[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Joshi, S.S. and Badgwell, B.D. (2021) Current Treatment and Recent Progress in Gastric Cancer. CA: A Cancer Journal for Clinicians, 71, 264-279. https://doi.org/10.3322/caac.21657
|
[3]
|
Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534-542. https://doi.org/10.1016/j.cgh.2019.07.045
|
[4]
|
Bouriez, D., Giraud, J., Gronnier, C. and Varon, C. (2018) Efficiency of All-Trans Retinoic Acid on Gastric Cancer: A Narrative Literature Review. International Journal of Molecular Sciences, 19, Article 3388. https://doi.org/10.3390/ijms19113388
|
[5]
|
Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297. https://doi.org/10.1016/s0092-8674(04)00045-5
|
[6]
|
Lee, Y. (2002) MicroRNA Maturation: Stepwise Processing and Subcellular Localization. The EMBO Journal, 21, 4663-4670. https://doi.org/10.1093/emboj/cdf476
|
[7]
|
Shang, R., Lee, S., Senavirathne, G. and Lai, E.C. (2023) MicroRNAs in Action: Biogenesis, Function and Regulation. Nature Reviews Genetics, 24, 816-833. https://doi.org/10.1038/s41576-023-00611-y
|
[8]
|
Inui, M., Martello, G. and Piccolo, S. (2010) MicroRNA Control of Signal Transduction. Nature Reviews Molecular Cell Biology, 11, 252-263. https://doi.org/10.1038/nrm2868
|
[9]
|
Shi, X., Yang, H. and Birchler, J.A. (2022) MicroRNAs Play Regulatory Roles in Genomic Balance. BioEssays, 45, e2200187. https://doi.org/10.1002/bies.202200187
|
[10]
|
Olcum, M., Tufekci, K.U. and Genc, S. (2021) MicroRNAs in Genetic Etiology of Human Diseases. In: Allmer, J. and Yousef, M., Eds., miRNomics, Springer, 255-268. https://doi.org/10.1007/978-1-0716-1170-8_13
|
[11]
|
Hu, W., Zheng, X., Liu, J., Zhang, M., Liang, Y. and Song, M. (2021) MicroRNA MiR-130a-3p Promotes Gastric Cancer by Targeting Glucosaminyl N-Acetyl Transferase 4 (GCNT4) to Regulate the TGF-β1/SMAD3 Pathway. Bioengineered, 12, 11634-11647. https://doi.org/10.1080/21655979.2021.1995099
|
[12]
|
Ni, Q., Zhang, Y., Yu, J., Hua, R., Wang, Q. and Zhu, J. (2019) MiR‐92b Promotes Gastric Cancer Growth by Activating the DAB2IP-mediated PI3K/AKT Signalling Pathway. Cell Proliferation, 53, e12630. https://doi.org/10.1111/cpr.12630
|
[13]
|
Fu, J., Imani, S., Wu, M. and Wu, R. (2023) MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers, 15, Article 4723. https://doi.org/10.3390/cancers15194723
|
[14]
|
张露娟, 刘全忠, 闫乐. miR-34家族在消化系统肿瘤中的研究进展[J]. 肿瘤学杂志, 2023, 29(6): 519-524.
|
[15]
|
Xing, S., Tian, Z., Zheng, W., Yang, W., Du, N., Gu, Y., et al. (2021) Hypoxia Downregulated miR-4521 Suppresses Gastric Carcinoma Progression through Regulation of IGF2 and FOXM1. Molecular Cancer, 20, Article No. 9. https://doi.org/10.1186/s12943-020-01295-2
|
[16]
|
Chang, L., Gao, H., Wang, L., Wang, N., Zhang, S., Zhou, X., et al. (2021) Exosomes Derived from miR-1228 Overexpressing Bone Marrow-Mesenchymal Stem Cells Promote Growth of Gastric Cancer Cells. Aging, 13, 11808-11821. https://doi.org/10.18632/aging.202878
|
[17]
|
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003) The Nuclear RNase III Drosha Initiates MicroRNA Processing. Nature, 425, 415-419. https://doi.org/10.1038/nature01957
|
[18]
|
Zhang, Z., Pi, J., Zou, D., Wang, X., Xu, J., Yu, S., et al. (2019) MicroRNA Arm-Imbalance in Part from Complementary Targets Mediated Decay Promotes Gastric Cancer Progression. Nature Communications, 10, Article No. 4397. https://doi.org/10.1038/s41467-019-12292-5
|
[19]
|
Zhang, S., Zhang, R., Xu, R., Shang, J., He, H. and Yang, Q. (2020) Microrna-574-5p in Gastric Cancer Cells Promotes Angiogenesis by Targeting Protein Tyrosine Phosphatase Non-Receptor Type 3 (ptpn3). Gene, 733, 144383. https://doi.org/10.1016/j.gene.2020.144383
|
[20]
|
范金阳, 杜波涛, 程志通. miRNA-299-3p对胃癌AGS细胞增殖、凋亡、迁移的影响及其机制[J]. 河南医学研究, 2025, 34(2): 198-203.
