[1]
|
Gilles, H., Garbutt, T. and Landrum, J. (2022) Hepatocellular Carcinoma. Critical Care Nursing Clinics of North America, 34, 289-301. https://doi.org/10.1016/j.cnc.2022.04.004
|
[2]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[3]
|
McGlynn, K.A., Petrick, J.L. and El‐Serag, H.B. (2020) Epidemiology of Hepatocellular Carcinoma. Hepatology, 73, 4-13. https://doi.org/10.1002/hep.31288
|
[4]
|
Chu, L.C., Park, S., Kawamoto, S., Yuille, A.L., Hruban, R.H. and Fishman, E.K. (2021) Current Status of Radiomics and Deep Learning in Liver Imaging. Journal of Computer Assisted Tomography, 45, 343-351. https://doi.org/10.1097/rct.0000000000001169
|
[5]
|
Puttagunta, M. and Ravi, S. (2021) Medical Image Analysis Based on Deep Learning Approach. Multimedia Tools and Applications, 80, 24365-24398. https://doi.org/10.1007/s11042-021-10707-4
|
[6]
|
Heimbach, J.K., Kulik, L.M., Finn, R.S., Sirlin, C.B., Abecassis, M.M., Roberts, L.R., et al. (2017) AASLD Guidelines for the Treatment of Hepatocellular Carcinoma. Hepatology, 67, 358-380. https://doi.org/10.1002/hep.29086
|
[7]
|
Lakshmipriya, B., Pottakkat, B. and Ramkumar, G. (2023) Deep Learning Techniques in Liver Tumour Diagnosis Using CT and MR Imaging—A Systematic Review. Artificial Intelligence in Medicine, 141, Article ID: 102557. https://doi.org/10.1016/j.artmed.2023.102557
|
[8]
|
Azer, S.A. (2019) Deep Learning with Convolutional Neural Networks for Identification of Liver Masses and Hepatocellular Carcinoma: A Systematic Review. World Journal of Gastrointestinal Oncology, 11, 1218-1230. https://doi.org/10.4251/wjgo.v11.i12.1218
|
[9]
|
Kim, J., Min, J.H., Kim, S.K., Shin, S. and Lee, M.W. (2020) Detection of Hepatocellular Carcinoma in Contrast-Enhanced Magnetic Resonance Imaging Using Deep Learning Classifier: A Multi-Center Retrospective Study. Scientific Reports, 10, Article No. 9458. https://doi.org/10.1038/s41598-020-65875-4
|
[10]
|
Zhou, H., Jiang, T., Li, Q., Zhang, C., Zhang, C., Liu, Y., et al. (2021) Us-based Deep Learning Model for Differentiating Hepatocellular Carcinoma (HCC) from Other Malignancy in Cirrhotic Patients. Frontiers in Oncology, 11, ARTICLE 672055. https://doi.org/10.3389/fonc.2021.672055
|
[11]
|
Oestmann, P.M., Wang, C.J., Savic, L.J., Hamm, C.A., Stark, S., Schobert, I., et al. (2021) Deep Learning-Assisted Differentiation of Pathologically Proven Atypical and Typical Hepatocellular Carcinoma (HCC) versus Non-HCC on Contrast-Enhanced MRI of the Liver. European Radiology, 31, 4981-4990. https://doi.org/10.1007/s00330-020-07559-1
|
[12]
|
Liu, Y., Wang, B., Mo, X., Tang, K., He, J. and Hao, J. (2022) A Deep Learning Workflow for Mass-Forming Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma Classification Based on MRI. Current Oncology, 30, 529-544. https://doi.org/10.3390/curroncol30010042
|
[13]
|
Bousabarah, K., Letzen, B., Tefera, J., Savic, L., Schobert, I., Schlachter, T., et al. (2020) Automated Detection and Delineation of Hepatocellular Carcinoma on Multiphasic Contrast-Enhanced MRI Using Deep Learning. Abdominal Radiology, 46, 216-225. https://doi.org/10.1007/s00261-020-02604-5
|
[14]
|
Brehar, R., Mitrea, D., Vancea, F., Marita, T., Nedevschi, S., Lupsor-Platon, M., et al. (2020) Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images. Sensors, 20, Article 3085. https://doi.org/10.3390/s20113085
|
[15]
|
Tabrizian, P., Jibara, G., Shrager, B., Schwartz, M. and Roayaie, S. (2015) Recurrence of Hepatocellular Cancer after Resection. Annals of Surgery, 261, 947-955. https://doi.org/10.1097/sla.0000000000000710
|
[16]
|
Marrero, J.A., Kulik, L.M., Sirlin, C.B., Zhu, A.X., Finn, R.S., Abecassis, M.M., et al. (2018) Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 68, 723-750. https://doi.org/10.1002/hep.29913
