热带地区土壤团聚体形成与稳定性的影响因素
Factors Affecting the Formation and Stability of Soil Aggregates in the Tropics
DOI: 10.12677/gser.2025.142021, PDF, HTML, XML,    国家自然科学基金支持
作者: 康 傲, 刘瑞强*:东北林业大学生态学院,黑龙江 哈尔滨;周灵燕:上海植物园,上海;王小红:福建师范大学地理科学学院,福建 福州;刘 露:长沙市明德中学,湖南 长沙;高 景:上海勘测设计研究院有限公司,上海
关键词: 土壤团聚体热带土壤有机质周转Soil Aggregate Tropical Soil Organic Matter Turnover
摘要: 土壤团聚体作为土壤结构的核心单元,在维持有机质稳定、调控养分循环及提升土壤抗侵蚀能力中发挥关键作用。热带地区土壤因高度风化、有机质输入少及独特的矿物组成(高岭石、蒙脱石及铁铝氧化物),其团聚体形成与稳定机制显著区别于温带土壤。传统层次模型强调有机质在团聚体形成中的主导作用,但热带土壤中无机胶结物质(粘土矿物与氧化物)的交互作用及阳离子桥键效应成为重要驱动因素。研究表明,生物因素(微生物分泌物)、非生物因素(Ca2+和Al3+离子桥)及人类活动(土地利用变化、耕作方式)共同影响团聚体稳定性。然而,热带土壤团聚体稳定性与有机质的关系存在争议,且缺乏普适性理论模型。未来需聚焦成土母岩差异、阳离子作用机制及多因子交互效应,以揭示热带土壤团聚体动态规律,为碳封存和土壤可持续管理提供理论依据。
Abstract: As the core unit of soil structure, soil aggregates play a key role in maintaining the stability of organic matter, regulating nutrient cycling and enhancing soil erosion resistance. Soils in the tropics are significantly different from temperate soils in terms of aggregate formation and stabilisation mechanisms due to their high degree of weathering, low organic matter inputs and unique mineral composition (kaolinite, montmorillonite and iron and aluminium oxides). Traditional hierarchical models emphasise the dominant role of organic matter in agglomerate formation, but the interaction of inorganic cementing materials (clay minerals and oxides) and cationic bridge bonding effects in tropical soils become important drivers. Studies have shown that biotic factors (microbial secretions), abiotic factors (Ca2+ and Al3+ ionic bridges) and human activities (land-use changes, farming practices) combine to influence agglomerate stability. However, the relationship between aggregate stability and organic matter in tropical soils is controversial and lacks universal theoretical models. In the future, we need to focus on the differences in soil-forming parent rocks, cation action mechanisms and multi-factor interaction effects, in order to reveal the dynamics of tropical soil aggregates, and provide a theoretical basis for carbon sequestration and sustainable soil management.
文章引用:康傲, 周灵燕, 王小红, 刘露, 高景, 刘瑞强. 热带地区土壤团聚体形成与稳定性的影响因素[J]. 地理科学研究, 2025, 14(2): 210-218. https://doi.org/10.12677/gser.2025.142021

1. 引言

土壤团聚体是土壤结构的基本组成部分,其成分和稳定性影响植物生长和土壤肥力[1]。它不仅有助于保护土壤有机质,还影响微生物群落结构,调节水流,决定养分的吸附与释放,并降低径流和侵蚀风险[2]。这些过程深刻作用于土壤养分循环及土壤有机质(SOM)的动态变化。在团聚体的形成过程中,胶结物质起关键作用,包括粘粒、弱可逆与强可逆胶体以及有机胶结物质。然而,由于成土母质、气候和生物等因素的不同,土壤中的有机与无机胶结物质在组成及特性上存在差异,从而影响依赖这些胶结物质形成的团聚体稳定性。

热带地区(包括亚热带地区)的土壤具有养分贫瘠、高度风化、外部输入的有机质少等特点。依据土壤矿物学性质可将其分为三类:(1) 以老成土、氧化土为代表的低活性粘质土壤,占热带土地面积的60%~70%,粘土矿物类型以1:1型的高岭石为主,粘土矿物与结晶和弱结晶或非结晶的铁铝氧化物和氢氧化物紧密结合。(2) 以变性土为代表的高活性的粘质土壤,粘土矿物类型以2:1型蒙脱石为主。(3) 含有大量非结晶或密结晶的水铝英石的土壤,以火山灰土为代表[3]。近年来,有关热带地区土壤团聚体形成与稳定性的研究有所发展,但并不多见。由于团聚体形成与稳定机制十分复杂,受到成土母岩、生物、气候、粘土矿物及人类活动等的影响,至今对热带土壤团聚体的形成与稳定性机制仍不清楚,缺乏一致的模型来解释。因而,真正认识热带地区土壤团聚体的形成和稳定机制以及人类活动的影响,对于调控管理热带地区土壤有机碳库和提高土壤质量具有十分重要的意义。

