微通道显微镜手术在脊柱脊髓疾病中的应用
Application of Microscopic Microchannel Surgery in Spinal and Spinal Cord Diseases
DOI: 10.12677/acm.2025.1541010, PDF, HTML, XML,    科研立项经费支持
作者: 刘 伟, 李 锋*:山东第一医科大学(山东省医学科学院),第一临床医学院,山东 济南;山东第一医科大学第一附属医院(山东省千佛山医院),神经外科,山东 济南
关键词: 微通道显微镜手术管状牵开器微创手术脊柱退行性疾病椎管内肿瘤Microscopic Microchannel Surgery (MMS) Tubular Retractor Minimally Invasive Surgery Spinal Degenerative Diseases Intradural Tumors
摘要: 脊柱脊髓疾病作为全球重大健康负担,其后遗症高风险与复杂治疗需求推动了微创技术的发展。微通道显微镜手术(Microscopic Microchannel Surgery, MMS)通过结合微创通道技术与显微成像系统,实现了精准、低创伤的脊柱外科干预。本文系统描述了微通道显微镜手术在脊柱退行性疾病(如腰椎间盘突出、椎管狭窄)及椎管内肿瘤治疗中的应用,重点剖析其技术原理、临床优势与局限性。研究表明,微通道显微镜手术通过小切口与逐级扩张通道,显著减少术中组织损伤与术后并发症,尤其适用于老年患者及高风险人群;在颈椎病领域,改良术式(如AMTc、AETc)进一步拓展了其适应症,兼顾生物力学保留与病变精准切除。尽管微通道显微镜手术在腰椎与椎管肿瘤治疗中表现出与开放手术相当的疗效,但其技术门槛高、操作空间有限等问题仍需突破。未来研究应聚焦适应症扩展、脊柱稳定性及长期疗效验证,以推动脊柱微创外科的精准化与个体化发展。
Abstract: Spinal and spinal cord diseases are a significant global health burden. The high risk of sequelae and complex treatment requirements have driven the development of minimally invasive techniques. Microscopic Microchannel Surgery (MMS), which combines minimally invasive channel technology with a microimaging system, has enabled precise and minimally traumatic spinal interventions. This article systematically describes the application of MMS in the treatment of spinal degenerative diseases (such as lumbar disc herniation and spinal canal stenosis) and intradural tumors, with a focus on its technical principles, clinical advantages, and limitations. Studies have shown that MMS, through small incisions and gradual expansion of the channel, significantly reduces intraoperative tissue damage and postoperative complications, making it particularly suitable for elderly patients and high-risk populations. In the field of cervical spondylosis, modified surgical procedures (such as AMTc and AETc) have further expanded its indications, balancing the retention of biomechanics and precise removal of lesions. Although MMS has demonstrated comparable efficacy to open surgery in the treatment of lumbar and intradural tumors, its high technical threshold and limited operating space still need to be overcome. Future research should focus on expanding indications, verifying spinal stability, and long-term efficacy to promote the precision and individualization of minimally invasive spinal surgery.
文章引用:刘伟, 李锋. 微通道显微镜手术在脊柱脊髓疾病中的应用[J]. 临床医学进展, 2025, 15(4): 896-903. https://doi.org/10.12677/acm.2025.1541010

1. 引言

脊柱和脊髓疾病(Spinal Cord and Vertebral Disorders)是全球范围内的重要健康负担,其高发病率、致残率及对患者生活质量的深远影响备受关注。脊柱脊髓损伤(Spinal Cord Injury, SCI)是一种严重的神经系统疾病,通常由外力导致脊髓结构受损,进而引发长期残疾和过早死亡。SCI不仅对患者个体造成严重的身体、心理和经济负担,还对社会医疗系统带来巨大压力。其主要特征包括瘫痪、感觉异常、痉挛、疼痛以及自主神经功能障碍,严重时可导致神经源性休克甚至死亡[1]。经统计,从1990年到2019年,全球SCI的患病率增加了81.5%,发病率增加了52.7% [2]。近年来,随着医疗技术的进步和对SCI预防的重视,一些地区的SCI发病率有所下降,但在全球范围内,SCI仍然是一个重要的公共卫生问题[3]

