中性粒细胞胞外诱捕网在肺动脉高压中的研究进展
Research Progress on the Role of Neutrophil Extracellular Traps in Pulmonary Hypertension
DOI: 10.12677/acm.2025.1541018, PDF, HTML, XML,   
作者: 张 茜, 罗征秀*:重庆医科大学附属儿童医院呼吸科,重庆;国家儿童健康与疾病临床医学研究中心,重庆;儿童发育疾病研究教育部重点实验室,重庆;儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 肺动脉高压中性粒细胞中性粒细胞外诱捕网Pulmonary Hypertension Neutrophil Neutrophil Extracellular Traps
摘要: 肺动脉高压是一种以肺血管阻力和肺动脉压力升高为特征的临床和病理生理综合征,预后较差,全球疾病负担重。中性粒细胞胞外诱捕网,是一种由活化的中性粒细胞释放至胞外的网状结构,在慢性炎症、血管重塑及血栓形成中发挥重要作用,或可为肺动脉高压的早期识别及治疗提供新思路。因而,本文就中性粒细胞胞外诱捕网在肺动脉高压发生发展中的作用及潜在治疗方案进行阐述。
Abstract: Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary arterial pressure, with poor prognosis and severe global disease burden. Neutrophil extracellular traps (NETs), a network released by activated neutrophils, play a critical role in chronic inflammation, vascular remodeling, and thrombosis, providing novel insights for early identification and therapeutic strategies in PH. Hence, this article reviews the role of NETs in the pathogenesis and progression of PH, as well as explores potential treatment approaches targeting NETs.
文章引用:张茜, 罗征秀. 中性粒细胞胞外诱捕网在肺动脉高压中的研究进展[J]. 临床医学进展, 2025, 15(4): 958-966. https://doi.org/10.12677/acm.2025.1541018

1. 引言

肺动脉高压(pulmonary hypertension, PH)是指由多种病因和发病机制导致肺血管结构或功能改变,引起肺血管阻力和肺动脉压力升高的临床和病理生理综合征,可发展成右心衰竭甚至死亡[1]。近期流行病学研究表明,全球PH患病率约1%,其预后较差,造成较重的疾病负担[2] [3]。PH包含以下5个分类:动脉性PH (pulmonary arterial hypertension, PAH);左心疾病所致PH;肺部疾病和(或)低氧所致PH;慢性血栓栓塞性PH (chronic thromboembolic pulmonary hypertension, CTEPH)和(或)其他肺动脉栓塞性疾病所致PH;原因不明和(或)多因素所致PH [1]。最新国际指南将PH定义为:海平面、静息状态下,经右心导管检查测定的平均肺动脉压(mean pulmonary artery pressure, mPAP) > 20 mmHg [4]。右心导管检查作为其诊断金标准,由于其有创性,在早期诊断中具有局限性;而超声心动图及部分生物标志物在诊断准确性及特异性上存在不足。现有PH靶向治疗仍存在疗效欠佳、不良反应严重等局限性。因而,寻求PH无创早期诊断工具及新的治疗靶点具有重要临床意义。

中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)是由活化的中性粒细胞释放至胞外的一种特殊大分子复合体,其网状结构包括骨架成分双链DNA (double-stranded DNA, dsDNA)及组蛋白、髓过氧化物酶(myeloperoxidase, MPO)、弹性蛋白酶(neutrophil elastase, NE)等多种颗粒蛋白。在NETs形成过程中伴随着中性粒细胞的死亡,被称为NETosis [5]。近年国内外研究发现肺动脉高压患者循环NETs及其标志物水平升高,NETs在肺动脉高压的发生发展中具有一定作用[6]。本综述针对NETs在肺动脉高压的发生发展中的作用进行阐述,或可为PH的早期识别及治疗靶点提供新思路。

2. NETs与PH的关系

2016年,Albabbous团队首次在iPAH患者的肺组织中发现NETs [7]:DNA、MPO及瓜氨酸组蛋白酶3 (citrullinated histone H3, CitH3)在闭塞性丛状病变中富集;且NETs形成的关键酶肽基精氨酸脱亚胺酶4 (Peptidylarginine Deiminase 4, PAD4)阳性的中性粒细胞分布于重塑血管壁及血管周围炎性浸润区。此后,国内外研究进一步证实了PAH患者及动物模型中NETs及其标志物水平升高,并探究了NETs在各类PH中的作用。既往研究发现,PAH患者血浆NE与疾病严重程度及不良预后相关[8],血浆及肺组织中MPO水平与血液动力学恶化、心功能下降及生存率降低等不良预后事件相关[9]。而在动物模型中,抑制NE可逆转血管及心脏重构,促进内皮功能正常化及心功能恢复,降低死亡率[10]-[14]。近期研究发现,PAH患者血浆NE和内源性逆转录病毒包膜蛋白包膜(HERV-K)水平增高,并可诱导小鼠肺动脉高压,而NE抑制剂及抗病毒药物elafin可缓解这一进展,提示NETs与肺动脉高压的发生发展有关[15]。外周血中性粒细胞与淋巴细胞比值(neutrophil to lymphocyte ratio, NLR)升高是PAH和CTEPH的独立不良预后指标,提示中性粒细胞过度活化与疾病恶化相关[16]-[19]。有研究探讨了NETs在动静脉系统中的作用,提示了其在CTEPH发病机制中的作用[20]。Kevin Didier等发现,系统性硬化相关肺动脉高压患者中NETosis持续存在[21]。在先天性心脏病相关肺动脉高压患者中,抑制NE活性可显著减轻肺损伤[22]。近期研究发现了由TLR4 /NLRP3信号通路介导的内皮细胞铁死亡可诱导大鼠PH [23],而NETs与铁死亡之间存在的联系[24] [25]进一步提示了NETs与PH的关系。