2. 热带地区土壤团聚体形成与稳定性

Tisdall等[4]提出了团聚体形成的层次模型,描述了初级无机颗粒在细菌、真菌和植物残体的影响下生成微团聚体,随后在微生物和植物分泌的多糖(瞬时性胶结物质)以及根系和真菌菌丝(暂时性胶结物质)的作用下进一步聚集形成大团聚体。

团聚体层次性理论已被诸多学者用于解释团聚性的降低与SOM损耗的相关关系[5]-[7],而且已在温带地区得到证实并有了进一步的发展[8] [9]。Oades等[8]提出微团聚体可在大团聚体内部直接形成。Elliot等[5]认为,有机质使微团聚体胶结成大团聚体,但其中的有机质稳定性较低。Golchin等[10]强调,大团聚体包裹的颗粒有机物为微团聚体的形成提供了条件,而被微团聚体包裹的颗粒有机物受到更强保护,具有更高的稳定性。Six等[9]进一步提出“大团聚体周转”概念模型,认为新鲜有机物直接促进大团聚体的形成,而大团聚体内部的颗粒有机物有助于微团聚体的生成。随着颗粒有机物的分解及其他干扰过程,大团聚体破碎,释放出微团聚体。

但是,由于热带土壤特性的差异,现有的模型依然无法解释热带土壤团聚体的形成与稳定机制。Oades等[11]的研究发现,温带地区土壤(2:1型和混合型粘土矿物),有机质是团聚体形成和稳定性的主要胶结物质。然而,热带地区土壤团聚体形成并不符合层次性模型,并认为热带土壤的团聚性与有机质的关系不显著。Six等[12]提出了热带地区土壤团聚体的形成模型,指出热带地区土壤团聚体形成即存在生物机制–新鲜的植物和根系残骸在真菌菌丝绊缠,微生物活动及分泌物,根系的穿插、绊缠、侧压、分泌物的胶结作用,土壤动物的摄食、筑穴、分泌粘液的胶结作用下形成大团聚体;又存在物理化学机制–粘土矿物与氧化物的交互作用直接形成大团聚体。

团聚体的稳定性是指团聚体抵抗外力作用或外部环境的改变而保持其原有形态的能力[13]。是反映土壤结构状况的重要指标之一,稳定性的下降意味着土壤结构的退化。团聚体稳定性受到SOC、土壤生物、离子桥、粘土矿物及氧化物等的影响,这些因素之间复杂的交互作用既可共同促进团聚体的形成,也可能破坏团聚体[14]。源于植物、动物和微生物及其分泌物的SOC,即是团聚体形成的胶结物质,也是团聚体形成的核。SOC在形成稳定的团聚体中发挥作用的大小取决于它的分解速率,而这又受到团聚体对它的物理和化学保护的影响。根系和真菌能绊住颗粒物,并通过释放有机胶结物质使颗粒物粘结在一起。粘粒可通过重新排列和凝聚形成团聚体,但它的膨胀也会破坏团聚体。Si4+、Fe3+、Al3+等阳离子可在矿物和有机–无机复合体之间形成离子键桥促进团聚体形成,结晶和无定形的金属氧化物及氢氧化物的沉积则能提高土壤团聚性。

3. 热带地区土壤团聚体稳定性的影响因素

如图所示(图1),影响土壤团聚体稳定性的因素很多,主要生物因素(微生物)、非生物因素(阳离子)及人类活动(土地利用变化、土地管理措施、施肥)等。

Figure 1. Soil aggregate formation and influencing factors

1. 土壤团聚体形成与影响因素

3.1. 生物因素

微生物

微生物(如真菌、放线菌和细菌)是土壤的重要组成部分,也是促进团聚体形成的关键生物因素。不同微生物类型在团聚体形成中的作用有所不同:真菌和放线菌依靠菌丝缠绕土壤颗粒形成团聚体,而细菌则通过其代谢产物(多糖和其他有机物)发挥胶结作用,使团聚体更稳定。Siddiky等[15]的研究表明,真菌菌根可通过重新排列粘土颗粒、分泌胞外多糖进行粘结以及缠绕颗粒等方式,提高土壤结构并增强团聚体稳定性,丛枝菌根分泌土壤球囊霉素对土壤团聚体稳定性也存在显著的影响[16],而这可能与球囊霉素分子的疏水性和顽抗性,保护了其他胶结物质有关。菌丝体在团聚体的形成与稳定中除了起物理绊缠作用外,还可通过分泌胶结物质–多糖类物质,使微团聚体粘结在一起形成大团聚体。而微生物分泌的胞外多糖可以显著地提高团聚体的稳定性[17]。然而,微生物对团聚体形成与稳定性影响受到真菌与细菌影响的尺度差异、土壤质地、土壤矿物类型的影响。真菌在大团聚体的形成和稳定性起重要作用[18],而细菌和真菌分泌的粘液只能促进微团聚体的形成[19]。Ding等[20]指出,矿物成分影响着微生物的群落结构,蒙脱石和伊利石对细菌和变形菌存在影响,但对放线菌无影响,金属氧化物对变形菌具有微弱的影响。Bach等[21]指出,在粉砂质土壤,团聚体的平均重量直径(MWD)与真菌和丛枝菌根生物量高度相关;而在细砂质土壤,细菌生物量与MWD的相关性高于真菌。粉粘粒含量高的土壤能较好地保护微生物,聚集了更多及多样化的微生物群落,形成更多更大的团聚体[22]。Six等[12]的研究指出,在2:1型土壤中,团聚体稳定性与微生物生物量呈显著相关性,而在1:1型及富含氧化物的热带土壤中,这种相关性并不存在。研究表明,与土壤质地相比,土壤矿物类型对微生物生物量C与团聚体形成关系的影响可能更大。