|
[21]
|
Cavallari, I., Ciccarese, F., Sharova, E., Urso, L., Raimondi, V., Silic-Benussi, M., et al. (2021) The miR-200 Family of MicroRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers, 13, Article 5874. https://doi.org/10.3390/cancers13235874
|
[22]
|
Mirzaei, S., Baghaei, K., Parivar, K., Hashemi, M. and Asadzadeh Aghdaei, H. (2019) The Expression Level Changes of MicroRNAs 200a/205 in the Development of Invasive Properties in Gastric Cancer Cells through Epithelial-Mesenchymal Transition. European Journal of Pharmacology, 857, Article ID: 172426. https://doi.org/10.1016/j.ejphar.2019.172426
|
[23]
|
Huangfu, L., He, Q., Han, J., Shi, J., Li, X., Cheng, X., et al. (2021) MicroRNA-135b/CAMK2D Axis Contribute to Malignant Progression of Gastric Cancer through EMT Process Remodeling. International Journal of Biological Sciences, 17, 1940-1952. https://doi.org/10.7150/ijbs.58062
|
[24]
|
Farasati Far, B., Vakili, K., Fathi, M., Yaghoobpoor, S., Bhia, M. and Naimi-Jamal, M.R. (2023) The Role of MicroRNA-21 (miR-21) in Pathogenesis, Diagnosis, and Prognosis of Gastrointestinal Cancers: A Review. Life Sciences, 316, Article ID: 121340. https://doi.org/10.1016/j.lfs.2022.121340
|
[25]
|
马国明, 左卫微, 贾纯亮, 梁磊, 姚远, 李青科, 刘远廷. miRNA-133b在胃癌组织中的表达及其对MMP-9的影响[J]. 重庆医学, 2020, 49(21): 3624-3629.
|
[26]
|
Jelski, W. and Mroczko, B. (2022) Molecular and Circulating Biomarkers of Gastric Cancer. International Journal of Molecular Sciences, 23, Article 7588. https://doi.org/10.3390/ijms23147588
|
[27]
|
Abe, S., Matsuzaki, J., Sudo, K., Oda, I., Katai, H., Kato, K., et al. (2021) A Novel Combination of Serum MicroRNAs for the Detection of Early Gastric Cancer. Gastric Cancer, 24, 835-843. https://doi.org/10.1007/s10120-021-01161-0
|
[28]
|
石运涛. 血清外泌体miR-1246作为胃癌早期诊断的生物标志物研究[D]: [博士学位论文]. 南京: 南京医科大学, 2020.
|
[29]
|
Karimi, E., Dehghani, A., Azari, H., Zarei, M., Shekari, M. and Mousavi, P. (2023) Molecular Mechanisms of miR-214 Involved in Cancer and Drug Resistance. Current Molecular Medicine, 23, 589-605. https://doi.org/10.2174/1566524022666220428112744
|
[30]
|
Wang, P., Zhou, Y., Wang, J., Zhou, Y., Zhang, X., Liu, Y., et al. (2024) miR-107 Reverses the Multidrug Resistance of Gastric Cancer by Targeting the CGA/EGFR/GATA2 Positive Feedback Circuit. Journal of Biological Chemistry, 300, Article ID: 107522. https://doi.org/10.1016/j.jbc.2024.107522
|
[31]
|
高红艳, 郭洁, 吴方雄等. miRNA-451通过MRP靶向调控胃癌细胞对5-Fu耐药性的机制研究[J]. 肿瘤防治研究, 2019, 46(12): 1073-1077.
|
[32]
|
Tao, S., Gu, J., Wang, Q. and Zheng, L. (2021) Translational Control of BCL-2 Promotes Apoptosis of Gastric Carcinoma Cells. BMC Cancer, 21, Article No. 12. https://doi.org/10.1186/s12885-020-07711-6
|
[33]
|
强占荣. miR-21/PTEN/Akt通路在姜黄素抗胃癌中的作用以及PD98059的抗胃癌协同效应[D]: [博士学位论文]. 北京: 南方医科大学, 2019.
|
[34]
|
王磊, 王白燕, 周春光, 等. 不同细胞来源外泌体miRNAs在胃癌进展及诊断和预后中的作用[J]. 中国组织工程研究, 2025, 29(25): 5434-5442.
|
[35]
|
Chen, Y., Wu, Y., Yu, S., Yang, H., Wang, X., Zhang, Y., et al. (2020) Deficiency of MicroRNA-628-5p Promotes the Progression of Gastric Cancer by Upregulating PIN1. Cell Death & Disease, 11, Article No. 559. https://doi.org/10.1038/s41419-020-02766-6
|
[36]
|
Zhang, Z., Yu, W., Zheng, M., Liao, X., Wang, J., Yang, D., et al. (2024) Correction: PIN1 Inhibition Sensitizes Chemotherapy in Gastric Cancer Cells by Targeting Stem Cell-Like Traits and Multiple Biomarkers. Molecular Cancer Therapeutics, 23, 743-743. https://doi.org/10.1158/1535-7163.mct-24-0063
|
[37]
|
史爽, 李娟, 米琦, 等. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报(医学版), 2020, 58(7): 47-52, 59.
|