血清vWF、LTF与Hct联合检测对急性胰腺炎严重程度的预测价值
The Predictive Value of Combined Detection of Serum vWF, LTF, and Hct for the Severity of Acute Pancreatitis
DOI: 10.12677/jcpm.2025.42229, PDF, HTML, XML,    科研立项经费支持
作者: 史航瑞, 孙远松, 李 贺*:安徽医科大学第二附属医院急诊外科,安徽 合肥
关键词: 血管性血友病因子乳转铁蛋白红细胞比容急性胰腺炎预测Von Willebrand Factor Lactoferrin Hematocrit Acute Pancreatitis Prediction
摘要: 目的:探讨血管性血友病因子(vWF)、乳转铁蛋白(LTF)及红细胞比容(Hct)对急性胰腺炎(AP)病情严重程度的预测价值。方法:回顾性纳入2021年6月至2022年12月安徽医科大学第二附属医院急诊外科收治的260例AP患者,依据《2012亚特兰大分类标准》分为SAP组(重症组)与非SAP组。收集患者基线资料、实验室指标(包括ELISA法检测的血清vWF、LTF水平)及入院24小时内CTSI评分、48小时内SOFA评分。通过二元Logistic回归分析筛选SAP独立危险因素并构建联合预测模型,采用ROC曲线评估其诊断效能并与SOFA、CTSI评分对比。结果:SAP组与非SAP组在年龄、心率、白细胞计数、淋巴细胞百分比及Hct等指标差异显著。Spearman相关分析显示,Hct与AP严重程度正相关(r = 0.581),vWF (r= −0.566)、LTF (r = −0.462)呈负相关。Logistic回归证实三者均为SAP独立危险因素(均p < 0.05)。联合预测模型AUC为0.925,显著优于SOFA (0.907)及CTSI (0.776),灵敏度85.4%、特异度86.0%。结论:vWF、LTF、Hct联合模型对SAP具有高灵敏度和特异度,可作为早期识别高危患者的有效工具,其预测效能优于传统评分系统。
Abstract: Objective: To explore the predictive value of von Willebrand factor (vWF), lactotransferrin (LTF) and hematocrit (Hct) for the severity of acute pancreatitis (AP). Methods: A total of 260 AP patients admitted to the Department of Emergency Surgery of the Second Affiliated Hospital of Anhui Medical University from June 2021 to December 2022 were retrospectively enrolled and divided into SAP and non-SAP groups according to the 2012 Atlanta Classification. Baseline data, laboratory indexes (including serum vWF and LTF levels detected by ELISA) and CTSI scores within 24 hours of admission and SOFA scores within 48 hours were collected. Binary Logistic regression identified SAP risk factors and a combined prediction model. Diagnostic efficacy was evaluated by ROC curve and compared with SOFA and CTSI scores. Results: Significant differences were found between SAP group and non-SAP group in age, heart rate, white blood cell count, lymphocyte percentage and Hct. Spearman correlation analysis showed that Hct was positively correlated with the severity of AP (r = 0.581), while vWF (r = −0.566) and LTF (r = −0.462) were negatively correlated. Logistic regression confirmed that all three were independent risk factors for SAP (all p < 0.05). The AUC of the combined prediction model was 0.925, which was significantly better than SOFA (0.907) and CTSI (0.776), with sensitivity of 85.4% and specificity of 86.0%. Conclusion: The combined model of vWF, LTF and Hct has high sensitivity and specificity for SAP and can be used as an effective tool for early identification of high-risk patients, with better predictive efficacy than traditional scoring systems.
文章引用:史航瑞, 孙远松, 李贺. 血清vWF、LTF与Hct联合检测对急性胰腺炎严重程度的预测价值[J]. 临床个性化医学, 2025, 4(2): 665-673. https://doi.org/10.12677/jcpm.2025.42229

