01200-4
[36] Wang, H., Liu, Y., Xu, N., Sun, Y., Fu, S., Wu, Y., et al. (2022) Development and Validation of a Deep Learning Model for Survival Prognosis of Transcatheter Arterial Chemoembolization in Patients with Intermediate-Stage Hepatocellular Carcinoma. European Journal of Radiology, 156, Article ID: 110527.
https://doi.org/10.1016/j.ejrad.2022.110527
[37] Peng, J., Huang, J., Huang, G. and Zhang, J. (2021) Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integration of Radiomics and Deep Learning. Frontiers in Oncology, 11, Article 730282.
https://doi.org/10.3389/fonc.2021.730282
[38] Xu, Z., An, C., Shi, F., Ren, H., Li, Y., Chen, S., et al. (2023) Automatic Prediction of Hepatic Arterial Infusion Chemotherapy Response in Advanced Hepatocellular Carcinoma with Deep Learning Radiomic Nomogram. European Radiology, 33, 9038-9051.
https://doi.org/10.1007/s00330-023-09953-x
[39] Zhang, L., Xia, W., Yan, Z., Sun, J., Zhong, B., Hou, Z., et al. (2020) Deep Learning Predicts Overall Survival of Patients with Unresectable Hepatocellular Carcinoma Treated by Transarterial Chemoembolization Plus Sorafenib. Frontiers in Oncology, 10, Article 593283.
https://doi.org/10.3389/fonc.2020.593292
[40] Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E. and Ganslandt, T. (2022) Transfer Learning for Medical Image Classification: A Literature Review. BMC Medical Imaging, 22, Article No. 69.
https://doi.org/10.1186/s12880-022-00793-7
[41] Sun, H., Plawinski, J., Subramaniam, S., Jamaludin, A., Kadir, T., Readie, A., et al. (2023) A Deep Learning Approach to Private Data Sharing of Medical Images Using Conditional Generative Adversarial Networks (GANs). PLOS ONE, 18, e0280316.
https://doi.org/10.1371/journal.pone.0280316
[42] Sheller, M.J., Edwards, B., Reina, G.A., Martin, J., Pati, S., Kotrotsou, A., et al. (2020) Federated Learning in Medicine: Facilitating Multi-Institutional Collaborations without Sharing Patient Data. Scientific Reports, 10, Article No. 12598.
https://doi.org/10.1038/s41598-020-69250-1
[43] van der Velden, B.H.M., Kuijf, H.J., Gilhuijs, K.G.A. and Viergever, M.A. (2022) Explainable Artificial Intelligence (XAI) in Deep Learning-Based Medical Image Analysis. Medical Image Analysis, 79, Article ID: 102470.
https://doi.org/10.1016/j.media.2022.102470
[44] Stahlschmidt, S.R., Ulfenborg, B. and Synnergren, J. (2022) Multimodal Deep Learning for Biomedical Data Fusion: A Review. Briefings in Bioinformatics, 23, bbab569.
https://doi.org/10.1093/bib/bbab569