3. NETs在PH中的病理机制

慢性炎症和血管重塑是PH的病理表现和发病因素之一[4]。既往研究提示,NETs不仅在慢性炎症中具有重要作用,也可导致内皮功能障碍、促进血管平滑肌细胞(vascular smooth muscle cells, VSMCs)的迁移和增殖、血管生成及血栓形成[6] [26],可能引起肺动脉管腔进行性狭窄、闭塞,肺血管阻力升高,从而引发肺动脉高压。

3.1. NETs促进血管炎症和内皮损伤

研究发现PH患者中性粒细胞中Rho激酶通路异常激活[27],Rho相关的卷曲螺旋激酶(Rho associated coiled coil-forming kinase, ROCK)可显著上调包括白细胞介素(IL)-6、趋化因子配体2 (C-C motif chemoattractant ligand 2, CCL2)和肿瘤坏死因子(TNF)-α等促炎细胞因子的表达,放大炎症级联反应[28,29],驱动肺血管微环境的慢性炎症;而TNF-α、IL-1、IL-6等促炎因子可导致内皮型一氧化氮合酶活性降低,内皮一氧化氮释放减少,使得一氧化氮依赖性松弛反应减弱,导致内皮舒张功能障碍,另一方面可进一步促进中性粒细胞募集,形成炎症及内皮损伤的恶性循环。既往文献报道,MPO主要通过以下两个途径导致内皮功能障碍:激活Rho激酶信号通路,导致内皮功能障碍[9] [27];与NADPH氧化酶产生的活性氧(reactive oxygen species, ROS)协同作用,形成肺血管床强氧化微环境[30],导致内皮型一氧化氮合酶失调,直接损伤内皮细胞(endothelial cells, ECs) [31],引起血管舒张障碍和重塑增强。此外,氧化应激在实验条件下可诱导NETs释放[32],形成正反馈。NE可通过降解弹性蛋白,释放弹性蛋白衍生肽(Elastin-derived peptides, EDP),其中具有促炎活性的组分可直接刺激炎症反应;另一方面激活内皮细胞释放IL-8、CCL2等趋化因子,募集更多中性粒细胞,形成“NE-炎症”正反馈循环[33];还可诱导基质金属蛋白酶(matrix metalloproteinases, MMPs)分泌[34],破坏肺血管基质,释放炎性介质,从而导致内皮损伤。NE还可通过抑制BMPR2信号通路,导致肺动脉ECs过度凋亡[8]。此外,NE可与MPO协同作用产生ROS [35],加重内皮功能障碍。

3.2. NETs参与肺血管重塑

NE通过抑制BMPR2信号通路,导致VSMCs过度增殖[36]。NE还可刺激MMPs分泌[34],通过降解胶原蛋白、层粘连蛋白等细胞外基质(extracellular matrix, ECM)成分,增强细胞迁移能力,促进血管重塑及新生血管形成[37] [38]。此外,弹性蛋白降解产生的EDP可直接激活ECs [33]和VSMCs增殖[33] [39],诱导肺血管壁增厚及新生血管形成。研究表明,NE活性降低与血管重构逆转相关[10]-[15],进一步论证了NE在肺血管重塑中的作用。MPO和H2O2激活内皮细胞的Toll样受体(TLR) 4导致NF-κB表达上调,细胞间黏附分子(ICAM)-1、MMP9、肝素结合EGF样生长因子(HB-EGF)等促内皮迁移及血管生成因子释放,诱导新生血管形成,驱动血管重塑[7]。MPO还可通过与ROS协同作用,形成肺血管床强氧化微环境[30],通过SMAD、MAPK、Rho-GTPase等信号通路活化调节转化生长因子β (transforming growth factor β, TGF-β)信号通路,发挥促纤维化作用,促进血管重塑[31]。此外,MPO抑制剂在动物模型中可减轻氧化损伤和血管重构[40],也进一步论证了MPO在肺血管重构中的作用。

中性粒细胞中Rho激酶通路的异常激活[27],可显著上调IL6等促炎细胞因子的表达[28];此外,研究发现PAH患者中IL-1β、IL-8水平显著升高[29]。而IL-1β、IL-6具有诱导VSMCs增殖、减少其凋亡的作用,可导致肺血管壁增厚和管腔狭窄[41]-[43];IL-8可增强ECs存活能力、增加MMPs的表达[44],进而促进血管生成,构成PAH的“炎症–血管重塑”恶性循环。此外,NETs可通过增强ECs内皮素(ET)-1的表达,刺激VSMCs异常增殖,促进血管壁增厚,加速血管闭塞性病变[7]。最近的研究表明,NETs可以通过激活由卷曲螺旋结构域25 (CCDC25)介导的ILK/β-parvin/RAC1通路刺激肺动脉VSMCs的细胞骨架重塑和表型转化[45],从而影响该细胞功能[46],对PAH的进展至关重要[47] [48]