在一项全球分析中,Lehmann等[23]发现了土壤生物群对聚集的积极影响,细菌和真菌通常比其他类群更重要。良好的土壤结构通常与较高的微生物生物量和活性相关,主要通过细菌胞外聚合物(EPS)或土壤蛋白质等微生物化合物的化学结合作用,或通过真菌菌丝对土壤颗粒的物理缠结[24]。微生物群落组成与功能基因的分布模式对团聚体稳定性的调控机制存在显著的空间异质性。Lehmann等人在文中指出,微生物α多样性每增加1个单位,2 mm以上水稳性团聚体比例提升约8%,其中放线菌的丰度与团聚体抗张强度呈显著正相关[23]。Rillig等[25]表明,干旱条件下放线菌产生的疏水性胞外多糖能将团聚体崩解阈值提高40%,而湿润环境中的革兰氏阴性菌分泌的亲水性多糖反而使崩解风险增加23%。研究表明,微生物功能群落的代谢互作网络通过物理–化学–生物多重耦合机制,在纳米–微米–毫米多尺度上协同调控团聚体结构的形成与稳定[26]-[28]

3.2. 非生物因素

阳离子

Dimoyiannis等[29]指出,阳离子交换量常常与稳定性团聚体有关。多价阳离子键桥可降低带负电荷的粘粒与SOC之间的排斥力,增强它们之间的吸附力,促进团聚体的形成[30]。二价的Ca2+和Mg2+阳离子可与粘土颗粒和SOC形成离子桥来提高土壤结构,由于Ca2+可抑制粘粒的分散性,而Mg2+会提高粘粒的分散性,Ca2+可能比Mg2+对于提高土壤结构更有效[31]。Na+离子具有很高的分散性,可直接破坏团聚体以及降低植物生产力间接影响团聚体,土壤中的交换性Na+及处于交换状态的Na+会增加排斥电荷及分散粘土颗粒[14]。在土壤中施加石灰或石膏,形成含有Ca2+离子桥的更良好的胶结,可减少交换性Mg2+和Na+离子的比例,显著提高土壤团聚体的稳定性[14]。Amezketa等[32]指出,多价Al3+和Fe3+离子可通过形成阳离子键桥和形成有机–金属复合体及凝胶提高土壤团聚体的稳定性,含有Al3+和Fe3+离子及阳离子交换量较高的粘粒的团聚体可以提高团聚体吸纳SOC的能力。氧化物和含Al3+氢氧化物与SOC及可分散的粘粒的协同作用可提高团聚体稳定性[33]。在粘粒和SOC含量低的酸性土壤中,如氧化土,Al3+和Fe3+离子与高岭石的交互作用可促进团聚体的形成[11]。Barral等[34]指出,由Fe3+氧化物形成的粗颗粒可提高氧化土中团聚体的张力。研究表明,无机相通过吸附或共沉淀方式均匀分布于有机基质中,其分布均匀性取决于金属离子与碳含量的比例,这有助于团聚体结构的优化[35]。相关研究指出,黏土矿物表面首先会形成有机覆盖层,该层随后与其他矿物颗粒结合,形成对有机物质的物理封闭结构[36]。多价阳离子(如Ca2+、Mg2+、Al3+、Fe3+)通过与黏土矿物及有机质形成离子键桥,显著提升团聚体的稳定性和形成效率。其中Al3+和Fe3+能够通过吸附或共沉淀作用与矿物表面结合,形成微团聚体结构,在此过程中铁/铝氧化物的表面特性具有关键作用[37]。不同黏土矿物对阳离子吸附及团聚体稳定性的影响存在差异。在高岭石为主的1:1型黏土体系中,Al3+和Fe3+与矿物的相互作用是团聚体形成的核心要素[11]。而对于蒙脱石为主的2:1型黏土,由于其较高的阳离子交换容量,能够结合更多阳离子,这种特性显著改变了团聚体的稳定机制[12]