对于脊柱以及脊髓疾病的治疗方面,部分疾病可以通过保守治疗改善患者的症状,比如轻度腰椎间盘突出症,经研究发现通过卧床休息、物理治疗、药物治疗等保守治疗后症状可明显减轻,甚至可以使轻度突出的髓核有机会回纳[4];其次,还有轻度的颈椎病,比如颈神经根型颈椎病早期,可以通过规律的颈部康复锻炼和适当的物理治疗,可增强颈部肌肉力量,改善颈椎的稳定性,减轻颈部疼痛和上肢麻木等症状[5]。但是仍有部分脊柱脊髓疾病是通过保守治疗无法解决的,比如重度脊髓型颈椎病、脊柱硬膜外血肿、重度腰椎间盘突出、椎管肿瘤等疾病,需要尽早进行外科干预[6]-[8]。在过去的几十年时间内,开放型手术曾经是治疗相关疾病的主要手段,但是其固有的局限性逐渐明显。开放性手术术后容易导致腰背部疼痛等长期并发症的出现,例如,颈椎后路单开门/双开门手术,由于需要有效暴露手术视野,需要大范围游离椎旁肌,会导致术后轴性症状,表现为颈部、肩部疼痛及僵硬不适,发生率将近15%~25% [9]-[11]

2. 微通道显微镜手术

随着今年的技术进步以及临床需求推动,脊柱微创手术(Minimally Invasive Spine Surgery, MISS)飞速发展,经过技术革新以及术式发展,现在已经有多种微创术式在临床中应用[12]。微通道显微镜手术(Microscopic Microchannel Surgery, MMS)根据成像技术的不同,器械依赖不同可分为微通道内镜手术(micro-endoscopic discectomy, MED),和经皮微通道显微镜手术,但是通过查阅相关文献,我们发现并没有一种明确的通用手术名称特指经皮微通道显微镜手术,其中包括经椎旁入路微通道显微镜椎间盘切除术(Paraspinal Mini-Tubular Microdiscectomy, PMTM)、显微管交叉椎板切开术(Microscopic Tubular Crossing Laminotomy, MTCL)等手术名称,但均使用了显微镜管状牵开系统(micro-tubular retractors/METRx-MD)进行微通道显微镜手术,在本文的后续我们将统称为微通道显微镜手术(Microscopic Minimally Invasive Surgery via Tubular Retractor, MMIS-TR)。

MMS是一种结合微创通道技术与显微成像系统的一类脊柱外科手术方法。该类手术方式通过逐级扩张器建立微创通道,避免传统开放手术中对椎旁肌肉和韧带的广泛剥离,从而减少软组织损伤和术后疼痛。其中,MED主要依赖于微通道内镜显微镜系统,通过通道经棘突旁,后路经椎板间隙入路,更适合中央型和旁中央型突出。而MMIS-TR是将管状牵开器与套管系统和显微镜相结合,组成并依赖于METRx-MD,通过扩张器在椎旁肌间隙逐层扩张经椎旁入路,避免对患者的正常肌层产生过多的损伤[13],同时因为具有更加宽泛的视野,使得其适用于更广泛的椎间盘突出类型。两种术式的主要应用场景均包括腰椎间盘突出症、椎管狭窄症及椎管内肿瘤的切除等,二者优势体现在术中出血量少、术后恢复快以及对脊柱稳定性的最小化破坏。但具体选取哪种手术方式,仍要取决于医生对技术的熟练程度以及患者本身的适应范围。本文将以MMS为主题,描述此类手术其在脊柱脊髓疾病的应用现状、优势以及相关研究进展。

3. 技术原理

微通道管径设计是此类手术的核心创新之一,其直径通常为3~5 mm,通过逐级扩张建立工作通道,显著减少对椎旁肌肉和韧带的损伤[14]。这种设计通过最小化组织剥离,降低术后脊柱失稳风险,同时保留脊柱的生物力学完整性[15]。例如,在脊髓腹侧肿瘤切除术中,3~5 mm通道可避免传统开放手术中对椎板的大范围切除,从而维持脊柱的稳定性,术后患者无需额外椎体融合固定,且平均住院时间可以得到明显缩短。其中MMIS-TR进行的L4~L5腰椎管狭窄,手术中,手术平均时间为8天[13],并且对比开放性手术,明显减少了术后并发症的发生,提高了手术的安全性[16] [17]