3.3. NETs与血栓形成

肺动脉高压患者普遍存在血栓性病变及凝血功能异常[49]。研究显示MPO和NE可直接激活凝血因子,并抑制抗凝通路[50] [51]。NETs来源的组蛋白及MPO可激活内皮细胞,上调组织因子和黏附分子表达,进一步放大内皮活化、促进血栓形成[52]。NETs来源的组蛋白及MPO可刺激血小板活化和脱颗粒,活化的血小板通过P-选择素/PSGL介导中性粒细胞活化,并通过整合素-GP1b和CCR1-CXCL4/CCR5-CCL5相互作用或HMBG1信号传导诱导NETosis,不断释放NETs[26]。NETs作为网状结构,可与血小板结合并促其聚集,为血栓提供物理支架[53],增强血栓稳定性[54]。活化的中性粒细胞与血小板两者的相互作用形成正反馈,最终导致血栓形成、血管重塑和血管收缩。前文提到,NE可与MPO协同作用产生ROS [35],而研究表明ROS可促进血栓形成[55]。此外,Kesturu S. Girish团队发现,铁死亡介导的NETosis加速了CTEPH患者中的肺栓塞形成。不仅如此,NETs还通过TGF-β信号通路诱导血栓纤维化,从而导致血栓负荷增加和消除延迟,由静脉血栓转化为纤维化血管阻塞,从而导致CTEPH [56]。研究发现NETs降解酶脱氧核糖核酸酶(DNase) I可促进血栓溶解[51],也进一步提示了NETs与血栓形成的关系。

4. 靶向NETs的潜在治疗策略

最近的研究强调了NETs在PH发病机制中的重要作用。尽管目前针对NETs治疗PH的研究较少,现有研究已经在细胞实验和动物模型中提示了其治疗作用,抑制NETs可以改善病情、逆转疾病进展。因而,NETs有望成为未来PH治疗的潜在靶点,但针对该靶点的PH治疗安全性及有效性尚不明确,其是否能推广至临床实践中还需要更多高质量基础研究及临床研究验证。

4.1. 直接降解NETs

DNA是NETs的骨架成分,因而作为其裂解的关键酶,DNase I是降解NETs过程的重要因素。在既往研究中,DNase I常被用于抑制NETs [57] [58]。Farrera等的研究表明,NETs的降解依赖于DNase I和巨噬细胞。高浓度DNase I 可有效降解NETs,而生理浓度DNase I无法催化这一过程,可能通过将DNA主链分解成更易处理的片段,从而增强巨噬细胞对NETs的清除[59]。此外,研究发现DNase I可促进血栓溶解,进而延缓PH进展[51]

4.2. 抑制NETs形成

PAD4是形成CitH3的关键酶。该酶介导组蛋白上精氨酸残基转化为瓜氨酸,移除核心组蛋白的正电荷,从而削弱组蛋白与DNA之间的静电相互作用,导致解聚的染色质DNA释放,参与NETosis [60]。PAD4抑制剂由于其独特的化学结构,表现出对PAD4的强特异性[60]。现有研究提示了该抑制剂在心血管疾病中的潜在治疗作用[61]-[63],但目前尚无探讨PAD4抑制剂对PH疾病进展影响的相关研究。此外,如前文所述,NE抑制剂可减低肺动脉压力,逆转血管重构[11] [15];MPO抑制剂可减轻氧化损伤和血管重构[9] [64]。目前,一项注册号为NCT03522935临床试验已进入实施阶段,旨在系统评估elafin在抗PH治疗中的安全性与有效性,该药物有望被推广至PH的临床治疗。前列环素由血管内皮细胞产生,具有强效扩张血管的作用,是PH的特异性治疗,有研究提出了其通过直接抑制中性粒细胞的脱颗粒过程及NE释放改善PAH病情的额外机制[65]

ROS在NETs生成中起着重要作用[66]。Zeng等发现,抗氧化剂能够有效抑制激活的中性粒细胞产生ROS,并阻碍依赖ROS的NETs形成[67] [68]。肝素是一种具有抗凝活性和抗血栓作用的多功能糖胺聚糖,可抑制中性粒细胞的活化,从而减少NETs的产生[69] [70]。此外,研究提示他汀类药物和二甲双胍可以有效抑制NETs的形成,降低血浆中MPO等NETs标志物水平,并减少外周血中性粒细胞的数量,还可通过抑制NETosis相关的炎症改善心力衰竭[71] [72]

4.3. 联合治疗策略

多项临床研究证明PH靶向药物序贯联合治疗较单药治疗能取得更好疗效[73]-[75]。因而,NETs靶向药物与内皮素受体拮抗剂、磷酸二酯酶5型抑制剂、前列环素等传统PAH靶向疗法结合,或许是PH治疗的新方向。