1. 引言

急性胰腺炎(Acute Pancreatitis, AP)是一种以胰腺炎症反应为特征的全球常见疾病,年发病率为13-45/10万[1]。其主要病因包括胆源性和高脂血症性,其次为酒精、药物及创伤等因素[2]。AP典型表现为急性腹痛,常伴发热、呕吐,80%~85%患者1~2周内康复,但部分可进展为重症急性胰腺炎(Severe Acute Pancreatitis, SAP)。SAP易并发全身炎症反应综合征(SIRS)和多器官功能障碍(MODS),发生器官衰竭或胰腺坏死者死亡率高达30%~50% [3] [4]。目前临床常采用APACHE II、BISAP及序贯器官衰竭评分(SOFA)评估AP的严重程度,其中SOFA虽可有效评估MODS,但因需连续多次监测及评估复杂,在早期诊断中存在局限性[5]。研究显示,SAP炎症阶段微循环障碍与血管内皮损伤、氧自由基释放及血流动力学紊乱密切相关,是MODS的重要病理基础。早期强化监测、阻断SIRS及改善微循环灌注,对改善患者预后具有关键作用[6]

血管性血友病因子(Von Willebrand Factor, vWF)是人体重要的糖蛋白蛋白,生理状态下参与血管的生成,在急性炎症反应过程中通过参与调节炎症反应改变血管通透性[7]。在一些严重的感染性疾病中可由vWF因子功能障碍导致微循环阻塞进而导致组织灌注不足和循环衰竭。乳转铁蛋白(Lactoferrin, LTF)是一种哺乳动物铁结合糖蛋白,广泛存在于胃肠道,在急性炎症反应过程中由中性粒细胞释放,并在免疫反应中发挥重要作用,有研究证明LTF广泛参与人体肠道及呼吸道炎症反应的调节过程[8]。在微循环障碍的过程中,有效循环血容量会渗透进组织间隙,从而造成血液浓缩,红细胞比容(Hematocrit, Hct)是指红细胞占全血容积的百分比,可以一定程度反映容量的变化,既往的研究表明AP的发生可导致Hct的变化[9]。本研究通过回顾性研究的方法,探讨vWF、LTF及红细胞比容与AP严重程度的相关性,构建联合预测因子并分析其对重症急性胰腺炎的预测价值。

2. 资料与方法

2.1. 研究对象

本研究选取安徽医科大学第二附属医院急诊外科自2021年6月至2022年12月收治的急性胰腺炎患者。

纳入标准:(1) 参照《中国急性胰腺炎诊治指南(2021)》[10]诊断标准明确诊断急性胰腺炎;(2) 此次入院前未接受其他治疗;(3) 出现腹痛或其他不适感48 h内就诊的患者;

排除标准:(1) 本次发病住院前接受过治疗;(2) 合并有其他严重的器质性疾病,恶性肿瘤或免疫相关性疾病;(3) 超过48 h就诊的患者;

依据《2012:亚特兰大分类和定义修订的国际共识》[11]将收集到的260名急性胰腺炎患者进行分组,根据疾病的严重程度分为轻症急性胰腺炎(MAP),中度重症急性胰腺炎(MSAP)及重症急性胰腺炎(SAP),将MAP及MSAP患者划分为非SAP组,SAP患者划分为SAP组,其中非SAP共171例,SAP组共89例。本研究已获得病人知情同意。

2.2. 数据收集

收集并记录纳入患者的基本信息,包括一般信息(如性别,年龄,体重,BMI等),入院体征(如心率)及入院后两日内的首次实验室检查结果(包括白细胞计数,淋巴细胞百分数,红细胞比容等)并在完成计算入院24小时内的CTSI评分、48小时的SOFA评分。

2.3. 标本采集

使用真空采血管收集AP患者入院后24 h内静脉血样本5 mL,在3500 r/min下离心五分钟。使用酶联免疫吸附法(Enzyme-Linked Immunosorbent Assays, ELISA),vWF、LTF检测试剂盒购自武汉伊莱瑞特生物科技有限公司,检测过程严格按试剂盒造作步骤进行。

2.4. 统计方法

采用SPSS 28.0进行统计分析。符合正态分布的计量资料以均数 ± 标准差表示,组间比较采用两独立样本t检验;非正态分布数据以中位数M(Q1, Q3)描述,组间差异通过Mann-Whitney U检验分析。通过Spearman相关分析与二元Logistic回归模型评估vWF、LTF及Hct与SAP发生的相关性。进一步构建ROC曲线评估vWF、LTF、Hct联合指标对SAP的预测效能,并与SOFA、CTSI评分进行对比,依据约登指数最大值确定最佳截断值及相应灵敏度、特异度。

