|
[1]
|
中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版) [J]. 中华医学杂志, 2021, 101(1): 11-51.
|
|
[2]
|
Poch, D. and Mandel, J. (2021) Pulmonary Hypertension. Annals of Internal Medicine, 174, ITC49-ITC64. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mocumbi, A., Humbert, M., Saxena, A., Jing, Z., Sliwa, K., Thienemann, F., et al. (2024) Pulmonary Hypertension. Nature Reviews Disease Primers, 10, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Humbert, M., Kovacs, G., Hoeper, M.M., Badagliacca, R., Berger, R.M.F., Brida, M., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 43, 3618-3731. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Papayannopoulos, V. (2017) Neutrophil Extracellular Traps in Immunity and Disease. Nature Reviews Immunology, 18, 134-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tang, Y., Jiao, Y., An, X., Tu, Q. and Jiang, Q. (2024) Neutrophil Extracellular Traps and Cardiovascular Disease: Associations and Potential Therapeutic Approaches. Biomedicine & Pharmacotherapy, 180, Article ID: 117476. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Aldabbous, L., Abdul-Salam, V., McKinnon, T., Duluc, L., Pepke-Zaba, J., Southwood, M., et al. (2016) Neutrophil Extracellular Traps Promote Angiogenesis: Evidence from Vascular Pathology in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 2078-2087. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sweatt, A.J., Miyagawa, K., Rhodes, C.J., Taylor, S., Del Rosario, P.A., Hsi, A., et al. (2021) Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency. Chest, 160, 1442-1458. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Klinke, A., Berghausen, E., Friedrichs, K., Molz, S., Lau, D., Remane, L., et al. (2018) Myeloperoxidase Aggravates Pulmonary Arterial Hypertension by Activation of Vascular Rho-Kinase. JCI Insight, 3, e97530. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Nickel, N.P., Spiekerkoetter, E., Gu, M., Li, C.G., Li, H., Kaschwich, M., et al. (2015) Elafin Reverses Pulmonary Hypertension via Caveolin-1-Dependent Bone Morphogenetic Protein Signaling. American Journal of Respiratory and Critical Care Medicine, 191, 1273-1286. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Cowan, K.N., Heilbut, A., Humpl, T., Lam, C., Ito, S. and Rabinovitch, M. (2000) Complete Reversal of Fatal Pulmonary Hypertension in Rats by a Serine Elastase Inhibitor. Nature Medicine, 6, 698-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
von Nussbaum, F., Li, V.M., Meibom, D., Anlauf, S., Bechem, M., Delbeck, M., et al. (2015) Potent and Selective Human Neutrophil Elastase Inhibitors with Novel Equatorial Ring Topology: In Vivo Efficacy of the Polar Pyrimidopyridazine BAY‐8040 in a Pulmonary Arterial Hypertension Rat Model. ChemMedChem, 11, 199-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zaidi, S.H.E., You, X., Ciura, S., Husain, M. and Rabinovitch, M. (2002) Overexpression of the Serine Elastase Inhibitor Elafin Protects Transgenic Mice from Hypoxic Pulmonary Hypertension. Circulation, 105, 516-521. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ilkiw, R., Todorovich-Hunter, L., Maruyama, K., Shin, J. and Rabinovitch, M. (1989) SC-39026, a Serine Elastase Inhibitor, Prevents Muscularization of Peripheral Arteries, Suggesting a Mechanism of Monocrotaline-Induced Pulmonary Hypertension in Rats. Circulation Research, 64, 814-825. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Taylor, S., Isobe, S., Cao, A., Contrepois, K., Benayoun, B.A., Jiang, L., et al. (2022) Endogenous Retroviral Elements Generate Pathologic Neutrophils in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 206, 1019-1034. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Harbaum, L., Baaske, K.M., Simon, M., Oqueka, T., Sinning, C., Glatzel, A., et al. (2017) Exploratory Analysis of the Neutrophil to Lymphocyte Ratio in Patients with Pulmonary Arterial Hypertension. BMC Pulmonary Medicine, 17, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Özpelit, E., Akdeniz, B., Özpelit, M.E., Tas, S., Bozkurt, S., Tertemiz, K.C., et al. (2015) Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Pulmonary Arterial Hypertension. Journal of International Medical Research, 43, 661-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yıldız, A., Kaya, H., Ertaş, F., et al. (2013) Association between Neutrophil to Lymphocyte Ratio and Pulmonary Arterial Hypertension. Turk Kardiyoloji Derneginin Yayin Organidir, 41, 604-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yanartas, M., Kalkan, M.E., Arslan, A., Tas, S.G., Koksal, C., Bekiroglu, N., et al. (2015) Neutrophil/Lymphocyte Ratio Can Predict Postoperative Mortality in Patients with Chronic Thromboembolic Pulmonary Hypertension. Annals of Thoracic and Cardiovascular Surgery, 21, 229-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Laridan, E., Martinod, K. and De Meyer, S. (2019) Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Seminars in Thrombosis and Hemostasis, 45, 86-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Didier, K., Giusti, D., Le Jan, S., Terryn, C., Muller, C., Pham, B.N., et al. (2020) Neutrophil Extracellular Traps Generation Relates with Early Stage and Vascular Complications in Systemic Sclerosis. Journal of Clinical Medicine, 9, Article No. 2136. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nomura, N., Asano, M., Saito, T., Nakayama, T. and Mishima, A. (2013) Sivelestat Attenuates Lung Injury in Surgery for Congenital Heart Disease with Pulmonary Hypertension. The Annals of Thoracic Surgery, 96, 2184-2191. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
NaveenKumar, S.K., Hemshekhar, M., Sharathbabu, B.N., Kemparaju, K., Mugesh, G. and Girish, K.S. (2023) Platelet Activation and Ferroptosis Mediated NETosis Drives Heme Induced Pulmonary Thrombosis. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1869, Article ID: 166688. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chu, C., Wang, X., Yang, C., Chen, F., Shi, L., Xu, W., et al. (2023) Neutrophil Extracellular Traps Drive Intestinal Microvascular Endothelial Ferroptosis by Impairing Fundc1-Dependent Mitophagy. Redox Biology, 67, Article ID: 102906. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fei, Y., Huang, X., Ning, F., Qian, T., Cui, J., Wang, X., et al. (2024) Nets Induce Ferroptosis of Endothelial Cells in LPS-ALI through SDC-1/HS and Downstream Pathways. Biomedicine & Pharmacotherapy, 175, Article ID: 116621. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Baptista de Barros Ribeiro Dourado, L.P., Santos, M. and Moreira-Gonçalves, D. (2022) Nets, Pulmonary Arterial Hypertension, and Thrombo-Inflammation. Journal of Molecular Medicine, 100, 713-722. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Do.e, Z., Fukumoto, Y., Takaki, A., Tawara, S., Ohashi, J., Nakano, M., et al. (2009) Evidence for Rho-Kinase Activation in Patients with Pulmonary Arterial Hypertension. Circulation Journal, 73, 1731-1739. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kitano, K., Usui, S., Ootsuji, H., Takashima, S., Kobayashi, D., Murai, H., et al. (2014) Rho-Kinase Activation in Leukocytes Plays a Pivotal Role in Myocardial Ischemia/Reperfusion Injury. PLOS ONE, 9, e92242. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Soon, E., Holmes, A.M., Treacy, C.M., Doughty, N.J., Southgate, L., Machado, R.D., et al. (2010) Elevated Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation, 122, 920-927. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Faurschou, M. and Borregaard, N. (2003) Neutrophil Granules and Secretory Vesicles in Inflammation. Microbes and Infection, 5, 1317-1327. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zimmer, A., Teixeira, R.B., Constantin, R.L., Campos-Carraro, C., Aparicio Cordero, E.A., Ortiz, V.D., et al. (2021) The Progression of Pulmonary Arterial Hypertension Induced by Monocrotaline Is Characterized by Lung Nitrosative and Oxidative Stress, and Impaired Pulmonary Artery Reactivity. European Journal of Pharmacology, 891, Article ID: 173699. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lood, C., Blanco, L.P., Purmalek, M.M., Carmona-Rivera, C., De Ravin, S.S., Smith, C.K., et al. (2016) Neutrophil Extracellular Traps Enriched in Oxidized Mitochondrial DNA Are Interferogenic and Contribute to Lupus-Like Disease. Nature Medicine, 22, 146-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, M., McGraw, K.R., Monticone, R.E. and Pintus, G. (2025) Unraveling Elastic Fiber-Derived Signaling in Arterial Aging and Related Arterial Diseases. Biomolecules, 15, Article No. 153. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Carmona-Rivera, C., Zhao, W., Yalavarthi, S. and Kaplan, M.J. (2015) Neutrophil Extracellular Traps Induce Endothelial Dysfunction in Systemic Lupus Erythematosus through the Activation of Matrix Metalloproteinase-2. Annals of the Rheumatic Diseases, 74, 1417-1424. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Neubert, E., Bach, K.M., Busse, J., Bogeski, I., Schön, M.P., Kruss, S., et al. (2019) Blue and Long-Wave Ultraviolet Light Induce in Vitro Neutrophil Extracellular Trap (NET) Formation. Frontiers in Immunology, 10, Article No. 2428. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Morrell, N.W., Yang, X., Upton, P.D., Jourdan, K.B., Morgan, N., Sheares, K.K., et al. (2001) Altered Growth Responses of Pulmonary Artery Smooth Muscle Cells from Patients with Primary Pulmonary Hypertension to Transforming Growth Factor-Β1 and Bone Morphogenetic Proteins. Circulation, 104, 790-795. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chang, C., Hsu, H., Ho, W., Chang, G., Pang, J.S., Chen, W., et al. (2019) Cathepsin S Promotes the Development of Pulmonary Arterial Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 317, L1-L13. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sharony, R., Pintucci, G., Saunders, P.C., Grossi, E.A., Baumann, F.G., Galloway, A.C., et al. (2006) Matrix Metalloproteinase Expression in Vein Grafts: Role of Inflammatory Mediators and Extracellular Signal-Regulated Kinases-1 and-2. American Journal of Physiology-Heart and Circulatory Physiology, 290, H1651-H1659. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Mochizuki, S., Brassart, B. and Hinek, A. (2002) Signaling Pathways Transduced through the Elastin Receptor Facilitate Proliferation of Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 277, 44854-44863. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Tiyerili, V., Camara, B., Becher, M.U., Schrickel, J.W., Lütjohann, D., Mollenhauer, M., et al. (2016) Neutrophil-Derived Myeloperoxidase Promotes Atherogenesis and Neointima Formation in Mice. International Journal of Cardiology, 204, 29-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ikeda, U., Ikeda, M., Oohara, T., Oguchi, A., Kamitani, T., Tsuruya, Y., et al. (1991) Interleukin 6 Stimulates Growth of Vascular Smooth Muscle Cells in a PDGF-Dependent Manner. American Journal of Physiology-Heart and Circulatory Physiology, 260, H1713-H1717. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Morimoto, S., Nabata, T., Koh, E., Shiraishi, T., Fukuo, K., Imanaka, S., et al. (1991) Interleukin-6 Stimulates Proliferation of Cultured Vascular Smooth Muscle Cells Independently of Interleukin-1β. Journal of Cardiovascular Pharmacology, 17, S117-S118. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Cimmino, I., Prisco, F., Orso, S., Agognon, A.L., Liguoro, P., De Biase, D., et al. (2021) Interleukin 6 Reduces Vascular Smooth Muscle Cell Apoptosis via Prep1 and Is Associated with Aging. The FASEB Journal, 35, e21989. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, A., Dubey, S., Varney, M.L., Dave, B.J. and Singh, R.K. (2003) IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. The Journal of Immunology, 170, 3369-3376. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Sun, H., Du, Z., Zhang, X., Gao, S., Ji, Z., Luo, G., et al. (2024) Neutrophil Extracellular Traps Promote Proliferation of Pulmonary Smooth Muscle Cells Mediated by CCDC25 in Pulmonary Arterial Hypertension. Respiratory Research, 25, Article No. 183. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Parpaite, T., Cardouat, G., Mauroux, M., Gillibert-Duplantier, J., Robillard, P., Quignard, J., et al. (2015) Effect of Hypoxia on TRPV1 and TRPV4 Channels in Rat Pulmonary Arterial Smooth Muscle Cells. Pflügers Archiv—European Journal of Physiology, 468, 111-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Tuder, R.M. (2016) Pulmonary Vascular Remodeling in Pulmonary Hypertension. Cell and Tissue Research, 367, 643-649. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Li, M., Ying, M., Gu, S., Zhou, Z. and Zhao, R. (2023) SIRT6 Inhibits Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cells Proliferation via HIF-1α/PDK4 Signaling. Life Sciences, 312, Article ID: 121192. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Bazan, I.S. and Fares, W.H. (2018) Hypercoagulability in Pulmonary Hypertension. Clinics in Chest Medicine, 39, 595-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Lim, H., Jeong, I., An, G., Woo, K., Kim, K., Kim, J., et al. (2020) Evaluation of Neutrophil Extracellular Traps as the Circulating Marker for Patients with Acute Coronary Syndrome and Acute Ischemic Stroke. Journal of Clinical Laboratory Analysis, 34, e23190. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Peña-Martínez, C., Durán-Laforet, V., García-Culebras, A., Ostos, F., Hernández-Jiménez, M., Bravo-Ferrer, I., et al. (2019) Pharmacological Modulation of Neutrophil Extracellular Traps Reverses Thrombotic Stroke tPA (Tissue-Type Plasminogen Activator) Resistance. Stroke, 50, 3228-3237. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Folco, E.J., Mawson, T.L., Vromman, A., Bernardes-Souza, B., Franck, G., Persson, O., et al. (2018) Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production through Interleukin-1α and Cathepsin G. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1901-1912. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Laridan, E., Denorme, F., Desender, L., François, O., Andersson, T., Deckmyn, H., et al. (2017) Neutrophil Extracellular Traps in Ischemic Stroke Thrombi. Annals of Neurology, 82, 223-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhou, P., Li, T., Jin, J., Liu, Y., Li, B., Sun, Q., et al. (2020) Interactions between Neutrophil Extracellular Traps and Activated Platelets Enhance Procoagulant Activity in Acute Stroke Patients with ICA Occlusion. EBioMedicine, 53, Article ID: 102671. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Herkert, O., Djordjevic, T., Belaiba, R.S. and Görlach, A. (2004) Insights into the Redox Control of Blood Coagulation: Role of Vascular NADPH Oxidase-Derived Reactive Oxygen Species in the Thrombogenic Cycle. Antioxidants & Redox Signaling, 6, 765-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Sharma, S., Hofbauer, T.M., Ondracek, A.S., Chausheva, S., Alimohammadi, A., Artner, T., et al. (2021) Neutrophil Extracellular Traps Promote Fibrous Vascular Occlusions in Chronic Thrombosis. Blood, 137, 1104-1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zhou, H., Zhu, C., Zhao, Q., Ni, J., Zhang, H., Yang, G., et al. (2024) Wrecking Neutrophil Extracellular Traps and Antagonizing Cancer-Associated Neurotransmitters by Interpenetrating Network Hydrogels Prevent Postsurgical Cancer Relapse and Metastases. Bioactive Materials, 39, 14-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Xu, L., Kong, Y., Li, K., Li, J., Xu, F., Xu, Y., et al. (2025) Neutrophil Extracellular Traps Promote Growth of Lung Adenocarcinoma by Mediating the Stability of m6A‐Mediated SLC2A3 mRNA‐Induced Ferroptosis Resistance and CD8(+) T Cell Inhibition. Clinical and Translational Medicine, 15, e70192. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Farrera, C. and Fadeel, B. (2013) Macrophage Clearance of Neutrophil Extracellular Traps Is a Silent Process. The Journal of Immunology, 191, 2647-2656. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Liu, X., Arfman, T., Wichapong, K., Reutelingsperger, C.P.M., Voorberg, J. and Nicolaes, G.A.F. (2021) PAD4 Takes Charge during Neutrophil Activation: Impact of PAD4 Mediated NET Formation on Immune‐Mediated Disease. Journal of Thrombosis and Haemostasis, 19, 1607-1617. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wei, M., Wang, X., Song, Y., Zhu, D., Qi, D., Jiao, S., et al. (2021) Inhibition of Peptidyl Arginine Deiminase 4-Dependent Neutrophil Extracellular Trap Formation Reduces Angiotensin II-Induced Abdominal Aortic Aneurysm Rupture in Mice. Frontiers in Cardiovascular Medicine, 8, Article ID: 676612. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Molinaro, R., Yu, M., Sausen, G., Bichsel, C.A., Corbo, C., Folco, E.J., et al. (2021) Targeted Delivery of Protein Arginine Deiminase-4 Inhibitors to Limit Arterial Intimal NETosis and Preserve Endothelial Integrity. Cardiovascular Research, 117, 2652-2663. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yang, C., Dong, Z., Zhang, J., Teng, D., Luo, X., Li, D., et al. (2021) Peptidylarginine Deiminases 4 as a Promising Target in Drug Discovery. European Journal of Medicinal Chemistry, 226, Article ID: 113840. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Dickerhof, N., Huang, J., Min, E., Michaëlsson, E., Lindstedt, E., Pearson, J.F., et al. (2020) Myeloperoxidase Inhibition Decreases Morbidity and Oxidative Stress in Mice with Cystic Fibrosis-Like Lung Inflammation. Free Radical Biology and Medicine, 152, 91-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Hattar, K., Gakisch, S., Grimminger, F., Olschewski, H., Seeger, W., Tschuschner, A., et al. (2003) Increased Neutrophil Mediator Release in Patients with Pulmonary Hypertension—Suppression by Inhaled Iloprost. Thrombosis and Haemostasis, 90, 1141-1149. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Ravindran, M., Khan, M.A. and Palaniyar, N. (2019) Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules, 9, Article No. 365. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Zeng, J., Xu, H., Fan, P., Xie, J., He, J., Yu, J., et al. (2020) Kaempferol Blocks Neutrophil Extracellular Traps Formation and Reduces Tumour Metastasis by Inhibiting ROS‐PAD4 Pathway. Journal of Cellular and Molecular Medicine, 24, 7590-7599. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Kirchner, T., Hermann, E., Möller, S., Klinger, M., Solbach, W., Laskay, T., et al. (2013) Flavonoids and 5-Aminosalicylic Acid Inhibit the Formation of Neutrophil Extracellular Traps. Mediators of Inflammation, 2013, Article ID: 710239. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Manfredi, A.A., Rovere-Querini, P., D’Angelo, A. and Maugeri, N. (2017) Low Molecular Weight Heparins Prevent the Induction of Autophagy of Activated Neutrophils and the Formation of Neutrophil Extracellular Traps. Pharmacological Research, 123, 146-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Sanchez, J. (2017) Low Molecular Weight Heparins—A New Tool to Disetangle from the NETs. Pharmacological Research, 123, Article No. 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Al-Ghoul, W.M., Kim, M.S., Fazal, N., Azim, A.C. and Ali, A. (2014) Evidence for Simvastatin Anti-Inflammatory Actions Based on Quantitative Analyses of NETosis and Other Inflammation/Oxidation Markers. Results in Immunology, 4, 14-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Menegazzo, L., Scattolini, V., Cappellari, R., Bonora, B.M., Albiero, M., Bortolozzi, M., et al. (2018) The Antidiabetic Drug Metformin Blunts NETosis in Vitro and Reduces Circulating Netosis Biomarkers in Vivo. Acta Diabetologica, 55, 593-601. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Ghofrani, H.A., Rose, F., Schermuly, R.T., Olschewski, H., Wiedemann, R., Kreckel, A., et al. (2003) Oral Sildenafil as Long-Term Adjunct Therapy to Inhaled Iloprost in Severe Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 42, 158-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Ghofrani, H., Galiè, N., Grimminger, F., Grünig, E., Humbert, M., Jing, Z., et al. (2013) Riociguat for the Treatment of Pulmonary Arterial Hypertension. New England Journal of Medicine, 369, 330-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
McLaughlin, V.V., Benza, R.L., Rubin, L.J., Channick, R.N., Voswinckel, R., Tapson, V.F., et al. (2010) Addition of Inhaled Treprostinil to Oral Therapy for Pulmonary Arterial Hypertension: A Randomized Controlled Clinical Trial. Journal of the American College of Cardiology, 55, 1915-1922. [Google Scholar] [CrossRef] [PubMed]
|