5. 小结

综上所述,肺血管周围炎症反应及血管重塑是PH的关键致病因素。NETs可通过不同机制引起慢性炎症、内皮功能障碍、血管重塑及血栓形成,在PH发生发展中具有重要作用。但目前研究主要集中于PAH,对其他类型PH的相关研究尚存在不足,因而,NETs在PH不同亚型中的特异性作用仍需进一步探索。且NETs的检测存在异质性,在PH诊断的临床应用上仍存在较大距离。治疗方面,其作为新型治疗策略虽具有一定潜力,也面临免疫抑制等风险,具有一定挑战性。未来仍需开展多类型临床及基础研究,进一步探索其作用机制及临床应用价值,推动基础与临床研究的转化。

NOTES

*通讯作者。

参考文献

[1] 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版) [J]. 中华医学杂志, 2021, 101(1): 11-51.
[2] Poch, D. and Mandel, J. (2021) Pulmonary Hypertension. Annals of Internal Medicine, 174, ITC49-ITC64.
https://doi.org/10.7326/aitc202104200
[3] Mocumbi, A., Humbert, M., Saxena, A., Jing, Z., Sliwa, K., Thienemann, F., et al. (2024) Pulmonary Hypertension. Nature Reviews Disease Primers, 10, Article No. 1.
https://doi.org/10.1038/s41572-023-00486-7
[4] Humbert, M., Kovacs, G., Hoeper, M.M., Badagliacca, R., Berger, R.M.F., Brida, M., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 43, 3618-3731.
https://doi.org/10.1093/eurheartj/ehac237
[5] Papayannopoulos, V. (2017) Neutrophil Extracellular Traps in Immunity and Disease. Nature Reviews Immunology, 18, 134-147.
https://doi.org/10.1038/nri.2017.105
[6] Tang, Y., Jiao, Y., An, X., Tu, Q. and Jiang, Q. (2024) Neutrophil Extracellular Traps and Cardiovascular Disease: Associations and Potential Therapeutic Approaches. Biomedicine & Pharmacotherapy, 180, Article ID: 117476.
https://doi.org/10.1016/j.biopha.2024.117476
[7] Aldabbous, L., Abdul-Salam, V., McKinnon, T., Duluc, L., Pepke-Zaba, J., Southwood, M., et al. (2016) Neutrophil Extracellular Traps Promote Angiogenesis: Evidence from Vascular Pathology in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 2078-2087.
https://doi.org/10.1161/atvbaha.116.307634
[8] Sweatt, A.J., Miyagawa, K., Rhodes, C.J., Taylor, S., Del Rosario, P.A., Hsi, A., et al. (2021) Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency. Chest, 160, 1442-1458.
https://doi.org/10.1016/j.chest.2021.06.028
[9] Klinke, A., Berghausen, E., Friedrichs, K., Molz, S., Lau, D., Remane, L., et al. (2018) Myeloperoxidase Aggravates Pulmonary Arterial Hypertension by Activation of Vascular Rho-Kinase. JCI Insight, 3, e97530.
https://doi.org/10.1172/jci.insight.97530
[10] Nickel, N.P., Spiekerkoetter, E., Gu, M., Li, C.G., Li, H., Kaschwich, M., et al. (2015) Elafin Reverses Pulmonary Hypertension via Caveolin-1-Dependent Bone Morphogenetic Protein Signaling. American Journal of Respiratory and Critical Care Medicine, 191, 1273-1286.
https://doi.org/10.1164/rccm.201412-2291oc
[11] Cowan, K.N., Heilbut, A., Humpl, T., Lam, C., Ito, S. and Rabinovitch, M. (2000) Complete Reversal of Fatal Pulmonary Hypertension in Rats by a Serine Elastase Inhibitor. Nature Medicine, 6, 698-702.
https://doi.org/10.1038/76282
[12] von Nussbaum, F., Li, V.M., Meibom, D., Anlauf, S., Bechem, M., Delbeck, M., et al. (2015) Potent and Selective Human Neutrophil Elastase Inhibitors with Novel Equatorial Ring Topology: In Vivo Efficacy of the Polar Pyrimidopyridazine BAY‐8040 in a Pulmonary Arterial Hypertension Rat Model. ChemMedChem, 11, 199-206.
https://doi.org/10.1002/cmdc.201500269
[13] Zaidi, S.H.E., You, X., Ciura, S., Husain, M. and Rabinovitch, M. (2002) Overexpression of the Serine Elastase Inhibitor Elafin Protects Transgenic Mice from Hypoxic Pulmonary Hypertension. Circulation, 105, 516-521.
https://doi.org/10.1161/hc0402.102866
[14] Ilkiw, R., Todorovich-Hunter, L., Maruyama, K., Shin, J. and Rabinovitch, M. (1989) SC-39026, a Serine Elastase Inhibitor, Prevents Muscularization of Peripheral Arteries, Suggesting a Mechanism of Monocrotaline-Induced Pulmonary Hypertension in Rats. Circulation Research, 64, 814-825.
https://doi.org/10.1161/01.res.64.4.814
[15] Taylor, S., Isobe, S., Cao, A., Contrepois, K., Benayoun, B.A., Jiang, L., et al. (2022) Endogenous Retroviral Elements Generate Pathologic Neutrophils in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 206, 1019-1034.
https://doi.org/10.1164/rccm.202102-0446oc
[16] Harbaum, L., Baaske, K.M., Simon, M., Oqueka, T., Sinning, C., Glatzel, A., et al. (2017) Exploratory Analysis of the Neutrophil to Lymphocyte Ratio in Patients with Pulmonary Arterial Hypertension. BMC Pulmonary Medicine, 17, Article No. 72.
