经导管主动脉瓣置换术的应用进展和并发症的分析
Analysis of Application Progress and Complications of Transcatheter Aortic Valve Replacement
DOI: 10.12677/jcpm.2025.42232, PDF, HTML, XML,   
作者: 刘建桥, 张子政, 赵星皓:济宁医学院临床医学院,山东 济宁;安国营*:济宁医学院附属医院心脏外科,山东 济宁
关键词: 经导管主动脉瓣置换术适应证瓣膜技术手术入路并发症管理Transcatheter Aortic Valve Replacement Indications Valve Technology Surgical Approach Complication Management
摘要: 经导管主动脉瓣置换术(Transcatheter Aortic Valve Replacement, TAVR)作为一种微创治疗手段,在重度主动脉瓣狭窄(Aortic Stenosis, AS)患者中的应用日益广泛。自2002年首次临床应用以来,TAVR技术不断优化,其适应证已从高危患者扩展至中低风险患者,甚至包括二叶式主动脉瓣(Bicuspid Aortic Valve, BAV)患者。近年来,瓣膜材料、输送系统及手术策略的创新进一步提升了TAVR的安全性和有效性。然而,TAVR仍然面临瓣周漏(Paravalvular Leak, PVL)、心脏传导阻滞及永久起搏器植入(Permanent Pacemaker Implantation, PPI)、卒中及冠状动脉阻塞等并发症的挑战,影响其长期预后。本文综述了TAVR的技术进展、适应证扩展、手术入路优化及并发症管理,并探讨了TAVR在低风险患者及BAV患者中的应用前景。随着新型瓣膜设计及围术期管理策略的优化,TAVR的长期疗效有望进一步改善,为更广泛的患者群体提供治疗选择。
Abstract: Transcatheter aortic valve replacement (TAVR) has become an increasingly widespread minimally invasive treatment for patients with severe aortic stenosis (AS). Since its first clinical application in 2002, TAVR technology has continuously improved, and its indications have expanded from high-risk patients to include intermediate- and low-risk patients, as well as patients with bicuspid aortic valves (BAV). In recent years, innovations in valve materials, delivery systems, and surgical strategies have further enhanced the safety and efficacy of TAVR. However, TAVR still faces challenges such as paravalvular leak (PVL), heart block, permanent pacemaker implantation (PPI), stroke, and coronary artery obstruction, which impact its long-term outcomes. This review summarizes the technological advancements in TAVR, the expansion of indications, optimization of surgical approaches, and the management of complications, while exploring the future application of TAVR in low-risk patients and BAV patients. With the optimization of novel valve designs and perioperative management strategies, the long-term efficacy of TAVR is expected to improve, providing treatment options for a broader range of patient populations.
文章引用:刘建桥, 张子政, 赵星皓, 安国营. 经导管主动脉瓣置换术的应用进展和并发症的分析[J]. 临床个性化医学, 2025, 4(2): 691-701. https://doi.org/10.12677/jcpm.2025.42232

1. 引言

主动脉瓣狭窄的发病率随着年龄的增长而增加,到80岁时影响多达10%的人口[1]。一旦出现症状,主动脉瓣狭窄就会迅速致命。重度AS的标准治疗方法一直是外科主动脉瓣置换术(SAVR),但由于手术创伤大、恢复时间长,以及对高危患者的适应性不足,导致其死亡率和并发症风险较高。因此,经导管主动脉瓣置换术(TAVR)作为一种微创治疗方式应运而生,其在降低手术风险和缩短恢复期方面展现出明显的优势。

自2002年首次应用以来,TAVR的技术不断发展,从最初的高风险患者逐步扩展到中低风险患者,甚至二叶式主动脉瓣(BAV)患者[2]。随着设备的不断优化,TAVR已逐渐成为SAVR的重要替代方案,尤其在老年和高危患者中,取得了显著的临床疗效[3]。尽管如此,TAVR的适应症、技术进展、并发症管理等方面仍然是当前研究的热点和挑战。

本文旨在综述TAVR技术的最新进展,重点分析其适应证的拓展、瓣膜技术的创新、手术入路的优化策略以及常见并发症的管理,为临床医生提供循证依据,并为进一步的临床研究指明方向。