3. 结果

3.1. 一般临床特征的比较

重症胰腺炎组与非重症组的性别,BMI没有显著性差异(p > 0.05),年龄存在统计学意义(p < 0.05)。见表1

3.2. SAP组与非SAP组间的单因素分析

SAP组与非SAP组相比,SAP组的白细胞计数、红细胞比容、谷草转氨酶(AST)、总胆红素(TBIL)、直接胆红素(DBIL)、血浆凝血酶原时间(PT)、活化部分凝血酶原时间(APTT)、纤维蛋白原(FIB)、D-D二聚体(D-Dimer)、c反应蛋白(CRP)、降钙素原(PCT)较非SAP组升高(p < 0.05)。非SAP组的淋巴细胞百分数、红细胞比容(Hct)、钙离子(Ca)、vWF、LTF高于SAP组(p < 0.05)。两组间的血小板计数,谷丙转氨酶(ALT)则不存在显著性差异(p > 0.05) (表2)。

Table 1. Comparison of general characteristics between the two groups

1. 两组间一般特征的比较

Variables

总数(n = 260)

SAP (n = 186)

SAP(n = 89)

z/t

p

性别(%)

−0.905

0.366

156 (60.00%)

106 (61.99%)

50 (56.18%)

104 (40.00%)

65 (38.01%)

39 (43.82%)

年龄(岁)

45.01 ± 11.36

41.97 ± 11.25

45.34 ± 11.30

−2.286

0.023

BMI (kg/m2)

25.39 (22.74, 28.03)

25.43 (22.86, 28.06)

25.00 (21.48, 27.45)

1.952

0.051

心率(次/分)

89.00 (78.00, 100.00)

87.00 (77.00, 100.00)

98.00 (84.25, 114.25)

−5.602

<0.001

Table 2. Univariate analysis between the two groups

2. 两组间的单因素分析

Variables

总数(n = 260)

SAP(n = 171)

SAP(n = 89)

z/t

p

白细胞计数(109/L)

11.61 (8.64, 15.02)

11.35 (8.48, 14.67)

14.27 (10.38, 18.64)

−5.872

<0.001

淋巴细胞百分数(%)

10.90 (6.70, 17.40)

11.70 (7.20, 18.30)

7.35 (4.60, 10.60)

7.946

<0.001

Hct (L/L)

0.45 ± 0.08

0.41 ± 0.05

0.52 ± 0.08

−10.841

<0.001

血小板计数(109/L)

206.00 (161.00, 254.00)

206.00 (163.00, 254.00)

198.00 (151.00, 259.50)

1.117

0.264

AST (U/L)

37.00 (22.00, 89.00)

35.00 (21.00, 87.75)

49.00 (31.00, 99.25)

−3.369

<0.001

ALT (U/L)

47.00 (26.00, 123.25)

48.50 (27.00, 122.75)

44.50 (24.00, 129.00)

0.631

0.528

TBIL (μmol/L)

18.90 (12.70, 28.40)

18.60 (12.40, 27.40)

21.70 (14.35, 31.90)

−2.405

0.016

DBIL (μmol/L)

4.20 (2.40, 8.60)

4.00 (2.30, 8.10)

5.80 (2.90, 12.35)

−3.293

<0.001

PT (s)

11.20 (10.50, 12.00)

11.10 (10.50, 11.90)

11.90 (10.83, 13.20)

−5.837

<0.001

APTT (s)

26.70 (24.90, 28.90)

26.70 (24.90, 28.60)

28.00 (25.90, 31.60)

−4.438

<0.001

FIB (g/L)

3.50 (2.74, 4.85)

3.44 (2.73, 4.58)

4.57 (2.87, 6.45)

−4.450

<0.001

D-Dimer (μg/mL)

0.98 (0.43, 2.23)

0.82 (0.37, 1.88)

3.45 (1.35, 5.91)

−11.167

<0.001

Ca (mmol/L)

2.16 (2.03, 2.27)

2.17 (2.05, 2.28)

1.99 (1.74, 2.21)

7.863

<0.001

CRP (ng/mL)

37.35 (7.70, 119.12)

24.60 (6.93, 80.65)

193.40 (135.85, 246.75)

−13.281

<0.001

PCT (ng/mL)

0.18 (0.06, 0.38)

0.15 (0.05, 0.27)

1.88 (0.38, 9.91)