https://doi.org/10.1186/s12890-017-0407-5
[17] Özpelit, E., Akdeniz, B., Özpelit, M.E., Tas, S., Bozkurt, S., Tertemiz, K.C., et al. (2015) Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Pulmonary Arterial Hypertension. Journal of International Medical Research, 43, 661-671.
https://doi.org/10.1177/0300060515589394
[18] Yıldız, A., Kaya, H., Ertaş, F., et al. (2013) Association between Neutrophil to Lymphocyte Ratio and Pulmonary Arterial Hypertension. Turk Kardiyoloji Derneginin Yayin Organidir, 41, 604-609.
https://doi.org/10.5543/tkda.2013.93385
[19] Yanartas, M., Kalkan, M.E., Arslan, A., Tas, S.G., Koksal, C., Bekiroglu, N., et al. (2015) Neutrophil/Lymphocyte Ratio Can Predict Postoperative Mortality in Patients with Chronic Thromboembolic Pulmonary Hypertension. Annals of Thoracic and Cardiovascular Surgery, 21, 229-235.
https://doi.org/10.5761/atcs.oa.14-00190
[20] Laridan, E., Martinod, K. and De Meyer, S. (2019) Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Seminars in Thrombosis and Hemostasis, 45, 86-93.
https://doi.org/10.1055/s-0038-1677040
[21] Didier, K., Giusti, D., Le Jan, S., Terryn, C., Muller, C., Pham, B.N., et al. (2020) Neutrophil Extracellular Traps Generation Relates with Early Stage and Vascular Complications in Systemic Sclerosis. Journal of Clinical Medicine, 9, Article No. 2136.
https://doi.org/10.3390/jcm9072136
[22] Nomura, N., Asano, M., Saito, T., Nakayama, T. and Mishima, A. (2013) Sivelestat Attenuates Lung Injury in Surgery for Congenital Heart Disease with Pulmonary Hypertension. The Annals of Thoracic Surgery, 96, 2184-2191.
https://doi.org/10.1016/j.athoracsur.2013.07.017
[23] NaveenKumar, S.K., Hemshekhar, M., Sharathbabu, B.N., Kemparaju, K., Mugesh, G. and Girish, K.S. (2023) Platelet Activation and Ferroptosis Mediated NETosis Drives Heme Induced Pulmonary Thrombosis. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1869, Article ID: 166688.
https://doi.org/10.1016/j.bbadis.2023.166688
[24] Chu, C., Wang, X., Yang, C., Chen, F., Shi, L., Xu, W., et al. (2023) Neutrophil Extracellular Traps Drive Intestinal Microvascular Endothelial Ferroptosis by Impairing Fundc1-Dependent Mitophagy. Redox Biology, 67, Article ID: 102906.
https://doi.org/10.1016/j.redox.2023.102906
[25] Fei, Y., Huang, X., Ning, F., Qian, T., Cui, J., Wang, X., et al. (2024) Nets Induce Ferroptosis of Endothelial Cells in LPS-ALI through SDC-1/HS and Downstream Pathways. Biomedicine & Pharmacotherapy, 175, Article ID: 116621.
https://doi.org/10.1016/j.biopha.2024.116621
[26] Baptista de Barros Ribeiro Dourado, L.P., Santos, M. and Moreira-Gonçalves, D. (2022) Nets, Pulmonary Arterial Hypertension, and Thrombo-Inflammation. Journal of Molecular Medicine, 100, 713-722.
https://doi.org/10.1007/s00109-022-02197-0
[27] Do.e, Z., Fukumoto, Y., Takaki, A., Tawara, S., Ohashi, J., Nakano, M., et al. (2009) Evidence for Rho-Kinase Activation in Patients with Pulmonary Arterial Hypertension. Circulation Journal, 73, 1731-1739.
https://doi.org/10.1253/circj.cj-09-0135
[28] Kitano, K., Usui, S., Ootsuji, H., Takashima, S., Kobayashi, D., Murai, H., et al. (2014) Rho-Kinase Activation in Leukocytes Plays a Pivotal Role in Myocardial Ischemia/Reperfusion Injury. PLOS ONE, 9, e92242.
https://doi.org/10.1371/journal.pone.0092242
[29] Soon, E., Holmes, A.M., Treacy, C.M., Doughty, N.J., Southgate, L., Machado, R.D., et al. (2010) Elevated Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation, 122, 920-927.
https://doi.org/10.1161/circulationaha.109.933762
[30] Faurschou, M. and Borregaard, N. (2003) Neutrophil Granules and Secretory Vesicles in Inflammation. Microbes and Infection, 5, 1317-1327.
https://doi.org/10.1016/j.micinf.2003.09.008
[31] Zimmer, A., Teixeira, R.B., Constantin, R.L., Campos-Carraro, C., Aparicio Cordero, E.A., Ortiz, V.D., et al. (2021) The Progression of Pulmonary Arterial Hypertension Induced by Monocrotaline Is Characterized by Lung Nitrosative and Oxidative Stress, and Impaired Pulmonary Artery Reactivity. European Journal of Pharmacology, 891, Article ID: 173699.