4. 临床应用场景

4.1. 关于腰椎退行性病变的治疗

MMS在临床中,最多应用于对腰椎间盘突出(lumbar disc herniation, LDH)的患者治疗。LDH在腰椎间盘出现退行性变化的基础上,由于外力作用等多种因素的影响,致使椎间盘的纤维环发生破裂,原本位于其中的髓核组织便会突出或脱出。当突出或脱出的髓核组织压迫并刺激到脊神经时,患者就会出现一系列相应的症状,比如腰部疼痛,以及下肢的麻木、疼痛等[18]

对于腰椎间盘突出手术治疗,MED和MMIS-TR均优先选择后外侧椎旁入路,通过15~20 mm切口直达椎板间隙,可在显微镜下直接处理钙化或复发病灶,减少肌肉剥离并保留脊柱稳定性[19]。另有研究表明,与传统开放显微镜手术(OD)相比,MED能够显著减少术中出血量,降低组织损伤,同时在住院时间上也表现出潜在的缩短趋势。MED在术后恢复和并发症控制方面表现出色,尤其在减少术后并发症方面具有明显优势。此外,MED在实现良好临床效果的同时,还能够减少术后疼痛,促进患者更快恢复。这些特点使其成为一种安全、有效的微创手术选择,尤其适用于对术后恢复速度和生活质量有较高要求的患者[20] [21]。另有研究将单侧双通道内窥镜(UBE)和经皮椎间孔镜下椎间盘切除术(PTED)两种术式与MMS对比,发现UBE和PTED在缓解术后腰痛和腿痛缓解方面均稍优于MMS。然而,MMS在并发症发生率方面更低,显示出更高的安全性。因此,在选择治疗腰椎间盘突出症手术方式时,需要根据患者的具体需求和手术团队的经验进行综合评估,以优化患者预后[22] [23]。其中,有研究通过统计进行MMIS-TR的230例行椎间盘切除术并发症,发现出现硬膜撕裂的概率为7%。但是就本院进行的手术来说,发生硬膜撕裂的可能性远低于7%。除治疗常规腰椎间盘突出以外,极外侧腰椎间盘突出也常可以应用MMIS-TR和MED进行治疗[24] [25]。其次对于腰椎管狭窄患者的治疗,尤其是老年患者的腰椎管狭窄,MMS是尤为合适的。考虑到老年患者通常合并有多种疾病,并且对于手术创伤的耐受性较低,所以微创手术的选择就显得尤为重要。因为其手术切口小,对于肌肉和韧带的剥离明显降低,术后的感染率和伤口愈合问题的风险显著降低。可以说微创手术为腰椎退行性病变、腰椎管狭窄、老年患者以及合并多种基础性疾病的高风险患者的手术治疗提供了一种新的相对理想的治疗选择[26]

4.2. 关于颈椎退行性病变的治疗

其次,值得一提的是,颈椎相关退行性病变的相关微创治疗也一直是医学的一个不可忽视的研究方向。它是一种与年龄相关的慢性、进行性退行性疾病,主要影响颈椎的骨和软骨成分。它通常表现为颈椎间盘、小关节以及相关结缔组织结构(例如颈椎韧带)的磨损和退变[27]。这些退行性变化可能导致机械性压迫神经根、脊髓或两者,从而引起颈部疼痛、神经根病或脊髓病等症状[28] [29]

