[1]
|
Yan, Y., Wang, B., Wang, C., Xiao, C. and Zhao, D. (2024) Adaptive Maximum Available Energy Evaluation for Lithium Battery in Hydrogen-Electric Hybrid Unmanned Aerial Vehicle Applications Considering Dynamic Ambient Temperature and Aging Level. Energy Conversion and Management, 314, Article 118685. https://doi.org/10.1016/j.enconman.2024.118685
|
[2]
|
Rizvi, S., Tahir, M.W., Ramzan, N. and Merten, C. (2024) Multiscale-Multidomain Model Order Reduction of Lithium-Ion Batteries for Automobile Application: A Review. Journal of Energy Storage, 99, Article 113390. https://doi.org/10.1016/j.est.2024.113390
|
[3]
|
Kumar, R.R., Bharatiraja, C., Udhayakumar, K., Devakirubakaran, S., Sekar, K.S. and Mihet-Popa, L. (2023) Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications. IEEE Access, 11, 105761-105809. https://doi.org/10.1109/access.2023.3318121
|
[4]
|
Fan, Q., Qu, D., Xu, C., Yang, H., Yang, S., Lin, D., et al. (2025) A Lithium-Ion Battery System with High Power and Wide Temperature Range Targeting the Internet of Things Applications. Journal of Power Sources, 630, Article 236070. https://doi.org/10.1016/j.jpowsour.2024.236070
|
[5]
|
Zhou, J., Shen, W., Ma, Z., Mou, X., Zhou, Y., Li, H., et al. (2024) Chebyshev-Galerkin-Based Thermal Fault Detection and Localization for Pouch-Type Li-Ion Battery. IEEE Transactions on Industrial Informatics, 20, 3436-3445. https://doi.org/10.1109/tii.2023.3308336
|
[6]
|
Sadeghi, H. and Restuccia, F. (2025) Kinetic Modelling of Thermal Decomposition in Lithium-Ion Battery Components during Thermal Runaway. Journal of Power Sources, 629, Article 236026. https://doi.org/10.1016/j.jpowsour.2024.236026
|
[7]
|
Mousavi, S., Zadehkabir, A., Siavashi, M. and Yang, X. (2023) An Improved Hybrid Thermal Management System for Prismatic Li-Ion Batteries Integrated with Mini-Channel and Phase Change Materials. Applied Energy, 334, Article 120643. https://doi.org/10.1016/j.apenergy.2023.120643
|
[8]
|
Singh, L.K., Gupta, A.K. and Sharma, A.K. (2022) Hybrid Thermal Management System for a Lithium-Ion Battery Module: Effect of Cell Arrangement, Discharge Rate, Phase Change Material Thickness and Air Velocity. Journal of Energy Storage, 52, Article 104907. https://doi.org/10.1016/j.est.2022.104907
|
[9]
|
Sun, Z., Guo, Y., Zhang, C., Xu, H., Zhou, Q., Wang, C. (2023) A Novel Hybrid Battery Thermal Management System for Prevention of Thermal Runaway Propagation. IEEE Transactions on Transportation Electrification, 9, 5028-5038. https://doi.org/10.1109/TTE.2022.3215691
|
[10]
|
Hong, J., Wang, Z., Qu, C., Ma, F., Xu, X., Yang, J., et al. (2023) Fault Prognosis and Isolation of Lithium-Ion Batteries in Electric Vehicles Considering Real-Scenario Thermal Runaway Risks. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11, 88-99. https://doi.org/10.1109/jestpe.2021.3097827
|
[11]
|
Yang, H., Yang, G., Liu, N., Zhang, S. and Gao, Q. (2025) Investigating the Impact of Inlet Angle on the Performance of Air-Cooling Lithium-Ion Battery Pack. Applied Thermal Engineering, 263, Article 125314. https://doi.org/10.1016/j.applthermaleng.2024.125314
|
[12]
|
Vashisht, S., Rajat, and Rakshit, D. (2024) Recent Advances and Perspectives in Enhancing Thermal State of Lithium-Ion Batteries with Phase Change Materials: Internal and External Heat Transfer Enhancement Factors. E Transportation, 22, Article 100381. https://doi.org/10.1016/j.etran.2024.100381
|
[13]
|
Gu, X., Ding, P., Chao, G. and Cui, Y. (2024) Analysis and Prediction of Battery Temperature in Thermal Management System Coupled Sic Foam-Composite Phase Change Material and Air. Journal of Energy Storage, 104, Article 114503. https://doi.org/10.1016/j.est.2024.114503
|
[14]
|
Gharehghani, A., Rabiei, M., Mehranfar, S., Saeedipour, S., Mahmoudzadeh Andwari, A., García, A., et al. (2024) Progress in Battery Thermal Management Systems Technologies for Electric Vehicles. Renewable and Sustainable Energy Reviews, 202, Article 114654. https://doi.org/10.1016/j.rser.2024.114654
|
[15]
|
Lin, J., Liu, D., Liu, X., Liu, M. and Cui, Y. (2025) Cnt@mxene Porous Composite PCM Based Thermal Management for Lithium-Ion Battery System. Applied Thermal Engineering, 262, Article 125240. https://doi.org/10.1016/j.applthermaleng.2024.125240