2. TAVR的应用进展

2.1. 适应证的扩展

经导管主动脉瓣置换术(TAVR)自2002年首次应用以来,适应证范围逐渐扩大。主动脉瓣置换术临床实践中的风险类别(低、中、高)分类基于胸外科医师协会(Society of Thoracic Surgeons, STS)、EuroSCORE和EuroSCORE II.等组织专门为评估手术风险而设计的评分水平[4]。TAVR最初是针对那些不能承受手术性脉瓣替换(SAVR)的高风险病人而设计的。随着TAVR技术的发展,国内外学者对其治疗中、重度主动脉狭窄(AS)进行了初步探讨。近几年,多个关键性的研究促使TAVR的适应症不断扩大。PARTNER 2A试验[5]研究了TAVR与SAVR在中等风险AS患者中的应用效果。Leon等[6]发现在患有严重症状性主动脉瓣狭窄的中危患者中,手术和经导管瓣膜置换术在长达2年的主要死亡或致残性卒中的主要终点方面相似,并且导致心脏症状减轻的程度相似。SURTAVI试验[7]进一步验证了自膨胀式瓣膜TAVR在中风险患者中的应用效果,显示TAVR在5年时的全因死亡率或致残性中风率与SAVR相当(30.8% vs. 31.2%, P = 0.85)。

PARTNER 3 [8]与Evolut Low Risk试验[9]对TAVR在低风险AS患者中的应用进行了研究,结果为其临床价值提供了证据支持。以PARTNER系列研究为例,PARTNER 2A [5] (中危患者)显示TAVR与SAVR在2年主要终点无统计学差异(HR = 0.92, 95% CI: 0.76~1.11),但亚组分析发现经股动脉入路TAVR组死亡率显著低于SAVR (16.8% vs 20.4%, p = 0.05)。而PARTNER 3 [10] (低危患者) 1年结果显示TAVR组主要终点事件率显著降低(8.5% vs 15.1%, p = 0.001),这种差异主要源于TAVR组术后30天内急性肾损伤(1.1% vs 3.5%)和严重出血(2.4% vs 7.5%)发生率的大幅下降。值得注意的是,这种优势在3年随访时趋于减弱(全因死亡率15.3% vs 17.4%,p = 0.25),提示低危患者的长期预后仍需更多证据支持[10]。Evolut 低风险试验的完整2年随访[9]发现,TAVR在全因死亡率或致残性卒中的主要终点上不劣于手术,事件发生率略好于使用贝叶斯分析预测的事件发生率。Khan等人[11]对低危患者进行TAVR和SAVR的效果进行了评价,研究纳入4859名患者,主要评估了30天和12个月的死亡率。结果显示,与SAVR相比,TAVR的30天死亡风险显著降低40.1% (RR的95%置信区间为0.38至0.92,p值为0.02),但一年内总死亡率无统计学差异。此外,TAVR组中风风险降低36%,中度至重度急性肾损伤风险降低56%,但永久起搏器放置的血管并发症发生率升高,TAVR患者心内膜炎风险未显著增加。根据2020年ACC/AHA指南,TAVR被推荐为80岁及以上AS患者的首选治疗,而对于65~80岁症状性重度AS患者,TAVR作为I类推荐,证据水平A [12]。在手术危险性较小的病人中,应从病人的预期寿命、瓣膜使用寿命、解剖结构及手术操作等方面进行选择[12]。可靠循证依据也表明TAVR与SAVR长期预后相似,低风险AS患者适用[8] [13]