3.3. 人为因素

3.3.1. 土地利用方式变化

有关土地利用方式对土壤团聚体的影响已多有描述。天然林转换成耕地往往伴随着SOC和养分含量的下降,导致土壤结构的退化[38]。而热带地区的森林转换成耕地后造成SOC的损失最大,达到25%~30%,转换成草地后SOC储量减少12%,转换成次生林后SOC减少9% [39]。天然林转变成其他农业用地后,不仅直接减少土壤的凋落物和根系C归还量[40],而且带来对土壤的物理扰动,使被保护的SOC暴露在外,加快其矿物[41],破坏土壤团聚结构,降低土壤团聚体的稳定性。退耕还林或还草减少了人为干扰,降低耕作对土壤团聚体的破坏,同时提高植被覆盖率,并增加土壤有机质和养分归还量[39],从而增强团聚体稳定性[42]。森林转为耕地后,土壤中与团聚体稳定性密切相关的碳水化合物、球囊霉素及总有机碳含量显著下降,有机胶结物质减少,导致团聚体稳定性降低[43]。毛艳玲[44]的研究表明,天然林受人为干扰后,会导致土壤团聚体有机碳含量发生损失,造成大团聚体数量显著下降,团聚体稳定性降低。谢锦升等[45]对红壤侵蚀裸地的植被恢复的研究表明,植被恢复后大团聚体的稳定性显著提高,其主要原因是植被恢复增加了土壤有机质的输入,促进了大团聚体的形成。

3.3.2. 土地管理措施

有效的土地管理措施包括保护性耕作、轮作及间种豆科作物等。其中,保护性耕作,包括免耕和少耕,被认为是降低农业土壤碳损失的有效耕作手段[7]。与传统耕作相比,免耕可提高土壤的团聚性,增加土壤的SOC含量,在表层土壤这种影响更加明显[46]。Cambardella等[6]指出,免耕可增强土壤表层生物活性,如促进真菌生长、根系发育和土壤动物活动,有助于大团聚体内部微粒有机质的结合,提高结构稳定性,且真菌菌丝的缠绕有利于大团聚体的形成。相反,耕作会破坏大团聚体,导致SOC流失,使SOM暴露并加速微生物对SOC的分解[9]。在免耕系统下,新鲜残茬作为微生物活动的碳源,在微生物分泌的胶结物质作用下结合进入大团聚体,成为大团聚体内粗颗粒有机质;随着时间推移,大团聚体内的粗颗粒有机质逐步分解破碎为细颗粒,并被矿物质和微生物产物包裹,形成内部微团聚体。最终,胶结物质消耗殆尽,大团聚体稳定性降低并释放出微团聚体。在作物残茬、微生物、根系和矿物质的共同作用下,新大团聚体形成,完成其周转过程。

而在传统耕作下,某些大团聚体也经过与免耕同样的步骤。然而,耕作使很大比例的大团聚体被打碎,跳过中间阶段,进入更短的周转循环,粗的颗粒有机质从团聚体中释放出来,暴露在外,导致有机质的分解矿化,降低团聚体的稳定性[9]。Costa等[47]在巴西的研究证实了Six等[9]的理论,指出耕作降低了大团聚体的数量及其稳定性。

3.3.3. 有机质输入

有机质是促进土壤团聚体形成和稳定的关键胶结物质,其作用在众多研究中有所描述。植物产物和微生物活动是土壤有机质输入与输出的主要生物过程[12]。有机质输入减少往往导致团聚体稳定性下降[48],而植被恢复能显著提高其稳定性[45]。增加有机质输入可促进大团聚体的形成和稳定,可能是由于有机质增加刺激微生物活性,提升微生物生物量,并分泌更多胶结物质[49]。SOC的累积与分解受输入有机质的分子性质影响[50],不仅决定土壤有机质含量,还影响不同SOC库的化学特性及其在维持团聚体稳定性和土壤物理性质中的作用。短期内,添加生物活性有机质可促进团聚过程,而腐殖化有机质则对土壤物理性质具有长期稳定的改善作用[51] [52]

施用有机肥不仅维持土壤有机质水平,增加作物可利用养分,还能改善土壤的物理、化学和生物特性,从而影响土壤肥力[53] [54]。有机肥提供额外的有机残留物和有机碳,刺激微生物活性,促进微生物多糖分泌,增强团聚体胶结力,提高其稳定性[55]。Ngo等[56]认为,堆肥可增加腐殖质和疏水性有机质含量,长期提升团聚体稳定性。Bandyopadhyay等[55]研究表明,有机肥处理的土壤团聚体稳定性显著高于无机肥或未施肥土壤,Tripathy和Singh [57]以及Singh [58]也证实二者具有显著正相关关系。Liu等[59]的长期施肥实验显示,混合施用有机肥和化肥能有效增加大团聚体数量,提升团聚体稳定性,并提高各粒级水稳性团聚体的总碳和全氮含量。