https://doi.org/10.1016/j.ejphar.2020.173699
[32] Lood, C., Blanco, L.P., Purmalek, M.M., Carmona-Rivera, C., De Ravin, S.S., Smith, C.K., et al. (2016) Neutrophil Extracellular Traps Enriched in Oxidized Mitochondrial DNA Are Interferogenic and Contribute to Lupus-Like Disease. Nature Medicine, 22, 146-153.
https://doi.org/10.1038/nm.4027
[33] Wang, M., McGraw, K.R., Monticone, R.E. and Pintus, G. (2025) Unraveling Elastic Fiber-Derived Signaling in Arterial Aging and Related Arterial Diseases. Biomolecules, 15, Article No. 153.
https://doi.org/10.3390/biom15020153
[34] Carmona-Rivera, C., Zhao, W., Yalavarthi, S. and Kaplan, M.J. (2015) Neutrophil Extracellular Traps Induce Endothelial Dysfunction in Systemic Lupus Erythematosus through the Activation of Matrix Metalloproteinase-2. Annals of the Rheumatic Diseases, 74, 1417-1424.
https://doi.org/10.1136/annrheumdis-2013-204837
[35] Neubert, E., Bach, K.M., Busse, J., Bogeski, I., Schön, M.P., Kruss, S., et al. (2019) Blue and Long-Wave Ultraviolet Light Induce in Vitro Neutrophil Extracellular Trap (NET) Formation. Frontiers in Immunology, 10, Article No. 2428.
https://doi.org/10.3389/fimmu.2019.02428
[36] Morrell, N.W., Yang, X., Upton, P.D., Jourdan, K.B., Morgan, N., Sheares, K.K., et al. (2001) Altered Growth Responses of Pulmonary Artery Smooth Muscle Cells from Patients with Primary Pulmonary Hypertension to Transforming Growth Factor-Β1 and Bone Morphogenetic Proteins. Circulation, 104, 790-795.
https://doi.org/10.1161/hc3201.094152
[37] Chang, C., Hsu, H., Ho, W., Chang, G., Pang, J.S., Chen, W., et al. (2019) Cathepsin S Promotes the Development of Pulmonary Arterial Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 317, L1-L13.
https://doi.org/10.1152/ajplung.00530.2018
[38] Sharony, R., Pintucci, G., Saunders, P.C., Grossi, E.A., Baumann, F.G., Galloway, A.C., et al. (2006) Matrix Metalloproteinase Expression in Vein Grafts: Role of Inflammatory Mediators and Extracellular Signal-Regulated Kinases-1 and-2. American Journal of Physiology-Heart and Circulatory Physiology, 290, H1651-H1659.
https://doi.org/10.1152/ajpheart.00530.2005
[39] Mochizuki, S., Brassart, B. and Hinek, A. (2002) Signaling Pathways Transduced through the Elastin Receptor Facilitate Proliferation of Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 277, 44854-44863.
https://doi.org/10.1074/jbc.m205630200
[40] Tiyerili, V., Camara, B., Becher, M.U., Schrickel, J.W., Lütjohann, D., Mollenhauer, M., et al. (2016) Neutrophil-Derived Myeloperoxidase Promotes Atherogenesis and Neointima Formation in Mice. International Journal of Cardiology, 204, 29-36.
https://doi.org/10.1016/j.ijcard.2015.11.128
[41] Ikeda, U., Ikeda, M., Oohara, T., Oguchi, A., Kamitani, T., Tsuruya, Y., et al. (1991) Interleukin 6 Stimulates Growth of Vascular Smooth Muscle Cells in a PDGF-Dependent Manner. American Journal of Physiology-Heart and Circulatory Physiology, 260, H1713-H1717.
https://doi.org/10.1152/ajpheart.1991.260.5.h1713
[42] Morimoto, S., Nabata, T., Koh, E., Shiraishi, T., Fukuo, K., Imanaka, S., et al. (1991) Interleukin-6 Stimulates Proliferation of Cultured Vascular Smooth Muscle Cells Independently of Interleukin-1β. Journal of Cardiovascular Pharmacology, 17, S117-S118.
https://doi.org/10.1097/00005344-199117002-00026
[43] Cimmino, I., Prisco, F., Orso, S., Agognon, A.L., Liguoro, P., De Biase, D., et al. (2021) Interleukin 6 Reduces Vascular Smooth Muscle Cell Apoptosis via Prep1 and Is Associated with Aging. The FASEB Journal, 35, e21989.
https://doi.org/10.1096/fj.202100943r
[44] Li, A., Dubey, S., Varney, M.L., Dave, B.J. and Singh, R.K. (2003) IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. The Journal of Immunology, 170, 3369-3376.
https://doi.org/10.4049/jimmunol.170.6.3369
[45] Sun, H., Du, Z., Zhang, X., Gao, S., Ji, Z., Luo, G., et al. (2024) Neutrophil Extracellular Traps Promote Proliferation of Pulmonary Smooth Muscle Cells Mediated by CCDC25 in Pulmonary Arterial Hypertension. Respiratory Research, 25, Article No. 183.
https://doi.org/10.1186/s12931-024-02813-2