二叶式主动脉瓣(BAV)发病率约1%~2% [14]。BAV患者具有独特的解剖特征,如非环状和重度钙化,通常涉及左心室流出道(LVOT),这对现有的经导管心脏瓣膜(THV)提出了挑战。Evolut Low Risk TAVR Bicuspid研究的3年结果[15]发现Sievers 1型是主要的二叶形态(90.7%, 136/150),全因死亡率或致残性卒中的Kaplan-Meier发生率在1年时为1.3% (95% CI: 0.3%~5.3%),在2年时为3.4% (95% CI: 1.4%~8.1%),在3年时为4.1% (95% CI: 1.6%~10.7%),3年新永久性起搏器植入率为19.4% (95% CI: 12.4%~29.6%)。TAVR后2年和3年没有中度或重度瓣周主动脉瓣反流的实例。该结果表明全因死亡率或致残性卒中率低,血流动力学表现良好。另有数据显示,TAVR在中高风险BAV患者中的应用结果喜忧参半,某些BAV患者的瓣周漏(PVL)、永久性起搏器植入和围手术期卒中的发生率高于三尖瓣患者[16] [17]。两项研究提供了关于低风险重症二叶式AS患者接受TAVR治疗的数据。Deeb等人[18]报告了倾向评分匹配分析,比较了使用第二代自膨胀式CoreValve Evolut R THV或第三代自膨胀式CoreValve Evolut PRO THV接受TAVR的BAV患者与三尖瓣AS患者,结果显示,两组的设备成功率、手术并发症发生率和主要复合结局发生率相似。Williams等人[19]报告了使用第三代球囊扩张SAPIEN 3 THV在低风险患者中进行TAVR的结果,同样显示BAV患者与三尖瓣AS患者的主要终点和单个组成部分的发生率没有显著差异。以上研究主要基于倾向评分匹配分析和荟萃分析,这些方法虽然提供了一定的证据,但无法替代随机对照试验(RCT)。当前缺乏针对有症状的重度二叶式AS患者的RCT,使得TAVR与SAVR的直接比较仍不明确。基于二叶式主动脉瓣多年研究经验,我国专家主导发布的《二叶式AS经导管主动脉瓣置入术治疗国际专家共识》[20]指出,对于BAV患者,现有研究存在显著的方法学局限性。如Evolut Low Risk Bicuspid研究[9]虽报告3年死亡率仅4.1%,但其纳入的Sievers 1型BAV占比高达90.7%,而Sievers 0/2型患者因解剖复杂常被排除。这提示当前指南推荐TAVR用于BAV患者时,需严格限定解剖分型,而非简单依据年龄标准。对于70岁以上且无TAVR禁忌证或主动脉病变的患者,TAVR是二叶式AS的合理治疗选择。该共识还强调,治疗时需考虑瓣叶解剖类型及解剖危险分层[20]

TAVR适应证的扩展为AS患者提供了更多的治疗选择,尤其是对于高风险和中风险患者,TAVR已经显示出与SAVR相当甚至更优的疗效和安全性。对于低风险患者,虽然TAVR的短期结果令人鼓舞,但长期随访数据仍然有限,需要进一步的研究来评估其在这一人群中的应用价值。此外,对于二叶式主动脉瓣患者,TAVR的应用也在逐步探索中,但仍需谨慎选择患者并充分评估解剖结构以确保手术效果。随着TAVR技术的不断进步和新证据的积累,其适应证有望进一步扩大,使更多的AS患者受益。

2.2. 瓣膜的发展

自2002年Cribier教授首次应用球囊扩张式瓣膜(Sapien瓣膜)以来,TAVR瓣膜沿球扩瓣和自膨瓣两大技术路线不断发展。

球扩瓣以Edwards SAPIEN系列为代表,从SAPIEN 3 (2015年)到SAPIEN 3 Ultra (2022年),通过提升外裙边40%显著降低瓣周漏(PVL)发生率,且保持良好临床结局[21] [22]。SAPIEN X4 (2023年)进一步加强防钙化技术、降低瓣架高度、增大网格结构,减少冠脉阻塞风险,并首次实现瓣膜取向与对齐的独立控制[23]。国产球扩瓣如Venus-AVitae (2023年)具备操作简便、弯曲灵活及环形上瓣结构等优势,提升瓣膜寿命,已在南美获批。

自膨瓣以美敦力Evolut系列为代表,Evolut Pro/Pro+ (2017年)通过心包外覆改善贴合性减少PVL,Evolut FX (2022年)在此基础上新增黄金标记点提升可视化、对齐性,采用更紧密压缩及优化鼻锥设计,提升经小血管递送的安全性和顺滑性[24]-[26]。国产Venus-A (2017年)作为国内首个获批自膨瓣,适用于二叶瓣患者,效果良好[27],其升级版Venus A-Plus (2020年)增强导管可推性和可回收性,适合复杂病例[1] [28]