目前对于颈椎病的微创治疗,目前应用的比较多的微创手术方式包括微创后路颈椎椎间孔切开术(MIS-PCF)、前路颈椎间盘切除融合术(ACDF)等术式。同时,MMIS-TR后路手术也可以做到由后路进行颈椎病的治疗,包括颈椎间盘突出、颈锥管狭窄甚至椎管内占位。值得注意的是,最近有研究总结报道了两种经颈前路治疗颈椎退行性病变的手术方式,一是前路显微经椎体手术(Anterior Microscopic Transcorporeal Approach, AMTc) [30],另一个是前路全内镜经椎体手术(Anterior Full-Endoscopic Transcorporeal Approach, AETc) [31]。两种手术方式均是颈前路进行的,AETc是通过经椎体通道进行操作,结合内镜技术,对比起来更像是颈前路进行MED手术。而AMTc更像针对于颈椎所改进的MMIS-TR术式,其通过椎体骨性通道进入椎管内,通过在锥体上建立一个骨性通道,利用显微镜的高倍放大视野进行病变组织的切除。待手术完成之后,再使用自体骨移植或者骨替代材料将通道填充,以促进骨性组织的愈合。AMTc手术与经椎间盘手术相比,不需要破坏椎间盘结构,保留了椎间生物力学强度。总体来说,AMTc手术是一种可以视为融合常规颈前路手术,适合于颈部的MMS颈前路融合术式,适用于多种颈椎病变。结合通道以及显微镜技术,实现了对病变的精准切除,同时最大程度地保留了椎体的生物力学完整性。其是一种有前景的手术选择,尤其适合颈椎相关疾病需要手术治疗并且对微创手术有较高要求的患者。

4.3. 关于椎管肿瘤的治疗

椎管肿瘤近期也被纳入MMIS-TR术式治疗范围。椎管肿瘤常发生于脊髓、脊膜、神经根、以及椎管纤维、脂肪组织等附属组织及相关骨性结构的原发、继发性肿瘤,以良性肿瘤居多[32] [33],原发性椎管肿瘤年发病率高达2.5~8.5/10万人[34]。过去一段时间内,开放性手术一直是治疗椎管内肿瘤的传统方法,其操作通常是通过中线切口进行多节段椎板切除,以获得对椎管内病变的直接暴露,其目标是通过广泛的暴露实现肿瘤的完全切除[35]。然而,由于开放性手术通常需要进行多节段椎板切除,这可能导致脊柱后柱结构的破坏,增加术后脊柱不稳定的风险,尤其是在胸腰段和颈胸段。而且术后可能出现后凸畸形,一般都需要额外的脊柱固定手术[36] [37]。此外,由于椎旁肌肉的广泛剥离和牵拉可能导致术后疼痛加剧,延长患者康复时间,推迟术后下床活动[38]。有研究人员探讨了关于微创手术治疗椎管内硬膜外髓外良性肿瘤的手术疗效情况,所有患者均达到肿瘤完全切除的目标,并且在其预后和随访过程中,所有的患者均没有出现并发症,并且也并未观测到脊柱不稳定和脊柱畸形的情况发生[39]。进一步证实了显微镜微通道手术治疗椎管内肿瘤的有效性,微创不仅仅降低了关于脊柱不稳定的危险性,其治疗效果与开放性手术效果相当[35] [40]。但是,尽管MED可以减少对患者的损伤,但广泛的暴露和操作仍可能增加神经功能损伤的风险,尤其是在复杂的肿瘤切除中[41]

4.4. 其他疾病的治疗

除以上治疗方案,MMS技术还可以用作其他发病率较低的脊柱脊髓疾病治疗。首先,Chao-Feng Fu等研究人员报道了通过管状扩张器进行的MMS手术,进行治疗自发性硬膜外血肿(Spontaneous spinal epidural hematoma, SSEH)。SSEH在临床中主张积极进行手术干预,但是大多数都是通过传统性的椎板切除,进行血肿的清除[42]。此外,Mohamed Abdelatif Boukebir等研究人员通过回顾手术患者,统计记录了四种手术适应症,除去椎板切开与椎间盘切除术之外,还介绍了微创椎间孔切开术(Microsurgical Tubular Foraminotomy, MTF)和微创滑膜囊肿切除术(Microsurgical Resection of Lumbar Synovial Cysts)。其中MTF的患者统计了32例,术后症状均有明显的改善,并且没有相关并发症的出现;微创滑膜囊肿切除术统计了共16例,同样术后症状改善明显,通过随访并未发现并发症的出现[43]