但也有研究指出,热带地区有机质与团聚体稳定性的关系与温带土壤并不一致[12]。Denef等[60]的短期实验表明,1:1型土壤达到团聚体稳定性的速率比2:1型和混合型土壤更快,而且稳定性不受有机质输入的影响。热带土壤由于以1:1型粘土矿物为主而且富含铁铝氧化物,它们之间的交互作用产生无机矿物复合体从而形成团聚体,SOM作为胶结物质稳定团聚体的重要性要低,可能并不显著[11] [61]

4. 结语

土壤团聚体对有机碳的物理保护被认为是有机碳稳定性的重要机制之一,有研究表明表土中90%的有机碳位于团聚体中,团聚体保护的有机碳比未保护的有机碳的存留时间更长。然而土壤团聚体的形成与稳定性机制十分复杂,受到了诸多因素的影响,包括生物因素和非生物因素以及人类活动的影响,土壤团聚体稳定性的提高可以通用减少对土壤的扰动,提高植被覆盖,增加有机质输入等管理措施来提高。尽管目前关于温带土壤团聚体形成和稳定性的机制有了一致的观点,即有机质是温带土壤团聚体形成和稳定的主要胶结物质,生物因素主导着团聚体的形成和稳定性。然而对于热带亚热带土壤团聚体的形成与稳定性机制仍然缺乏认识,比如现有的机制仍然无法解释热带地区氧化土土壤团聚体的形成与稳定性。目前国外关于热带土壤团聚体形成与稳定性的研究已经有所展开,但国内关于此方面的研究则寥寥无几,多数已有的研究是关于各影响因素对团聚体稳定性的影响的表面描述,缺乏对理论机制的探讨。因此,在今后对热带亚热带土壤的研究中,需要注重以下几个方向:

(1) 成土母岩的差异,往往会造成土壤矿物类型的不同,在团聚体的形成和稳定过程中,粘土矿物类型能够决定生物和非生物过程的相对贡献,因此,对不同母岩下土壤团聚体的稳定性机制需要加以探讨。