−13.423

<0.001

vWF (U/L)

399.97 (367.83, 430.26)

418.06 (393.31, 450.33)

365.37 (324.52, 393.94)

−9.105

<0.001

LTF (μg/mL)

123.98 (111.22, 123.98)

127.03 (120.35, 132.61)

111.18 (101.51, 123.68)

−7.443

<0.001

3.3. 相关性分析

根据Spearman相关分析显示(表3),vWF、LTF、Hct、SOFA及CTSI评分均与AP严重程度显著相关(p < 0.05)。其中,Hct (r = 0.581)、SOFA (r = 0.686)及CTSI (r = 0.482)与AP严重程度呈正相关,而vWF (r = −0.566)和LTF (r = −0.462)呈负相关。进一步通过二元Logistic回归明确vWF、LTF及Hct对AP病情加重的独立影响,并构建其联合预测模型。

Table 3. Correlation analysis of vWF, LTF, Hct, SOFA Score, and CTSI score with the severity of acute pancreatitis (AP)

3. vWF、LTF、Hct、SOFA评分及CTSI评分与AP严重程度的相关性分析

variable

相关系数

p

vWF

−0.566

<0.001

LTF

−0.462

<0.001

Hct

0.581

<0.001

SOFA评分

0.686

<0.001

CTSI评分

0.482

<0.001

3.4. vWF、LTF及Hct的二元Logistic回归分析

通过二元Logistic单因素回归分析,可判断vWF、LTF、Hct均是出现SAP的独立危险因素(表4)。调整混杂因素后进行多因素回归分析,若患者vWF、LTF增加一个单位则SAP发生的概率降低2.3%、5.4%,Hct每升高1%风险升高2.38% (表5)。

Table 4. Univariate Logistic analysis between the SAP group and the Non-SAP group

4. SAP组与非SAP组单因素Logistic分析

variable

β

SE

z

OR (95% CI)

p

vWF

−0.032

0.004

7.554

0.968 (0.960, 0.977)

<0.001

LTF

−0.075

0.011

6.542

0.928 (0.907, 0.949)

<0.001

Hct

0.235

0.030

7.941

1.265 (1.194, 1.341)

<0.001

Table 5. Multivariate Logistic analysis between the SAP group and the Non-SAP group

5. SAP组与非SAP组多因素Logistic分析

variable

β

SE

z

OR (95% CI)

p

vWF

−0.023

0.005

−4.564

0.977 (0.967, 0.986)

<0.001

LTF

−0.056

0.016

−3.502

0.946 (0.916, 0.975)

<0.001

Hct

0.214

0.034

6.247

1.238 (1.164, 1.332)

<0.001

3.5. vWF、LTF、Hct和三因子联合检测及SOFA评分及CTSI评分的二元Logistic分析和 其对预测SAP的价值

根据ROC曲线分析(图1),vWF、LTF、Hct及三因子联合预测模型对重症急性胰腺炎(SAP)均具诊断价值。联合预测因子AUC为0.925 (截断值0.317),灵敏度85.4%、特异度86.0%,其诊断效能显著优于SOFA评分(AUC 0.844)及CTSI评分(AUC 0.781)。单项指标中,vWF特异度最高(88.9%),LTF灵敏度最优(80.7%),Hct则位于两者之间(灵敏度76.4%、特异度76.4%,AUC 0.853)。综合诊断效能排序显示:AUC为联合预测 > SOFA > Hct > vWF > LTF > CTSI;灵敏度为SOFA > 联合预测 > CTSI > LTF > Hct > vWF;特异度为vWF > Hct > 联合预测 > SOFA > LTF > CTSI (表6)。

Table 6. Predictive value of individual and combined tests in the SAP group and the Non-SAP group

6. SAP组与非SAP组单独及联合检测预测价值

预测指标

AUC

临界值

灵敏度

特异度

约登指数

p

vWF

0.844

403.515

66.7

88.9

0.555

<0.001

LTF

0.781

119.060

80.7

66.3

0.470

<0.001

Hct

0.853

0.465

76.4

87.7

0.465

<0.001

联合预测因子

0.925

0.317

85.4

86.0

0.714

<0.001

SOFA评分

0.907

1.5

92.1

70.2

0.623

<0.001

CTSI评分

0.776

2.5

84.3

60.2

0.445

<0.001

Figure 1. ROC curves of vWF, LTF, Hct, combined predictive factors, SOFA score, and CTSI score