5. 局限性

MMS技术作为一种微创手术技术,近年来在脊柱外科等领域得到了广泛应用。然而,该技术仍存在一些局限性。首先,手术技术要求较高,无论MED、MMIS-TR,还是融合术式AMTc,都需要术者具备丰富的显微镜手术经验和良好的手眼协调能力[44]。其次,微通道手术通过较小的切口和通道进行操作,虽然创伤较小,但也导致手术视野和操作空间相对有限。这可能增加手术难度,尤其是在处理复杂病变或需要广泛暴露时,这就可能因为暴露范围不够而转为开放性手术,但是这也是所有显微手术的弊端之一。再者,由于微通道手术需要在较小的操作通道内进行精细操作,手术时间可能相对较长。尽管随着术者经验的积累,手术时间会有所缩短,但在学习曲线的早期阶段,较长的手术时间可能会影响患者的耐受性。通过统计研究,在进行25~44例手术时,学习曲线可能会出现拐点,手术技术趋于稳定[43]。此外,虽然微通道技术在腰椎退行性疾病等领域的应用取得了良好的效果,但对于一些复杂的脊柱畸形或严重的脊柱不稳定病变,其适用范围仍可能受到明显的限制[44]

6. 结论

MMS作为脊柱外科领域的重要微创技术,已展现出显著的临床应用价值。在腰椎退行性疾病(如椎间盘突出、椎管狭窄)治疗中,微通道技术通过小切口、精准操作和最小化组织损伤,有效平衡了手术疗效与脊柱稳定性的保护,尤其为老年患者及合并基础疾病的高风险人群提供了更安全的治疗选择。在颈椎病领域,改良术式(如AMTc、AETc)的探索进一步拓展了微通道技术的适应症,实现了对椎间盘突出、骨赘增生等病变的精准干预,同时最大程度保留颈椎生物力学功能。对于椎管内良性肿瘤的切除,其凭借其微创性与高清视野,可实现与开放手术相当的全切除率,并显著降低术后脊柱畸形风险。然而,微通道的技术门槛高、操作空间有限等局限性仍需正视,其复杂病例的适用性及长期疗效仍有待验证。并且目前对于MMS术式对于患者脊柱稳定性的影响并没有明确的研究,仍需要我们进一步探索。

MMS技术的持续革新将推动脊柱手术向更精准、更微创的方向发展,为患者提供兼具高效性与安全性的个体化治疗方案。未来研究需聚焦于技术瓶颈的突破与临床证据的积累,以期为脊柱脊髓疾病的诊疗开启新篇章。