|
[16]
|
Xie, Y., Li, B., Hu, X., Lin, X., Zhang, Y. and Zheng, J. (2021) Improving the Air-Cooling Performance for Battery Packs via Electrothermal Modeling and Particle Swarm Optimization. IEEE Transactions on Transportation Electrification, 7, 1285-1302. https://doi.org/10.1109/tte.2020.3046735
|
[17]
|
Hasan, H.A., Togun, H., Abed, A.M., Biswas, N. and Mohammed, H.I. (2023) Thermal Performance Assessment for an Array of Cylindrical Lithium-Ion Battery Cells Using an Air-Cooling System. Applied Energy, 346, Article 121354. https://doi.org/10.1016/j.apenergy.2023.121354
|
[18]
|
Chen, K., Zhang, Z., Wu, B., Song, M. and Wu, X. (2024) An Air-Cooled System with a Control Strategy for Efficient Battery Thermal Management. Applied Thermal Engineering, 236, Article 121578. https://doi.org/10.1016/j.applthermaleng.2023.121578
|
[19]
|
Huang, G., Zhao, P. and Zhang, G. (2022) Real-Time Battery Thermal Management for Electric Vehicles Based on Deep Reinforcement Learning. IEEE Internet of Things Journal, 9, 14060-14072. https://doi.org/10.1109/jiot.2022.3145849
|
[20]
|
Verma, A., Saikia, T., Saikia, P., Rakshit, D. and Ugalde-Loo, C.E. (2023) Thermal Performance Analysis and Experimental Verification of Lithium-Ion Batteries for Electric Vehicle Applications through Optimized Inclined Mini-Channels. Applied Energy, 335, Article 120743. https://doi.org/10.1016/j.apenergy.2023.120743
|
[21]
|
Gan, H., Tian, J., Qiu, H., Li, G., Liu, C. and Zhao, J. (2025) Thermal Performance of Symmetrical Double-Spiral Channel Liquid Cooling Plate Based Battery Thermal Management for Energy Storage System. Applied Thermal Engineering, 263, Article 125399. https://doi.org/10.1016/j.applthermaleng.2024.125399
|
[22]
|
Zhang, S., Chen, Z., Bai, Q., Li, W. and Pei, Y. (2022) Individualization of Optimal Operation Currents for Promoting Multi-Stage Thermoelectric Cooling. Materials Today Physics, 26, Article 100746. https://doi.org/10.1016/j.mtphys.2022.100746
|
[23]
|
Park, S.J., Bang, K.M., Kim, B., Ziolkowski, P., Jeong, J. and Jin, H. (2022) Adaptive Thermoelectric Cooling System for Energy-Efficient Local and Transient Heat Management. Applied Thermal Engineering, 216, Article 119060. https://doi.org/10.1016/j.applthermaleng.2022.119060
|
[24]
|
Buchalik, R., Nowak, G. and Nowak, I. (2022) Comparative Analysis and Optimization of One and Two-Stage Cooling Systems with Thermoelectric Cells with Respect to Supercooling. Energy Conversion and Management, 259, Article 115587. https://doi.org/10.1016/j.enconman.2022.115587
|
[25]
|
Ang, E.Y.M., Ng, P.S., Soh, C.B. and Wang, P.C. (2022) Multi-Stage Thermoelectric Coolers for Cooling Wearables. Thermal Science and Engineering Progress, 36, Article 101511. https://doi.org/10.1016/j.tsep.2022.101511
|
[26]
|
Luo, D., Zhao, Y., Cao, J., Wu, Z., Yang, X. and Chen, H. (2024) Effective Temperature Control of a Thermoelectric-Based Battery Thermal Management System under Extreme Temperature Conditions. Journal of Energy Storage, 103, Article 114344. https://doi.org/10.1016/j.est.2024.114344
|
[27]
|
Wang, N., Tang, J., Shan, H., Jia, H., Peng, R. and Zuo, L. (2023) Efficient Power Conversion Using a PV-PCM-TE System Based on a Long Time Delay Phase Change with Concentrating Heat. IEEE Transactions on Power Electronics, 38, 10729-10738. https://doi.org/10.1109/tpel.2023.3283301
|
[28]
|
Kwan, T.H., Wu, X. and Yao, Q. (2020) Complete Implementation of the Combined TEG-TEC Temperature Control and Energy Harvesting System. Control Engineering Practice, 95, Article 104224. https://doi.org/10.1016/j.conengprac.2019.104224
|
[29]
|
Wang, N., Liu, Z.X., Ding, C., Zhang, J., Sui, G., Jia, H., et al. (2022) High Efficiency Thermoelectric Temperature Control System with Improved Proportional Integral Differential Algorithm Using Energy Feedback Technique. IEEE Transactions on Industrial Electronics, 69, 5225-5234. https://doi.org/10.1109/tie.2021.3082462
|
[30]
|
Kluska, J. and Zabinski, T. (2020) Pid-Like Adaptive Fuzzy Controller Design Based on Absolute Stability Criterion. IEEE Transactions on Fuzzy Systems, 28, 523-533. https://doi.org/10.1109/tfuzz.2019.2908772
|