(2) 阳离子在参与团聚体的形成与稳定性中具有重要作用,而关于这方面的报道也极少。

(3) 土壤团聚体的形成与稳定是一个复杂的过程,受到多种机制的综合影响,因此,研究中需要综合考虑多方面的影响因素。

基金项目

1) 青年科学基金(413223013)。

2) 国家自然科学基金(32401375)。

NOTES

*通讯作者。

参考文献

[1] Coban, O., De Deyn, G.B. and van der Ploeg, M. (2022) Soil Microbiota as Game-Changers in Restoration of Degraded Lands. Science, 375, 990.
https://doi.org/10.1126/science.abe0725
[2] Yan, F., Shi, Z., Li, Z. and Cai, C. (2008) Estimating Interrill Soil Erosion from Aggregate Stability of Ultisols in Subtropical China. Soil and Tillage Research, 100, 34-41.
https://doi.org/10.1016/j.still.2008.04.006
[3] Feller, C. and Beare, M.H. (1997) Physical Control of Soil Organic Matter Dynamics in the Tropics. Geoderma, 79, 69-116.
https://doi.org/10.1016/s0016-7061(97)00039-6
[4] Tisdall, J.M. and Oades, J.M. (1982) Organic Matter and Water‐Stable Aggregates in Soils. Journal of Soil Science, 33, 141-163.
https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
[5] Elliott, E.T. (1986) Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils. Soil Science Society of America Journal, 50, 627-633.
https://doi.org/10.2136/sssaj1986.03615995005000030017x
[6] Cambardella, C.A. and Elliott, E.T. (1993) Carbon and Nitrogen Distribution in Aggregates from Cultivated and Native Grassland Soils. Soil Science Society of America Journal, 57, 1071-1076.
https://doi.org/10.2136/sssaj1993.03615995005700040032x
[7] Beare, M.H., Hendrix, P.F. and Coleman, D.C. (1994) Water‐Stable Aggregates and Organic Matter Fractions in Conventional‐ and No‐Tillage Soils. Soil Science Society of America Journal, 58, 777-786.
https://doi.org/10.2136/sssaj1994.03615995005800030020x
[8] Oades, J.M. (1984) Soil Organic Matter and Structural Stability: Mechanisms and Implications for Management. Plant and Soil, 76, 319-337.
https://doi.org/10.1007/bf02205590
[9] Six, J., Elliott, E.T. and Paustian, K. (2000) Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. Soil Biology and Biochemistry, 32, 2099-2103.
https://doi.org/10.1016/s0038-0717(00)00179-6
[10] Golchin, A., Oades, J., Skjemstad, J. and Clarke, P. (1994) Study of Free and Occluded Particulate Organic Matter in Soils by Solid State 13C CP/MAS NMR Spectroscopy and Scanning Electron Microscopy. Soil Research, 32, 285-309.
https://doi.org/10.1071/sr9940285
[11] Oades, J. and Waters, A. (1991) Aggregate Hierarchy in Soils. Soil Research, 29, 815-828.
https://doi.org/10.1071/sr9910815
[12] Six, J., Feller, C., Denef, K., Ogle, S.M., de Moraes, J.C. and Albrecht, A. (2002) Soil Organic Matter, Biota and Aggregation in Temperate and Tropical Soils—Effects of No-Tillage. Agronomie, 22, 755-775.
https://doi.org/10.1051/agro:2002043
[13] Domżł, H., Hodara, J., Słowińska-Jurkiewicz, A. and Turski, R. (1993) The Effects of Agricultural Use on the Structure and Physical Properties of Three Soil Types. Soil and Tillage Research, 27, 365-382.
https://doi.org/10.1016/0167-1987(93)90078-4
[14] Bronick, C.J. and Lal, R. (2005) Soil Structure and Management: A Review. Geoderma, 124, 3-22.
https://doi.org/10.1016/j.geoderma.2004.03.005
[15] Siddiky, M.R.K., Kohler, J., Cosme, M. and Rillig, M.C. (2012) Soil Biota Effects on Soil Structure: Interactions between Arbuscular Mycorrhizal Fungal Mycelium and Collembola. Soil Biology and Biochemistry, 50, 33-39.
https://doi.org/10.1016/j.soilbio.2012.03.001
[16] Chaudhary, V.B., Bowker, M.A., O'Dell, T.E., Grace, J.B., Redman, A.E., Rillig, M.C., et al. (2009) Untangling the Biological Contributions to Soil Stability in Semiarid Shrublands. Ecological Applications, 19, 110-122.
https://doi.org/10.1890/07-2076.1
[17] Chaney, K. and Swift, R.S. (1986) Studies on Aggregate Stability. 11. The Effect of Humic Substances on the Stability of Reformed Soil Aggregates. Journal of Soil Science, 37, 337-343.
https://doi.org/10.1111/j.1365-2389.1986.tb00036.x
[18] Bossuyt, H., Denef, K., Six, J., Frey, S.D., Merckx, R. and Paustian, K. (2001) Influence of Microbial Populations and Residue Quality on Aggregate Stability. Applied Soil Ecology, 16, 195-208.
https://doi.org/10.1016/s0929-1393(00)00116-5
[19] Oades, J.M. (1993) The Role of Biology in the Formation, Stabilization and Degradation of Soil Structure. Geoderma, 56, 377-400.
https://doi.org/10.1016/0016-7061(93)90123-3
[20] Ding, G., Pronk, G.J., Babin, D., Heuer, H., Heister, K., Kögel-Knabner, I., et al. (2013) Mineral Composition and Charcoal Determine the Bacterial Community Structure in Artificial Soils. FEMS Microbiology Ecology, 86, 15-25.
https://doi.org/10.1111/1574-6941.12070