基金项目

项目名称:凯启新生–中青年医师关爱疼痛医学研究项目,kqxs-2024-b-06。

NOTES

*通讯作者。

参考文献

[1] Quadri, S.A., Farooqui, M., Ikram, A., Zafar, A., Khan, M.A., Suriya, S.S., et al. (2018) Recent Update on Basic Mechanisms of Spinal Cord Injury. Neurosurgical Review, 43, 425-441.
https://doi.org/10.1007/s10143-018-1008-3
[2] Vos, T., Lim, S.S., Abbafati, C., Abbas, K.M., Abbasi, M., Abbasifard, M., et al. (2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 396, 1204-1222.
https://doi.org/10.1016/s0140-6736(20)30925-9
[3] Crispo, J.A.G., Kuramoto, L.K. and Cragg, J.J. (2023) Global Burden of Spinal Cord Injury: Future Directions. The Lancet Neurology, 22, 976-978.
https://doi.org/10.1016/s1474-4422(23)00366-6
[4] Chou, R., Qaseem, A., Snow, V., Casey, D., Cross, J.T., Shekelle, P., et al. (2007) Diagnosis and Treatment of Low Back Pain: A Joint Clinical Practice Guideline from the American College of Physicians and the American Pain Society. Annals of Internal Medicine, 147, 478-491.
https://doi.org/10.7326/0003-4819-147-7-200710020-00006
[5] Zuo, G., Gao, T., Xue, B., Gu, C., Yan, Y., Zhang, Y., et al. (2019) Assessment of the Efficacy of Acupuncture and Chiropractic on Treating Cervical Spondylosis Radiculopathy: A Systematic Review and Meta-Analysis. Medicine, 98, e17974.
https://doi.org/10.1097/md.0000000000017974
[6] Karsy, M. and Hawryluk, G. (2019) Modern Medical Management of Spinal Cord Injury. Current Neurology and Neuroscience Reports, 19, Article No. 65.
https://doi.org/10.1007/s11910-019-0984-1
[7] Chikuda, H., Koyama, Y., Matsubayashi, Y., Ogata, T., Ohtsu, H., Sugita, S., et al. (2021) Effect of Early vs Delayed Surgical Treatment on Motor Recovery in Incomplete Cervical Spinal Cord Injury with Preexisting Cervical Stenosis: A Randomized Clinical Trial. JAMA Network Open, 4, e2133604.
https://doi.org/10.1001/jamanetworkopen.2021.33604
[8] Williams, J., D’Amore, P., Redlich, N., Darlow, M., Suwak, P., Sarkovich, S., et al. (2022) Degenerative Cervical Myelopathy: Evaluation and Management. Orthopedic Clinics of North America, 53, 509-521.
https://doi.org/10.1016/j.ocl.2022.05.007
[9] Vaishnav, A.S., Othman, Y.A., Virk, S.S., Gang, C.H. and Qureshi, S.A. (2019) Current State of Minimally Invasive Spine Surgery. Journal of Spine Surgery, 5, S2-S10.
https://doi.org/10.21037/jss.2019.05.02
[10] Foley, K.T. and Lefkowitz, M.A. (2002) Advances in Minimally Invasive Spine Surgery. Clinical Neurosurgery, 49, 499-517.
[11] Zhang, C., Li, D., Wang, C. and Yan, X. (2016) Cervical Endoscopic Laminoplasty for Cervical Myelopathy. Spine, 41, B44-B51.
https://doi.org/10.1097/brs.0000000000001816
[12] Tian, W. and Boden, S.D. (2016) Minimally Invasive Spine Surgery (MISS) in China. Spine, 41, B1.
https://doi.org/10.1097/brs.0000000000001908
[13] Xu, J., Liu, C., Lin, Y. and Luo, F. (2018) Microscopic Minimally Invasive Keyhole Technique for Surgical Resection of Spinal Dumbbell Tumors. World Neurosurgery, 109, e110-e117.
https://doi.org/10.1016/j.wneu.2017.09.114
[14] Cervellini, P., Luca, G.P., Mazzetto, M. and Colombo, F. (n.d.) Micro-Endoscopic-Discectomy (MED) for Far Lateral Disc Herniation in the Lumbar Spine. Technical Note. In: Alexandre, A., Bricolo, A. and Millesi, H., Eds., Advanced Peripheral Nerve Surgery and Minimal Invasive Spinal Surgery, Springer, 99-101.
https://doi.org/10.1007/3-211-27458-8_21
[15] 林国中, 吴超, 司雨, 马长城, 杨军. 微通道辅助经椎旁肌间隙入路显微手术切除胸腰椎椎旁肿瘤[J]. 中国微创外科杂志, 2021(1): 61-64.
[16] Palmer, S., Turner, R. and Palmer, R. (2002) Bilateral Decompressive Surgery in Lumbar Spinal Stenosis Associated with Spondylolisthesis: Unilateral Approach and Use of a Microscope and Tubular Retractor System. Neurosurgical Focus, 13, E4.
https://doi.org/10.3171/foc.2002.13.1.5