1. vWF、LTF、Hct、联合预测因子、SOFA评分和CTSI评分的ROC曲线

4. 讨论

急性胰腺炎(AP)发病率呈上升趋势[12],其病因以胆石症和高脂血症为主,其他诱因包括酒精、高钙血症、遗传因素及壶腹周围肿瘤等[13]。胰腺微循环障碍是AP病理进程的核心环节:炎症反应引发血管内皮损伤、微血栓形成及毛细血管渗漏综合征(CLS),导致血液浓缩、血流动力学紊乱[14]-[16],进而引发多器官缺血损伤(如急性肾损伤、胃肠粘膜损伤)及组织水肿相关功能障碍(如急性肺水肿) [17]。研究表明,AP发病数分钟内即出现胰腺微循环血流量下降,30分钟可见血管内皮损伤,72小时内达高峰[18],提示早期干预对改善预后至关重要[19]。Warndorf MG及Mofidi R等证实[20] [21],早期液体复苏可显著降低死亡率,因此通过微循环评估指导液体复苏及抗凝治疗,对预防重症急性胰腺炎(SAP)具有重要临床意义。

目前AP的临床评估包括Ranson、APACHE II、SOFA、BISAP及CTSI等多种评分系统[22]。其中APACHE II和Ranson评分临床应用最广泛,但因其参数复杂、需重复评估而受限。SOFA评分通过呼吸、循环、肝肾功能等六个维度量化器官功能障碍,具有简便性和动态评估优势,研究证实其可有效预测重症急性胰腺炎(SAP)死亡率(AUC = 0.858)及病情进展[23] [24],但因需多指标动态监测,早期诊断价值受限。CTSI评分通过结合Balthazar CT分级与胰腺坏死范围,可客观反映AP严重程度及器官衰竭风险[25]。但因增强CT的造影剂肾毒性及胰周病变演变的时间依赖性(高峰出现延迟),限制了其在急性期的应用效能。

血管性血友病因子(vWF)是一种糖蛋白,主要生成及储存于血浆及血管内皮细胞中,参与血管及血栓的形成[26]。血管内皮细胞作为组织和血液的间隔,具有维持血管完整性保证血液流动的重要功能,此外还能调节血管内外的液体、电解质等的交换[27]。在急性炎症反应过程中,内皮细胞会大量释放vWF,Petri B [28]的研究认为通过阻断vWF干扰了中性粒细胞等炎症细胞向血管外募集的过程。此外,vWF通过调节claudin‐5及其他受体如αVβ3及LRP1调节血管内皮的通透性[7] [29]。Noubade R的研究[30]发现在vWF缺乏的小鼠中血管通透性增加。本研究分析发现,vWF是急性胰腺炎严重程度的独立影响因素,其预测SAP的曲线下面积为0.844,95% CI为0.797~0.892,敏感度为66.7%特异度为88.9%,结果显示对SAP的预测存在诊断价值。

乳转铁蛋白(LTF)是转铁蛋白家族中的一种糖蛋白,广泛存在于乳汁、气道分泌物及肠道分泌物等外分泌液中。在炎症过程中可由被募集的中性粒细胞释放[31],通过参与调节NK细胞及辅助性T细胞的活性参与炎症反应。LTF也可通过铁螯合功能和正电荷特性直接发挥抗菌及抗病毒特性[32]。在AP炎症反应过程中,肠粘膜上皮会因缺血再灌注过程受到损伤破坏肠道上皮屏障的完整性[33]。此外在AP患者的肠道的微生物群发生变化,Zhu的研究[34]证明了SAP患者的肠道有益菌丰度低于非SAP患者。乳转铁蛋白可在这一过程中通过直接或间接的抗菌作用抑制肠道菌群的移位,在本研究中发现LTF的降低与SAP具有相关性,其预测SAP的曲线下面积为0.781,95% CI为0.723~0.840,敏感度为80.7%特异度为66.3%。