[46] Parpaite, T., Cardouat, G., Mauroux, M., Gillibert-Duplantier, J., Robillard, P., Quignard, J., et al. (2015) Effect of Hypoxia on TRPV1 and TRPV4 Channels in Rat Pulmonary Arterial Smooth Muscle Cells. Pflügers ArchivEuropean Journal of Physiology, 468, 111-130.
https://doi.org/10.1007/s00424-015-1704-6
[47] Tuder, R.M. (2016) Pulmonary Vascular Remodeling in Pulmonary Hypertension. Cell and Tissue Research, 367, 643-649.
https://doi.org/10.1007/s00441-016-2539-y
[48] Li, M., Ying, M., Gu, S., Zhou, Z. and Zhao, R. (2023) SIRT6 Inhibits Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cells Proliferation via HIF-1α/PDK4 Signaling. Life Sciences, 312, Article ID: 121192.
https://doi.org/10.1016/j.lfs.2022.121192
[49] Bazan, I.S. and Fares, W.H. (2018) Hypercoagulability in Pulmonary Hypertension. Clinics in Chest Medicine, 39, 595-603.
https://doi.org/10.1016/j.ccm.2018.04.005
[50] Lim, H., Jeong, I., An, G., Woo, K., Kim, K., Kim, J., et al. (2020) Evaluation of Neutrophil Extracellular Traps as the Circulating Marker for Patients with Acute Coronary Syndrome and Acute Ischemic Stroke. Journal of Clinical Laboratory Analysis, 34, e23190.
https://doi.org/10.1002/jcla.23190
[51] Peña-Martínez, C., Durán-Laforet, V., García-Culebras, A., Ostos, F., Hernández-Jiménez, M., Bravo-Ferrer, I., et al. (2019) Pharmacological Modulation of Neutrophil Extracellular Traps Reverses Thrombotic Stroke tPA (Tissue-Type Plasminogen Activator) Resistance. Stroke, 50, 3228-3237.
https://doi.org/10.1161/strokeaha.119.026848
[52] Folco, E.J., Mawson, T.L., Vromman, A., Bernardes-Souza, B., Franck, G., Persson, O., et al. (2018) Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production through Interleukin-1α and Cathepsin G. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1901-1912.
https://doi.org/10.1161/atvbaha.118.311150
[53] Laridan, E., Denorme, F., Desender, L., François, O., Andersson, T., Deckmyn, H., et al. (2017) Neutrophil Extracellular Traps in Ischemic Stroke Thrombi. Annals of Neurology, 82, 223-232.
https://doi.org/10.1002/ana.24993
[54] Zhou, P., Li, T., Jin, J., Liu, Y., Li, B., Sun, Q., et al. (2020) Interactions between Neutrophil Extracellular Traps and Activated Platelets Enhance Procoagulant Activity in Acute Stroke Patients with ICA Occlusion. EBioMedicine, 53, Article ID: 102671.
https://doi.org/10.1016/j.ebiom.2020.102671
[55] Herkert, O., Djordjevic, T., Belaiba, R.S. and Görlach, A. (2004) Insights into the Redox Control of Blood Coagulation: Role of Vascular NADPH Oxidase-Derived Reactive Oxygen Species in the Thrombogenic Cycle. Antioxidants & Redox Signaling, 6, 765-776.
https://doi.org/10.1089/1523086041361695
[56] Sharma, S., Hofbauer, T.M., Ondracek, A.S., Chausheva, S., Alimohammadi, A., Artner, T., et al. (2021) Neutrophil Extracellular Traps Promote Fibrous Vascular Occlusions in Chronic Thrombosis. Blood, 137, 1104-1116.
https://doi.org/10.1182/blood.2020005861
[57] Zhou, H., Zhu, C., Zhao, Q., Ni, J., Zhang, H., Yang, G., et al. (2024) Wrecking Neutrophil Extracellular Traps and Antagonizing Cancer-Associated Neurotransmitters by Interpenetrating Network Hydrogels Prevent Postsurgical Cancer Relapse and Metastases. Bioactive Materials, 39, 14-24.
https://doi.org/10.1016/j.bioactmat.2024.05.022
[58] Xu, L., Kong, Y., Li, K., Li, J., Xu, F., Xu, Y., et al. (2025) Neutrophil Extracellular Traps Promote Growth of Lung Adenocarcinoma by Mediating the Stability of m6A‐Mediated SLC2A3 mRNA‐Induced Ferroptosis Resistance and CD8(+) T Cell Inhibition. Clinical and Translational Medicine, 15, e70192.
https://doi.org/10.1002/ctm2.70192
[59] Farrera, C. and Fadeel, B. (2013) Macrophage Clearance of Neutrophil Extracellular Traps Is a Silent Process. The Journal of Immunology, 191, 2647-2656.
https://doi.org/10.4049/jimmunol.1300436
[60] Liu, X., Arfman, T., Wichapong, K., Reutelingsperger, C.P.M., Voorberg, J. and Nicolaes, G.A.F. (2021) PAD4 Takes Charge during Neutrophil Activation: Impact of PAD4 Mediated NET Formation on Immune‐Mediated Disease. Journal of Thrombosis and Haemostasis, 19, 1607-1617.
https://doi.org/10.1111/jth.15313