|
[17]
|
Okusaka, T., Okada, S., Ueno, H., Ikeda, M., Shimada, K., Yamamoto, J., et al. (2002) Satellite Lesions in Patients with Small Hepatocellular Carcinoma with Reference to Clinicopathologic Features. Cancer, 95, 1931-1937. https://doi.org/10.1002/cncr.10892
|
[18]
|
Bruix, J. and Sherman, M. (2011) Management of Hepatocellular Carcinoma: An UpdateΔσ. Hepatology, 53, 1020-1022. https://doi.org/10.1002/hep.24199
|
[19]
|
Wei, J., Ji, Q., Gao, Y., Yang, X., Guo, D., Gu, D., et al. (2022) A Multi‐Scale, Multi‐Region and Attention Mechanism‐based Deep Learning Framework for Prediction of Grading in Hepatocellular Carcinoma. Medical Physics, 50, 2290-2302. https://doi.org/10.1002/mp.16127
|
[20]
|
Lin, H., Wei, C., Wang, G., Chen, H., Lin, L., Ni, M., et al. (2019) Automated Classification of Hepatocellular Carcinoma Differentiation Using Multiphoton Microscopy and Deep Learning. Journal of Biophotonics, 12, e201800435. https://doi.org/10.1002/jbio.201800435
|
[21]
|
Zhou, J., Sun, H., Wang, Z., Cong, W., Wang, J., Zeng, M., et al. (2018) Guidelines for Diagnosis and Treatment of Primary Liver Cancer in China (2017 Edition). Liver Cancer, 7, 235-260. https://doi.org/10.1159/000488035
|
[22]
|
Han, H., Shehta, A., Ahn, S., Yoon, Y., Cho, J.Y. and Choi, Y. (2015) Laparoscopic versus Open Liver Resection for Hepatocellular Carcinoma: Case-Matched Study with Propensity Score Matching. Journal of Hepatology, 63, 643-650. https://doi.org/10.1016/j.jhep.2015.04.005
|
[23]
|
Cong, W., Bu, H., Chen, J., Dong, H., Zhu, Y., Feng, L., et al. (2016) Practice Guidelines for the Pathological Diagnosis of Primary Liver Cancer: 2015 Update. World Journal of Gastroenterology, 22, 9279-9287. https://doi.org/10.3748/wjg.v22.i42.9279
|
[24]
|
Feng, L., Dong, H., Lau, W., Yu, H., Zhu, Y., Zhao, Y., et al. (2016) Novel Microvascular Invasion-Based Prognostic Nomograms to Predict Survival Outcomes in Patients after R0 Resection for Hepatocellular Carcinoma. Journal of Cancer Research and Clinical Oncology, 143, 293-303. https://doi.org/10.1007/s00432-016-2286-1
|
[25]
|
Erstad, D.J. and Tanabe, K.K. (2019) Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma. Annals of Surgical Oncology, 26, 1474-1493. https://doi.org/10.1245/s10434-019-07227-9
|
[26]
|
Tsilimigras, D.I., Sahara, K., Moris, D., Hyer, J.M., Paredes, A.Z., Bagante, F., et al. (2020) Effect of Surgical Margin Width on Patterns of Recurrence among Patients Undergoing R0 Hepatectomy for T1 Hepatocellular Carcinoma: An International Multi-Institutional Analysis. Journal of Gastrointestinal Surgery, 24, 1552-1560. https://doi.org/10.1007/s11605-019-04275-0
|
[27]
|
Han, J., Li, Z., Xing, H., Wu, H., Zhu, P., Lau, W.Y., et al. (2019) The Impact of Resection Margin and Microvascular Invasion on Long-Term Prognosis after Curative Resection of Hepatocellular Carcinoma: A Multi-Institutional Study. HPB, 21, 962-971. https://doi.org/10.1016/j.hpb.2018.11.005
|
[28]
|
Liu, S., Lai, J., Huang, J., Cho, C., Lee, P.H., Lu, M., et al. (2021) Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Deep Learning Model Validated across Hospitals. Cancer Imaging, 21, Article No. 56. https://doi.org/10.1186/s40644-021-00425-3
|
[29]
|
Chen, Q., Xiao, H., Gu, Y., Weng, Z., Wei, L., Li, B., et al. (2022) Deep Learning for Evaluation of Microvascular Invasion in Hepatocellular Carcinoma from Tumor Areas of Histology Images. Hepatology International, 16, 590-602. https://doi.org/10.1007/s12072-022-10323-w
|
[30]
|
Jiang, Y., Cao, S., Cao, S., Chen, J., Wang, G., Shi, W., et al. (2020) Preoperative Identification of Microvascular Invasion in Hepatocellular Carcinoma by XGBoost and Deep Learning. Journal of Cancer Research and Clinical Oncology, 147, 821-833. https://doi.org/10.1007/s00432-020-03366-9