[21] Bach, E.M., Baer, S.G., Meyer, C.K. and Six, J. (2010) Soil Texture Affects Soil Microbial and Structural Recovery during Grassland Restoration. Soil Biology and Biochemistry, 42, 2182-2191.
https://doi.org/10.1016/j.soilbio.2010.08.014
[22] Wick, A.F., Huzurbazar, S.V. and Stahl, P.D. (2009) Use of Bayesian Methods to Model Soil Aggregation in Undisturbed Semiarid Grasslands. Soil Science Society of America Journal, 73, 1707-1714.
https://doi.org/10.2136/sssaj2008.0185
[23] Lehmann, A., Zheng, W. and Rillig, M.C. (2017) Soil Biota Contributions to Soil Aggregation. Nature Ecology & Evolution, 1, 1828-1835.
https://doi.org/10.1038/s41559-017-0344-y
[24] Degens, B.P. (1997) Macro-Aggregation of Soils by Biological Bonding and Binding Mechanisms and the Factors Affecting These: A Review. Soil Research, 35, 431.
https://doi.org/10.1071/s96016
[25] Rillig, M.C. and Mummey, D.L. (2006) Mycorrhizas and Soil Structure. New Phytologist, 171, 41-53.
https://doi.org/10.1111/j.1469-8137.2006.01750.x
[26] Gupta, V.V.S.R. and Germida, J.J. (2015) Soil Aggregation: Influence on Microbial Biomass and Implications for Biological Processes. Soil Biology and Biochemistry, 80, A3-A9.
https://doi.org/10.1016/j.soilbio.2014.09.002
[27] Zhang, M., Song, X., Wu, X., Zheng, F., Li, S., Zhuang, Y., et al. (2024) Microbial Regulation of Aggregate Stability and Carbon Sequestration under Long-Term Conservation Tillage and Nitrogen Application. Sustainable Production and Consumption, 44, 74-86.
https://doi.org/10.1016/j.spc.2023.11.022
[28] Merino-Martín, L., Stokes, A., Gweon, H.S., Moragues-Saitua, L., Staunton, S., Plassard, C., et al. (2021) Interacting Effects of Land Use Type, Microbes and Plant Traits on Soil Aggregate Stability. Soil Biology and Biochemistry, 154, Article ID: 108072.
https://doi.org/10.1016/j.soilbio.2020.108072
[29] Dimoyiannis, D.G., Tsadilas, C.D. and Valmis, S. (1998) Factors Affecting Aggregate Instability of Greek Agricultural Soils. Communications in Soil Science and Plant Analysis, 29, 1239-1251.
https://doi.org/10.1080/00103629809370023
[30] Tisdall, J.M. (2020) Formation of Soil Aggregates and Accumulation of Soil Organic Matter. In: Carter, M.R. and Stewart, B.A., Eds., Structure and Organic Matter Storage in Agricultural Soils, CRC Press, 57-96.
https://doi.org/10.1201/9781003075561-5
[31] Zhang, X.C. and Norton, L.D. (2002) Effect of Exchangeable Mg on Saturated Hydraulic Conductivity, Disaggregation and Clay Dispersion of Disturbed Soils. Journal of Hydrology, 260, 194-205.
https://doi.org/10.1016/s0022-1694(01)00612-6
[32] Amézketa, E. (1999) Soil Aggregate Stability: A Review. Journal of Sustainable Agriculture, 14, 83-151.
https://doi.org/10.1300/j064v14n02_08
[33] Molina, N.C., Caceres, M.R. and Pietroboni, A.M. (2001) Factors Affecting Aggregate Stability and Water Dispersible Clay of Recently Cultivated Semiarid Soils of Argentina. Arid Land Research and Management, 15, 77-87.
https://doi.org/10.1080/15324980118369
[34] Barral, M.T., Arias, M. and Guérif, J. (1998) Effects of Iron and Organic Matter on the Porosity and Structural Stability of Soil Aggregates. Soil and Tillage Research, 46, 261-272.
https://doi.org/10.1016/s0167-1987(98)00092-0
[35] Yu, G.H., et al. (2017) Mineral Availability as a Key Regulator of Soil Carbon Storage. Environmental Science & Technology: ES&T, 51, 4960-4969.
[36] Edwards, A.P. and Bremner, J.M. (1967) Microaggregates in Soils. Journal of Soil Science, 18, 64-73.
https://doi.org/10.1111/j.1365-2389.1967.tb01488.x
[37] Eusterhues, K., Rumpel, C. and Kögel‐Knabner, I. (2005) Organo‐Mineral Associations in Sandy Acid Forest Soils: Importance of Specific Surface Area, Iron Oxides and Micropores. European Journal of Soil Science, 56, 753-763.
https://doi.org/10.1111/j.1365-2389.2005.00710.x
[38] Ashagrie, Y., Zech, W., Guggenberger, G. and Mamo, T. (2007) Soil Aggregation, and Total and Particulate Organic Matter Following Conversion of Native Forests to Continuous Cultivation in Ethiopia. Soil and Tillage Research, 94, 101-108.
https://doi.org/10.1016/j.still.2006.07.005
[39] Don, A., Schumacher, J. and Freibauer, A. (2010) Impact of Tropical Land-Use Change on Soil Organic Carbon Stocks—A Meta-Analysis. Global Change Biology, 17, 1658-1670.
https://doi.org/10.1111/j.1365-2486.2010.02336.x
[40] 杨玉盛, 林鹏, 郭剑芬, 等. 格氏栲天然林与人工林凋落物数量, 养分归还及凋落叶分解[J]. 生态学报, 2003, 23(7): 1278-1289.
[41] 陈山, 杨峰, 林杉, 等. 土地利用方式对红壤团聚体稳定性的影响[J]. 水土保持学报, 2012, 26(5): 211-216.
[42] 罗友进, 魏朝富, 李渝, 等. 土地利用对石漠化地区土壤团聚体有机碳分布及保护的影响[J]. 生态学报, 2011, 31(1): 257-266.