红细胞比容是指红细胞占全血容积的百分比,也称为红细胞压积,急性胰腺炎患者的血常规检查中,红细胞比容会伴随循环血容量丢失导致的血液浓缩而升高[35]。有研究显示,急性胰腺炎起病24小时内,红细胞比容的升高可能与SAP的发生有关[36]。在本研究者中,通过Logistic回归分析提示Hct是发生SAP的独立危险因素。这可能与AP初期急性炎症所致的微循环障碍及容量丢失导致的器官灌注障碍并进一步导致器官功能障碍有关。本研究发现,Hct的ROC曲线下面积为0.853,95% CI为0.795~0.911,敏感度为66.7%特异度为87.7%,这与Patel研究[37]相当。

综上所述,SAP组患者的vWF、LTF较非SAP组降低,SAP组患者红细胞比容较非SAP组升高,三者均是发生SAP的独立危险因素。通过实验室检测AP患者的vWF、LTF及Hct,将三者联合对SAP的发生存在较高的灵敏性及特异性,具有预测价值。临床医生可以通过这三项指标联合对SAP的发生进行评估预测,对有SAP风险的患者进行液体复苏。本研究也存在不足之处,如纳入研究的患者数量较少和研究为单中心回顾性研究的不足。因此可进行多中心,前瞻性,更多样本量的研究,探讨其在不同人群中的预测效能。

5. 结论

vWF、LTF、CRP对于预测重症急性胰腺炎具有较高的灵敏性及特异性,可在一定程度上反应急性胰腺炎的严重程度,其联合预测具有对于早期识别SAP高风险患者具有一定的预测价值。

基金项目

安徽医科大学研究生科研与实践创新项目(YJS20230030);2023年度安徽省高校自然科学研究重点项目(2023AH053116);2023国自然孵育计划(2023GMFY02)。