|
[31]
|
Fu, S., Lai, H., Li, Q., Liu, Y., Zhang, J., Huang, J., et al. (2021) Multi-Task Deep Learning Network to Predict Future Macrovascular Invasion in Hepatocellular Carcinoma. eClinicalMedicine, 42, Article ID: 101201. https://doi.org/10.1016/j.eclinm.2021.101201
|
[32]
|
Chai, N.X. and Chapiro, J. (2020) Therapy of Intermediate-Stage Hepatocellular Carcinoma: Current Evidence and Clinical Practice. Seminars in Interventional Radiology, 37, 456-465. https://doi.org/10.1055/s-0040-1719186
|
[33]
|
Chen, M., Cao, J., Hu, J., Topatana, W., Li, S., Juengpanich, S., et al. (2021) Clinical-Radiomic Analysis for Pretreatment Prediction of Objective Response to First Transarterial Chemoembolization in Hepatocellular Carcinoma. Liver Cancer, 10, 38-51. https://doi.org/10.1159/000512028
|
[34]
|
Yang, J.D., Hainaut, P., Gores, G.J., Amadou, A., Plymoth, A. and Roberts, L.R. (2019) A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nature Reviews Gastroenterology & Hepatology, 16, 589-604. https://doi.org/10.1038/s41575-019-0186-y
|
[35]
|
Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362. https://doi.org/10.1016/s0140-6736(22)01200-4
|
[36]
|
Wang, H., Liu, Y., Xu, N., Sun, Y., Fu, S., Wu, Y., et al. (2022) Development and Validation of a Deep Learning Model for Survival Prognosis of Transcatheter Arterial Chemoembolization in Patients with Intermediate-Stage Hepatocellular Carcinoma. European Journal of Radiology, 156, Article ID: 110527. https://doi.org/10.1016/j.ejrad.2022.110527
|
[37]
|
Peng, J., Huang, J., Huang, G. and Zhang, J. (2021) Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integration of Radiomics and Deep Learning. Frontiers in Oncology, 11, Article 730282. https://doi.org/10.3389/fonc.2021.730282
|
[38]
|
Xu, Z., An, C., Shi, F., Ren, H., Li, Y., Chen, S., et al. (2023) Automatic Prediction of Hepatic Arterial Infusion Chemotherapy Response in Advanced Hepatocellular Carcinoma with Deep Learning Radiomic Nomogram. European Radiology, 33, 9038-9051. https://doi.org/10.1007/s00330-023-09953-x
|
[39]
|
Zhang, L., Xia, W., Yan, Z., Sun, J., Zhong, B., Hou, Z., et al. (2020) Deep Learning Predicts Overall Survival of Patients with Unresectable Hepatocellular Carcinoma Treated by Transarterial Chemoembolization Plus Sorafenib. Frontiers in Oncology, 10, Article 593283. https://doi.org/10.3389/fonc.2020.593292
|
[40]
|
Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E. and Ganslandt, T. (2022) Transfer Learning for Medical Image Classification: A Literature Review. BMC Medical Imaging, 22, Article No. 69. https://doi.org/10.1186/s12880-022-00793-7
|
[41]
|
Sun, H., Plawinski, J., Subramaniam, S., Jamaludin, A., Kadir, T., Readie, A., et al. (2023) A Deep Learning Approach to Private Data Sharing of Medical Images Using Conditional Generative Adversarial Networks (GANs). PLOS ONE, 18, e0280316. https://doi.org/10.1371/journal.pone.0280316
|
[42]
|
Sheller, M.J., Edwards, B., Reina, G.A., Martin, J., Pati, S., Kotrotsou, A., et al. (2020) Federated Learning in Medicine: Facilitating Multi-Institutional Collaborations without Sharing Patient Data. Scientific Reports, 10, Article No. 12598. https://doi.org/10.1038/s41598-020-69250-1
|
[43]
|
van der Velden, B.H.M., Kuijf, H.J., Gilhuijs, K.G.A. and Viergever, M.A. (2022) Explainable Artificial Intelligence (XAI) in Deep Learning-Based Medical Image Analysis. Medical Image Analysis, 79, Article ID: 102470. https://doi.org/10.1016/j.media.2022.102470
|
[44]
|
Stahlschmidt, S.R., Ulfenborg, B. and Synnergren, J. (2022) Multimodal Deep Learning for Biomedical Data Fusion: A Review. Briefings in Bioinformatics, 23, bbab569. https://doi.org/10.1093/bib/bbab569
|