基于PARTNER 3与Evolut Low Risk的5年随访数据[8],显示对于预期寿命 > 10年的低危患者,自膨瓣组结构性瓣膜退化(SVD)发生率显著低于球扩瓣(3.2% vs 7.8%, p = 0.02),提示自膨瓣在年轻患者中可能具备更优长期耐久性。不过,自膨瓣径向力较大,易影响传导束,导致永久起搏器植入(PPI)率高,尤其在二叶瓣(BAV)患者中。因此,针对解剖复杂的BAV患者可优先考虑自膨瓣,而若存在传导系统病变风险,则应倾向选择球扩瓣。

整体而言,球扩瓣定位精准、瓣周漏低,适合瓣环钙化重或需精准释放的病例,但不可回收,限制复杂解剖应用;自膨瓣可回收、重新定位,适合血管条件差或二叶瓣患者,需警惕较高PPI风险。随着技术进步,各代瓣膜在材料、设计和输送系统上持续优化,提高手术安全性与远期疗效,满足不同患者需求。

2.3. 手术入路的选择

绝大多数接受TAVR的患者最常见的通路部位是股总动脉,然而,10%~20%接受TAVI治疗的患者需要替代通路,主要是由于外周动脉粥样硬化疾病或复杂的解剖结构[29]。因此,为了实现瓣膜的成功输送和植入,已经研究了多种动脉入路,包括经颈动脉、腋/锁骨下动脉、经心尖、经主动脉、胸骨上头臂和经腔静脉入路。过去的经验表明,非动脉性胸内入路(包括经主动脉、经心尖)常常与出血并发症的增加相关。因此,考虑到操作简便和无需开胸,颈动脉/锁骨下动脉等其他动脉入路得到了应用。对较少侵入性替代方法的偏好得到了经颈动脉入路相比经心尖/经主动脉入路更好结果的支持,包括主要或危及生命出血的发生率较低(4.3%对比19.9%;P = 0.002) [30]。重要的是,Faroux等人[31]在一项大规模荟萃分析中研究了79,426例患者,发现虽然非股动脉入路与围手术期中风的风险较高相关,但不同类型的动脉入路(如经颈动脉/经锁骨下动脉与经股动脉)并未导致30天内死亡、出血或血管并发症风险的显著增加。近年来,经腔静脉入路逐渐成为一种新兴的替代方法,其出血和血管并发症发生率与经验丰富的术者操作下的经腋动脉入路相当[32]。目前没有随机数据支持一种最优替代通路策略,可供选择的手术方式应该根据病人的解剖学特点和出血/缺血的危险性来进行个体化定制。

建立血管入路的方式又分为手术切开建立血管入路和经皮穿刺建立血管入路。在 TAVR 手术的早期,由于手术器械尺寸较大,容易导致血管并发症和出血事件。因此,通常通过手术切开皮下组织暴露血管,然后直接穿刺血管的方法来建立血管入路。如今,创伤更小的经皮穿刺已得到广泛应用。有研究[33]显示,手术切开组患者的严重出血事件和轻度出血事件发生率高于经皮穿刺组,差异具有统计学意义;对比两组患者的主要血管并发症和轻度血管并发症发生率,结果未显示出统计学意义的差异。

3. TAVR并发症的分析与管理策略

3.1. 瓣周漏(PVL)

瓣周漏(PVL)与TAVR的不良预后密切相关。研究显示,TAVR术后出现严重瓣周漏的患者,拥有比其无PVL患者翻倍的1年死亡风险,即使是轻度PVL也会增加5年全因死亡风险[34] [35]。轻度PVL患者可能无明显症状,而中、重度PVL患者则可能出现心力衰竭和溶血性贫血等症状[36]。左心室流出道覆盖指数(LVOT coverage index)、瓣膜植入深度、左心室舒张末期直径(LVEDd)、主动脉角度、左心室收缩末期直径(LVESD)和钙化体积是严重主动脉瓣狭窄患者接受TAVR手术后发生中重度瓣周漏(PVL)的独立风险因素[37]。这些因素导致的次优放置会影响瓣叶功能,进而引发TAVR相关的PVL。PVL还与术后并发症有关,如心力衰竭、溶血、肾损伤以及危及生命的出血等。因此,掌握PVL的影响因素以及诊断、评估和管理策略,对于改善患者的长期术后结局具有重要意义。

中国经导管主动脉瓣置换术临床路径专家共识(2024版) [38]对瓣周漏的处理提出明确指导:对于中度以上的瓣周漏,需要立即进行纠正,瓣周漏的处理应基于对其病因的正确判断,如膨胀不良,则应该考虑球囊后扩张;如果瓣膜释放位置不佳,则应该考虑瓣中瓣;如果由于严重钙化导致瓣膜不能完全贴壁,则应该考虑瓣周漏封堵。