NOTES

*通讯作者。

参考文献

[1] Yadav, D. and Lowenfels, A.B. (2013) The Epidemiology of Pancreatitis and Pancreatic Cancer. Gastroenterology, 144, 1252-1261.
https://doi.org/10.1053/j.gastro.2013.01.068
[2] Lankisch, P.G., Apte, M. and Banks, P.A. (2015) Acute Pancreatitis. The Lancet, 386, 85-96.
https://doi.org/10.1016/s0140-6736(14)60649-8
[3] Wadhwa, V., Patwardhan, S., Garg, S.K., Jobanputra, Y., Lopez, R. and Sanaka, M.R. (2017) Health Care Utilization and Costs Associated with Acute Pancreatitis. Pancreas, 46, 410-415.
https://doi.org/10.1097/mpa.0000000000000755
[4] Petrov, M.S., Shanbhag, S., Chakraborty, M., Phillips, A.R.J. and Windsor, J.A. (2010) Organ Failure and Infection of Pancreatic Necrosis as Determinants of Mortality in Patients with Acute Pancreatitis. Gastroenterology, 139, 813-820.
https://doi.org/10.1053/j.gastro.2010.06.010
[5] 田小娟. 急性胰腺炎严重程度评价研究综述[J]. 影像研究与医学应用, 2024, 8(22): 10-12+16.
[6] 毛恩强, 车在前. 《急性胰腺炎急诊诊治专家共识》解读[J]. 临床急诊杂志, 2024, 25(7): 325-328.
[7] Suidan, G.L., Brill, A., De Meyer, S.F., Voorhees, J.R., Cifuni, S.M., Cabral, J.E., et al. (2013) Endothelial Von Willebrand Factor Promotes Blood-Brain Barrier Flexibility and Provides Protection from Hypoxia and Seizures in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2112-2120.
https://doi.org/10.1161/atvbaha.113.301362
[8] Wang, X., Hirmo, S., Willén, R. and Wadström, T. (2001) Inhibition of Helicobacter pylori Infection by Bovine Milk Glycoconjugates in a BALB/cA Mouse Model. Journal of Medical Microbiology, 50, 430-435.
https://doi.org/10.1099/0022-1317-50-5-430
[9] 朱江峰, 董小萍. 入院时NLR、HCT与急性胰腺炎患者病情程度及预后的关系[J]. 中国卫生检验杂志, 2023, 33(10): 1242-1246.
[10] 中华医学会外科学分会胰腺外科学组. 中国急性胰腺炎诊治指南(2021) [J]. 浙江实用医学, 2021, 26(6): 511-519+535.
[11] Sarr, M.G. (2013) 2012 Revision of the Atlanta Classification of Acute Pancreatitis. Polish Archives of Internal Medicine, 123, 118-124.
https://doi.org/10.20452/pamw.1627
[12] Brindise, E., Elkhatib, I., Kuruvilla, A. and Silva, R. (2019) Temporal Trends in Incidence and Outcomes of Acute Pancreatitis in Hospitalized Patients in the United States from 2002 to 2013. Pancreas, 48, 169-175.
https://doi.org/10.1097/mpa.0000000000001228
[13] Mederos, M.A., Reber, H.A. and Girgis, M.D. (2021) Acute Pancreatitis: A Review. JAMA, 325, 382-390.
https://doi.org/10.1001/jama.2020.20317
[14] Wilmore, D.W., Goodwin, C.W., Aulick, L.H., Powanda, M.C., Mason, A.D. and Pruitt, B.A. (1980) Effect of Injury and Infection on Visceral Metabolism and Circulation. Annals of Surgery, 192, 491-504.
https://doi.org/10.1097/00000658-198010000-00008
[15] Inoue, K., Hirota, M., Kimura, Y., Kuwata, K., Ohmuraya, M. and Ogawa, M. (2003) Further Evidence for Endothelin as an Important Mediator of Pancreatic and Intestinal Ischemia in Severe Acute Pancreatitis. Pancreas, 26, 218-223.
https://doi.org/10.1097/00006676-200304000-00002
[16] Buter, A., Imrie, C.W., Carter, C.R., Evans, S. and McKay, C.J. (2002) Dynamic Nature of Early Organ Dysfunction Determines Outcome in Acute Pancreatitis. British Journal of Surgery, 89, 298-302.
https://doi.org/10.1046/j.0007-1323.2001.02025.x
[17] Fei, Y., Gao, K. and Li, W. (2019) Prediction and Evaluation of the Severity of Acute Respiratory Distress Syndrome Following Severe Acute Pancreatitis Using an Artificial Neural Network Algorithm Model. HPB, 21, 891-897.
https://doi.org/10.1016/j.hpb.2018.11.009
[18] McEntee, G., Leahy, A., Cottell, D., Dervan, P., McGeeney, K. and Fitzpatrick, J.M. (1989) Three-Dimensional Morphological Study of the Pancreatic Microvasculature in Caerulein-Induced Experimental Pancreatitis. Journal of British Surgery, 76, 853-855.
https://doi.org/10.1002/bjs.1800760830
[19] Johnson, C.D. (2001) Double Blind, Randomised, Placebo Controlled Study of a Platelet Activating Factor Antagonist, Lexipafant, in the Treatment and Prevention of Organ Failure in Predicted Severe Acute Pancreatitis. Gut, 48, 62-69.
https://doi.org/10.1136/gut.48.1.62
[20] Warndorf, M.G., Kurtzman, J.T., Bartel, M.J., Cox, M., Mackenzie, T., Robinson, S., et al. (2011) Early Fluid Resuscitation Reduces Morbidity among Patients with Acute Pancreatitis. Clinical Gastroenterology and Hepatology, 9, 705-709.
https://doi.org/10.1016/j.cgh.2011.03.032