[17] Kulkarni, A.G., Das, S. and Kunder, T.S. (2019) Are There Differences between Patients with Extreme Stenosis and Non-Extreme Stenosis in Terms of Pain, Function or Complications after Spinal Decompression Using a Tubular Retractor System? Clinical Orthopaedics & Related Research, 478, 348-356.
https://doi.org/10.1097/corr.0000000000001004
[18] Zhang, A.S., Xu, A., Ansari, K., Hardacker, K., Anderson, G., Alsoof, D., et al. (2023) Lumbar Disc Herniation: Diagnosis and Management. The American Journal of Medicine, 136, 645-651.
https://doi.org/10.1016/j.amjmed.2023.03.024
[19] Mao, L., Wang, K., Zhu, W., Shen, Z., Zhang, X., Xie, Z., et al. (2024) Repeat Surgery after Percutaneous Endoscopic Lumbar Discectomy for Adolescent Lumbar Disc Herniation: A Multicenter Observational Study. Orthopaedic Surgery, 16, 1336-1343.
https://doi.org/10.1111/os.14042
[20] Rasouli, M.R., Rahimi-Movaghar, V., Shokraneh, F., Moradi-Lakeh, M. and Chou, R. (2014) Minimally Invasive Discectomy versus Microdiscectomy/Open Discectomy for Symptomatic Lumbar Disc Herniation. Cochrane Database of Systematic Reviews, 2014, CD010328.
https://doi.org/10.1002/14651858.cd010328.pub2
[21] Li, W., Yan, Q. and Cong, L. (2021) Comparison of Endoscopic Discectomy versus Non-Endoscopic Discectomy for Symptomatic Lumbar Disc Herniation: A Systematic Review and Meta-analysis. Global Spine Journal, 12, 1012-1026.
https://doi.org/10.1177/21925682211020696
[22] Yu, P., Qiang, H., Zhou, J. and Huang, P. (2019) Percutaneous Transforaminal Endoscopic Discectomy versus Micro-Endoscopic Discectomy for Lumbar Disc Herniation. Medical Science Monitor, 25, 2320-2328.
https://doi.org/10.12659/msm.913326
[23] Meng, H., Su, N., Lin, J. and Fei, Q. (2023) Comparative Efficacy of Unilateral Biportal Endoscopy and Micro-Endoscopic Discectomy in the Treatment of Degenerative Lumbar Spinal Stenosis: A Systematic Review and Meta-Analysis. Journal of Orthopaedic Surgery and Research, 18, Article No. 814.
https://doi.org/10.1186/s13018-023-04322-2
[24] Madhok, R. and Kanter, A.S. (2010) Extreme-Lateral, Minimally Invasive, Transpsoas Approach for the Treatment of Far-Lateral Lumbar Disc Herniation. Journal of Neurosurgery: Spine, 12, 347-350.
https://doi.org/10.3171/2009.10.spine08932
[25] Yeom, J.S., Kim, K.H., Hong, S.W., Park, K., Chang, B., Lee, C., et al. (2008) A Minimally Invasive Technique for L5-S1 Intraforaminal Disc Herniations: Microdiscectomy with a Tubular Retractor via a Contralateral Approach. Journal of Neurosurgery: Spine, 8, 193-198.
https://doi.org/10.3171/spi/2008/8/2/193
[26] Zhao, L.J., Jiang, W.Y., Ma, W.H., Xu, R.M. and Sun, S.H. (2011) Micro-Endoscopic Discectomy for the Treatment of Lumbar Disc Herniation in Senile Patients over Seventy Years Old. China Journal of Orthopaedics and Traumatology, 24, 811-815.
[27] Jitin, B. (2021) Cervical Spondylosis and Atypical Symptoms. Neurology India, 69, 602-603.
https://doi.org/10.4103/0028-3886.319240
[28] Theodore, N. (2020) Degenerative Cervical Spondylosis. New England Journal of Medicine, 383, 159-168.
https://doi.org/10.1056/nejmra2003558
[29] Reddy, R.S., Tedla, J.S., Dixit, S. and Abohashrh, M. (2019) Cervical Proprioception and Its Relationship with Neck Pain Intensity in Subjects with Cervical Spondylosis. BMC Musculoskeletal Disorders, 20, Article No. 447.
https://doi.org/10.1186/s12891-019-2846-z
[30] Jitpakdee, K., Kotheeranurak, V., Lim, W.J. and Kim, J. (2021) Anterior Transcorporeal Approach for Cervical Metastatic Melanoma Resection Guided by O-Arm-Navigated Intraoperative Computed Tomography. Operative Neurosurgery, 22, e7-e11.
https://doi.org/10.1227/ons.0000000000000014
[31] Liu, Y., Suvithayasiri, S., Van Isseldyk, F., Kotheeranurak, V., Jitpakdee, K., Choi, K., et al. (2024) Evaluating the Effectiveness of the Transcorporeal Approach in Minimally Invasive Spine Surgery for Cervical Spinal Disease: A Comprehensive Review and Technical Insights. BMC Surgery, 24, Article No. 311.