3.2. 心脏传导阻滞和永久起搏器植入(PPI)

在TAVR术后,传导阻滞(包括完全性心脏传导阻滞CHB和高度房室传导阻滞HAVB)是常见并发症之一,且发生率受多种因素的影响。流行病学数据表明,自膨式瓣膜(如Evolut系列)的永久性起搏器(PPI)需求为12%~20%,而球扩式瓣膜(如SAPIEN系列)则为4.4%~6.5% [39]-[41]。然而,这些数据的可靠性需要进一步评估。例如,[42]进行的一项多中心回顾性研究分析了500例接受TAVR治疗的患者,发现机械膨胀式瓣膜的PPI风险较自膨式瓣膜增加60%。尽管该研究样本量较大,但由于其回顾性设计,未对所有患者进行均等分组,且患者基线特征存在差异,可能对研究结果的普适性产生一定影响。

在TAVR术后,LBBB的发生率也存在显著差异。自膨式瓣膜组中新发LBBB的发生率约为18%~28%,而球扩式瓣膜组则为13%~24% [39]-[41],且这些数据主要来源于大型多中心研究。部分研究指出,自膨式瓣膜的径向力过大可能会导致瓣膜与主动脉根部的机械相互作用,从而增加传导系统损伤的风险。这一发现也得到了有限元分析的支持,研究显示,自膨式瓣膜产生的过度径向力(>0.4 N/mm2)可能导致膜部间隔位移超过3 mm,从而直接压迫His束,引发传导阻滞[42]

更进一步,最新的研究表明,自膨式瓣膜Evolut Pro通过改进径向支撑力设计,已显著降低了PPI发生率,下降幅度约为10% [43],这表明瓣膜设计的改进可能是降低PPI风险的重要因素。然而,尽管这一改善取得了初步成果,但仍需更多前瞻性、大样本的研究来验证这些变化对长期预后的影响。

术后超过50%的LBBB病例可随局部炎症及组织水肿消退而自发恢复,但未恢复的患者可能会出现传导障碍持续存在或进展为高度房室阻滞(HAVB)。此类病理改变与患者生活质量下降密切相关,强调了围术期心电监测和远期随访的重要性[44]。尽管部分研究未发现PPI与死亡率之间存在直接相关性,PPI作为TAVR术后常见并发症,临床仍需重视其潜在的长期风险——包括起搏系统相关的并发症以及年轻患者群体可能面临的终身器械依赖问题[45]。因此,建议对于存在进展性传导异常的患者,建立分层管理策略,并通过动态心电图评估(术后7天、30天、90天)及时识别需早期干预的高危人群。

总的来说,尽管有大量数据支持TAVR术后传导阻滞的发生率差异,研究中的多中心设计、样本量差异及患者的基线特征差异仍可能影响最终结果的准确性。因此,在评估这些研究时,需要综合考虑其研究设计、样本量以及统计方法,以更全面地理解瓣膜设计对TAVR术后并发症的影响。

3.3. 卒中与脑保护

急性缺血性卒中仍然是TAVR的严重并发症。来自OBSERVANT-II的一项观察性、前瞻性、多中心队列研究[46]分析了2753例连续接受TAVR的严重主动脉瓣狭窄患者的数据,结果表明30天和6个月中风的发生率较低(分别为1.3%和2.4%),但对生存率有显著影响。主动脉瓣前扩张是预测30天卒中的唯一手术因素,而其余是患者相关的危险因素,表明术前进行适当的风险分层[46]。TAVR术后高危栓塞风险包括既往脑卒中史、高龄、新发心房颤动、冠心病史、外周血管病史、术中反复球囊扩张、瓣膜移位、高流速高压差等因素[47]。TAVR术前完善脑血管和神经系统功能评估,对于高危栓塞风险的患者与神经内、外科及血管外科专家共同制定治疗策略,并推荐使用脑保护装置[38]。脑栓塞保护装置(CEPD)的开发是为了降低急性缺血性卒中并发症(Acute Ischemic Stroke Complicating Transcatheter, AISCT)的风险。然而,现有证据并未明确支持CEPD在AISCT预防中的疗效[48]