[21] Mofidi, R., Duff, M.D., Wigmore, S.J., Madhavan, K.K., Garden, O.J. and Parks, R.W. (2006) Association between Early Systemic Inflammatory Response, Severity of Multiorgan Dysfunction and Death in Acute Pancreatitis. British Journal of Surgery, 93, 738-744.
https://doi.org/10.1002/bjs.5290
[22] Kuo, D.C., Rider, A.C., Estrada, P., Kim, D. and Pillow, M.T. (2015) Acute Pancreatitis: What’s the Score? The Journal of Emergency Medicine, 48, 762-770.
https://doi.org/10.1016/j.jemermed.2015.02.018
[23] Tee, Y.-S., Fang, H.-Y., Kuo, I.-M., Lin, Y.-S., Huang, S.-F. and Yu, M.-C. (2018) Serial Evaluation of the SOFA Score Is Reliable for Predicting Mortality in Acute Severe Pancreatitis. Medicine, 97, e9654.
https://doi.org/10.1097/md.0000000000009654
[24] Juneja, D., Gopal, P.B. and Ravula, M. (2010) Scoring Systems in Acute Pancreatitis: Which One to Use in Intensive Care Units? Journal of Critical Care, 25, 358.e9-358.e15.
https://doi.org/10.1016/j.jcrc.2009.12.010
[25] Alberti, P., Pando, E., Mata, R., Vidal, L., Roson, N., Mast, R., et al. (2020) Evaluation of the Modified Computed Tomography Severity Index (MCTSI) and Computed Tomography Severity Index (CTSI) in Predicting Severity and Clinical Outcomes in Acute Pancreatitis. Journal of Digestive Diseases, 22, 41-48.
https://doi.org/10.1111/1751-2980.12961
[26] Starke, R.D., Ferraro, F., Paschalaki, K.E., Dryden, N.H., McKinnon, T.A.J., Sutton, R.E., et al. (2011) Endothelial Von Willebrand Factor Regulates Angiogenesis. Blood, 117, 1071-1080.
https://doi.org/10.1182/blood-2010-01-264507
[27] van Hinsbergh, V.W.M. (2011) Endothelium—Role in Regulation of Coagulation and Inflammation. Seminars in Immunopathology, 34, 93-106.
https://doi.org/10.1007/s00281-011-0285-5
[28] Petri, B., Broermann, A., Li, H., Khandoga, A.G., Zarbock, A., Krombach, F., et al. (2010) Von Willebrand Factor Promotes Leukocyte Extravasation. Blood, 116, 4712-4719.
https://doi.org/10.1182/blood-2010-03-276311
[29] Su, G., Atakilit, A., Li, J.T., Wu, N., Bhattacharya, M., Zhu, J., et al. (2012) Absence of Integrin Αvβ3 Enhances Vascular Leak in Mice by Inhibiting Endothelial Cortical Actin Formation. American Journal of Respiratory and Critical Care Medicine, 185, 58-66.
https://doi.org/10.1164/rccm.201108-1381oc
[30] Noubade, R., del Rio, R., McElvany, B., Zachary, J.F., Millward, J.M., Wagner, D.D., et al. (2008) Von-Willebrand Factor Influences Blood Brain Barrier Permeability and Brain Inflammation in Experimental Allergic Encephalomyelitis. The American Journal of Pathology, 173, 892-900.
https://doi.org/10.2353/ajpath.2008.080001
[31] Baker, E. and Baker, H. (2009) A Structural Framework for Understanding the Multifunctional Character of Lactoferrin. Biochimie, 91, 3-10.
https://doi.org/10.1016/j.biochi.2008.05.006
[32] Pan, Y., Wan, J., Roginski, H., Lee, A., Shiell, B., Michalski, W.P., et al. (2007) Comparison of the Effects of Acylation and Amidation on the Antimicrobial and Antiviral Properties of Lactoferrin. Letters in Applied Microbiology, 44, 229-234.
https://doi.org/10.1111/j.1472-765x.2006.02081.x
[33] Ge, P., Luo, Y., Okoye, C.S., Chen, H., Liu, J., Zhang, G., et al. (2020) Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. Biomedicine & Pharmacotherapy, 132, Article ID: 110770.
https://doi.org/10.1016/j.biopha.2020.110770
[34] Zhu, Y., He, C., Li, X., Cai, Y., Hu, J., Liao, Y., et al. (2018) Gut Microbiota Dysbiosis Worsens the Severity of Acute Pancreatitis in Patients and Mice. Journal of Gastroenterology, 54, 347-358.
https://doi.org/10.1007/s00535-018-1529-0
[35] Brown, A., Orav, J. and Banks, P.A. (2000) Hemoconcentration Is an Early Marker for Organ Failure and Necrotizing Pancreatitis. Pancreas, 20, 367-372.
https://doi.org/10.1097/00006676-200005000-00005
[36] Negi, N., Mokta, J., Sharma, B., et al. (2018) Clinical Profile and Outcome of Acute Pancreatitis: A Hospital-Based Prospective Observational Study in Subhimalayan State. Journal of the Association of Physicians of India, 66, 22-24.
[37] Patel, M.L., Shyam, R., Atam, V., Bharti, H., Sachan, R. and Parihar, A. (2022) Clinical Profile, Etiology, and Outcome of Acute Pancreatitis: Experience at a Tertiary Care Center. Annals of African Medicine, 21, 118-123.
https://doi.org/10.4103/aam.aam_83_20