https://doi.org/10.1186/s12893-024-02611-z
[32] Dang, L., Liu, X., Dang, G., Jiang, L., Wei, F., Yu, M., et al. (2015) Primary Tumors of the Spine: A Review of Clinical Features in 438 Patients. Journal of Neuro-Oncology, 121, 513-520.
https://doi.org/10.1007/s11060-014-1650-8
[33] Iacoangeli, M., Gladi, M., Di Rienzo, Dobran, M., Alvaro, L., Nocchi, N., et al. (2012) Minimally Invasive Surgery for Benign Intradural Extramedullary Spinal Meningiomas: Experience of a Single Institution in a Cohort of Elderly Patients and Review of the Literature. Clinical Interventions in Aging, 7, 557-564.
https://doi.org/10.2147/cia.s38923
[34] Dreghorn, C.R., Newman, R.J., Hardy, G.J. and Dickson, R.A. (1990) Primary Tumors of the Axial Skeleton. Experience of the Leeds Regional Bone Tumor Registry. Spine, 15, 137-140.
https://doi.org/10.1097/00007632-199002000-00018
[35] Mannion, R.J., Nowitzke, A.M., Efendy, J. and Wood, M.J. (2011) Safety and Efficacy of Intradural Extramedullary Spinal Tumor Removal Using a Minimally Invasive Approach. Operative Neurosurgery, 68, ons208-ons216.
https://doi.org/10.1227/neu.0b013e318207b3c7
[36] Kelley, B.J., Johnson, M.H., Vortmeyer, A.O., Smith, B.G. and Abbed, K.M. (2012) Two-Level Thoracic Pedicle Subtraction Osteotomy for Progressive Post-Laminectomy Kyphotic Deformity Following Resection of an Unusual Thoracolumbar Intradural Extramedullary Tumor. Journal of Neurosurgery: Pediatrics, 10, 334-339.
https://doi.org/10.3171/2012.7.peds11526
[37] Tanaka, M., Sugimoto, Y., Misawa, H., Takigawa, T., Kunisada, T. and Ozaki, T. (2012) Segmental Pedicle Screw Fixation for a Scoliosis Patient with Post-Laminectomy and Post-Irradiation Thoracic Kyphoscoliosis of Spinal Astrocytoma. Acta Medica Okayama, 66, 363-368.
[38] Lu, D.C., Dhall, S.S. and Mummaneni, P.V. (2010) The Transspinous Mini-Open Approach for Resection of Intradural Spinal Neoplasms: Cadaveric Feasibility Study and Report of 3 Clinical Cases. World Neurosurgery, 74, 195-199.
https://doi.org/10.1016/j.wneu.2010.05.003
[39] Afathi, M., Peltier, E., Adetchessi, T., Graillon, T., Dufour, H. and Fuentes, S. (2015) Minimally Invasive Transmuscular Approach for the Treatment of Benign Intradural Extramedullary Spinal Cord Tumours: Technical Note and Results. Neurochirurgie, 61, 333-338.
https://doi.org/10.1016/j.neuchi.2015.05.001
[40] Tredway, T.L., Santiago, P., Hrubes, M.R., Song, J.K., Christie, S.D. and Fessler, R.G. (2006) Minimally Invasive Resection of Intradural-Extramedullary Spinal Neoplasms. Operative Neurosurgery, 58, ONS-52-ONS-58.
https://doi.org/10.1227/01.neu.0000192661.08192.1c
[41] Haji, F.A., Cenic, A., Crevier, L., Murty, N. and Reddy, K. (2011) Minimally Invasive Approach for the Resection of Spinal Neoplasm. Spine, 36, E1018-E1026.
https://doi.org/10.1097/brs.0b013e31820019f9
[42] Fu, C., Zhuang, Y., Chen, C., Cai, G., Zhang, H., Zhao, W., et al. (2016) Spontaneous Spinal Epidural Hematoma Management with Minimally Invasive Surgery through Tubular Retractors. A Case Report and Review of the Literature. Medicine, 95, e3906.
https://doi.org/10.1097/md.0000000000003906
[43] Boukebir, M.A., Berlin, C.D., Navarro-Ramirez, R., Heiland, T., Schöller, K., Rawanduzy, C., et al. (2017) Ten-Step Minimally Invasive Spine Lumbar Decompression and Dural Repair through Tubular Retractors. Operative Neurosurgery, 13, 232-245.
https://doi.org/10.1227/neu.0000000000001407
[44] Kulkarni, A.G., Bassi, A. and Dhruv, A. (2014) Microendoscopic Lumbar Discectomy: Technique and Results of 188 Cases. Indian Journal of Orthopaedics, 48, 81-87.
https://doi.org/10.4103/0019-5413.125511