[43] Spohn, M. and Giani, L. (2011) Impacts of Land Use Change on Soil Aggregation and Aggregate Stabilizing Compounds as Dependent on Time. Soil Biology and Biochemistry, 43, 1081-1088.
https://doi.org/10.1016/j.soilbio.2011.01.029
[44] 毛艳玲. 土地利用变化对土壤团聚体碳组分的影响[D]: [博士学位论文]. 福州: 福建师范大学, 2008.
[45] 谢锦升, 杨玉盛, 陈光水, 等. 植被恢复对退化红壤团聚体稳定性及碳分布的影响[J]. 生态学报, 2008, 28(2): 702-709.
[46] Six, J., Elliott, E.T. and Paustian, K. (1999) Aggregate and Soil Organic Matter Dynamics under Conventional and No‐tillage Systems. Soil Science Society of America Journal, 63, 1350-1358.
https://doi.org/10.2136/sssaj1999.6351350x
[47] Costa Junior, C., Píccolo, M.d.C., Siqueira Neto, M., Camargo, P.B.d., Cerri, C.C. and Bernoux, M. (2012) Carbono em agregados do solo sob vegetação nativa, Pastagem e sistemas agrícolas no bioma Cerrado. Revista Brasileira de Ciência do Solo, 36, 1311-1322.
https://doi.org/10.1590/s0100-06832012000400025
[48] Spaccini, R. and Piccolo, A. (2013) Effects of Field Managements for Soil Organic Matter Stabilization on Water-Stable Aggregate Distribution and Aggregate Stability in Three Agricultural Soils. Journal of Geochemical Exploration, 129, 45-51.
https://doi.org/10.1016/j.gexplo.2012.10.004
[49] Denef, K. and Six, J. (2004) Clay Mineralogy Determines the Importance of Biological versus Abiotic Processes for Macroaggregate Formation and Stabilization. European Journal of Soil Science, 56, 469-479.
https://doi.org/10.1111/j.1365-2389.2004.00682.x
[50] Lorenz, K., Lal, R., Preston, C.M. and Nierop, K.G.J. (2007) Strengthening the Soil Organic Carbon Pool by Increasing Contributions from Recalcitrant Aliphatic Bio(macro)molecules. Geoderma, 142, 1-10.
https://doi.org/10.1016/j.geoderma.2007.07.013
[51] Piccolo, A. and Mbagwu, J.S.C. (1999) Role of Hydrophobic Components of Soil Organic Matter in Soil Aggregate Stability. Soil Science Society of America Journal, 63, 1801-1810.
https://doi.org/10.2136/sssaj1999.6361801x
[52] Chivenge, P., Vanlauwe, B., Gentile, R. and Six, J. (2011) Comparison of Organic versus Mineral Resource Effects on Short-Term Aggregate Carbon and Nitrogen Dynamics in a Sandy Soil versus a Fine Textured Soil. Agriculture, Ecosystems & Environment, 140, 361-371.
https://doi.org/10.1016/j.agee.2010.12.004
[53] Ferreras, L., Gomez, E., Toresani, S., Firpo, I. and Rotondo, R. (2006) Effect of Organic Amendments on Some Physical, Chemical and Biological Properties in a Horticultural Soil. Bioresource Technology, 97, 635-640.
https://doi.org/10.1016/j.biortech.2005.03.018
[54] Nayak, D.R., Babu, Y.J. and Adhya, T.K. (2007) Long-Term Application of Compost Influences Microbial Biomass and Enzyme Activities in a Tropical Aeric Endoaquept Planted to Rice under Flooded Condition. Soil Biology and Biochemistry, 39, 1897-1906.
https://doi.org/10.1016/j.soilbio.2007.02.003
[55] Bandyopadhyay, P.K., Saha, S., Mani, P.K. and Mandal, B. (2010) Effect of Organic Inputs on Aggregate Associated Organic Carbon Concentration under Long-Term Rice-Wheat Cropping System. Geoderma, 154, 379-386.
https://doi.org/10.1016/j.geoderma.2009.11.011
[56] Ngo, P.T., Rumpel, C., Dignac, M., Billou, D., Duc, T.T. and Jouquet, P. (2011) Transformation of Buffalo Manure by Composting or Vermicomposting to Rehabilitate Degraded Tropical Soils. Ecological Engineering, 37, 269-276.
https://doi.org/10.1016/j.ecoleng.2010.11.011
[57] Tripathy, R. and Singh, A.K. (2004) Effect of Water and Nitrogen Management on Aggregate Size and Carbon Enrichment of Soil in Rice‐Wheat Cropping System. Journal of Plant Nutrition and Soil Science, 167, 216-228.
https://doi.org/10.1002/jpln.200321175
[58] Singh, G., Jalota, S.K. and Singh, Y. (2007) Manuring and Residue Management Effects on Physical Properties of a Soil under the Rice-Wheat System in Punjab, India. Soil and Tillage Research, 94, 229-238.
https://doi.org/10.1016/j.still.2006.07.020
[59] LIU, Y., LI, X., SHEN, Q. and XU, Y. (2013) Enzyme Activity in Water-Stable Soil Aggregates as Affected by Long-Term Application of Organic Manure and Chemical Fertiliser. Pedosphere, 23, 111-119.
https://doi.org/10.1016/s1002-0160(12)60086-1
[60] Denef, K., Six, J., Merckx, R. and Paustian, K. (2002) Short-Term Effects of Biological and Physical Forces on Aggregate Formation in Soils with Different Clay Mineralogy. Plant and Soil, 246, 185-200.
https://doi.org/10.1023/a:1020668013524
[61] Green, V., Stott, D., Cruz, J. and Curi, N. (2007) Tillage Impacts on Soil Biological Activity and Aggregation in a Brazilian Cerrado Oxisol. Soil and Tillage Research, 92, 114-121.
https://doi.org/10.1016/j.still.2006.01.004