[61] Wei, M., Wang, X., Song, Y., Zhu, D., Qi, D., Jiao, S., et al. (2021) Inhibition of Peptidyl Arginine Deiminase 4-Dependent Neutrophil Extracellular Trap Formation Reduces Angiotensin II-Induced Abdominal Aortic Aneurysm Rupture in Mice. Frontiers in Cardiovascular Medicine, 8, Article ID: 676612.
https://doi.org/10.3389/fcvm.2021.676612
[62] Molinaro, R., Yu, M., Sausen, G., Bichsel, C.A., Corbo, C., Folco, E.J., et al. (2021) Targeted Delivery of Protein Arginine Deiminase-4 Inhibitors to Limit Arterial Intimal NETosis and Preserve Endothelial Integrity. Cardiovascular Research, 117, 2652-2663.
https://doi.org/10.1093/cvr/cvab074
[63] Yang, C., Dong, Z., Zhang, J., Teng, D., Luo, X., Li, D., et al. (2021) Peptidylarginine Deiminases 4 as a Promising Target in Drug Discovery. European Journal of Medicinal Chemistry, 226, Article ID: 113840.
https://doi.org/10.1016/j.ejmech.2021.113840
[64] Dickerhof, N., Huang, J., Min, E., Michaëlsson, E., Lindstedt, E., Pearson, J.F., et al. (2020) Myeloperoxidase Inhibition Decreases Morbidity and Oxidative Stress in Mice with Cystic Fibrosis-Like Lung Inflammation. Free Radical Biology and Medicine, 152, 91-99.
https://doi.org/10.1016/j.freeradbiomed.2020.03.001
[65] Hattar, K., Gakisch, S., Grimminger, F., Olschewski, H., Seeger, W., Tschuschner, A., et al. (2003) Increased Neutrophil Mediator Release in Patients with Pulmonary Hypertension—Suppression by Inhaled Iloprost. Thrombosis and Haemostasis, 90, 1141-1149.
https://doi.org/10.1160/th03-03-0173
[66] Ravindran, M., Khan, M.A. and Palaniyar, N. (2019) Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules, 9, Article No. 365.
https://doi.org/10.3390/biom9080365
[67] Zeng, J., Xu, H., Fan, P., Xie, J., He, J., Yu, J., et al. (2020) Kaempferol Blocks Neutrophil Extracellular Traps Formation and Reduces Tumour Metastasis by Inhibiting ROS‐PAD4 Pathway. Journal of Cellular and Molecular Medicine, 24, 7590-7599.
https://doi.org/10.1111/jcmm.15394
[68] Kirchner, T., Hermann, E., Möller, S., Klinger, M., Solbach, W., Laskay, T., et al. (2013) Flavonoids and 5-Aminosalicylic Acid Inhibit the Formation of Neutrophil Extracellular Traps. Mediators of Inflammation, 2013, Article ID: 710239.
https://doi.org/10.1155/2013/710239
[69] Manfredi, A.A., Rovere-Querini, P., D’Angelo, A. and Maugeri, N. (2017) Low Molecular Weight Heparins Prevent the Induction of Autophagy of Activated Neutrophils and the Formation of Neutrophil Extracellular Traps. Pharmacological Research, 123, 146-156.
https://doi.org/10.1016/j.phrs.2016.08.008
[70] Sanchez, J. (2017) Low Molecular Weight Heparins—A New Tool to Disetangle from the NETs. Pharmacological Research, 123, Article No. 157.
https://doi.org/10.1016/j.phrs.2017.01.027
[71] Al-Ghoul, W.M., Kim, M.S., Fazal, N., Azim, A.C. and Ali, A. (2014) Evidence for Simvastatin Anti-Inflammatory Actions Based on Quantitative Analyses of NETosis and Other Inflammation/Oxidation Markers. Results in Immunology, 4, 14-22.
https://doi.org/10.1016/j.rinim.2014.03.001
[72] Menegazzo, L., Scattolini, V., Cappellari, R., Bonora, B.M., Albiero, M., Bortolozzi, M., et al. (2018) The Antidiabetic Drug Metformin Blunts NETosis in Vitro and Reduces Circulating Netosis Biomarkers in Vivo. Acta Diabetologica, 55, 593-601.
https://doi.org/10.1007/s00592-018-1129-8
[73] Ghofrani, H.A., Rose, F., Schermuly, R.T., Olschewski, H., Wiedemann, R., Kreckel, A., et al. (2003) Oral Sildenafil as Long-Term Adjunct Therapy to Inhaled Iloprost in Severe Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 42, 158-164.
https://doi.org/10.1016/s0735-1097(03)00555-2
[74] Ghofrani, H., Galiè, N., Grimminger, F., Grünig, E., Humbert, M., Jing, Z., et al. (2013) Riociguat for the Treatment of Pulmonary Arterial Hypertension. New England Journal of Medicine, 369, 330-340.
https://doi.org/10.1056/nejmoa1209655
[75] McLaughlin, V.V., Benza, R.L., Rubin, L.J., Channick, R.N., Voswinckel, R., Tapson, V.F., et al. (2010) Addition of Inhaled Treprostinil to Oral Therapy for Pulmonary Arterial Hypertension: A Randomized Controlled Clinical Trial. Journal of the American College of Cardiology, 55, 1915-1922.
https://doi.org/10.1016/j.jacc.2010.01.027