3.4. 冠状动脉阻塞

冠状动脉阻塞是TAVR后的罕见但致命并发症,尤其在接受主动脉瓣置换(VIV)的患者中,发生风险可增加6倍[49]。由于冠状动脉口和人工主动脉瓣之间的解剖对齐,冠状动脉再通路可能会受到影响。冠状动脉闭塞可导致心肌瞬间缺血发生猝死。对于被评估为冠状动脉闭塞高风险的患者,在TAVR术前通常会进行包括冠状动脉导丝保护(最终可能进行冠状动脉近端支架置入)、烟囱支架置入、以及生物瓣膜或天然主动脉瓣的故意切开术(BASILICA)等预防措施,以防止医源性冠状动脉阻塞[50]-[52]。Federico Mercanti等的数据表明,烟囱支架置入术在现代TAVR实践中占总TAVR病例的0.5%,但是烟囱支架置入术在术中确诊冠状动脉闭塞的患者和没有前期冠状动脉保护的患者中急性手术结果令人鼓舞,似乎是一种可接受的冠状动脉闭塞救助技术[50]。在中期随访中,据报道支架衰竭和Valsalva血栓形成窦分别为0.9%~3.3%和2.1% [50] [51] [53]。与烟囱支架置入术相比,BASILICA具有优势,包括无需长期特异性双重抗血小板方案或担心晚期支架衰竭以及与重新进入冠状动脉相关的风险[54]。然而,BASILICA可能与高中风发生率有关[55]。某些新一代TAVI装置(ACURATE NeoTM [Boston Scientific]、JenaValveTM [JenaValve])通过使用直接锚定机制固定到钙化的天然瓣叶或手术瓣膜瓣叶,这将降低未来脱垂和冠状动脉阻塞的风险。在30名具有高危特征(平均左主干口高度仅为10.8 mm,Valsalva窦:环比值为1.3 ± 0.8)中使用ACURATE Neo装置的初步早期体验中,没有冠状动脉阻塞病例[56] [57]。J-Valve (健实杰成医疗科技有限公司,中国上海)是一种自膨式、低轮廓的经心尖心脏瓣膜。卢云涛等人的一项关于此瓣膜的研究显示,使用J-Valve假体进行独立TAVR可避免不必要的手术,并在治疗潜在高风险冠状动脉阻塞患者中展现出良好的早期效果[58]

3.5. 生物瓣膜衰败

随着TAVR的使用越来越多地扩展到低风险患者,更多的年轻患者接受TAVR治疗,所以经导管心脏瓣膜(THV)的耐用性变得越来越重要。一项对TAVR术后患者10年及以上随访的结局研究[59]发现结构瓣膜恶化(SVD)和生物人工瓣膜衰竭(BVF)的累积发生率取决于植入的经导管心脏瓣膜类型,CoreValve的退化率低于SAPIEN瓣膜,建议使用自膨胀的CoreValve——特别是对于年轻患者。美国爱德华生命科学(Edwards Lifesciences)研发出新一代牛心包处理技术——RESILIA组织,其核心是通过封闭钙化来源和甘油化处理,显著降低生物瓣膜的钙化风险,从而延长瓣膜寿命。Venus-Vitae采用启明医疗自主研发的特制干瓣,膜片采用原创性的 Venus-Endura 技术,融合多元抗钙化技术、去免疫原技术和三维力控干化技术,赋予瓣膜优异的耐久性、生物相容性和抗钙化性能,同时实现瓣膜的干态存储。可以预见,RESILIA组织与干瓣技术将会是未来几年抗钙化研究的方向。

瓣中瓣经导管主动脉瓣置换术(ViV-TAVR)是治疗生物人工瓣膜结构性瓣膜恶化的公认替代方案[60]。ARTNER 2 [61]试验中,接受ViV-TAVR的入组患者的3年超声心动图随访显示出极好的持久性。一项较新的研究同样证实了ViV-TAVR在不同年龄组中具有良好的3年持久性,但与老年患者3年死亡风险增加相关[62]。与再次进行外科主动脉瓣置换术(SAVR)相比,经导管主动脉瓣置换术(ViV-TAVR)在两年随访期间与较低的围手术期并发症发生率相关,且全因死亡率相似[63]。然而,ViV-TAVR与较高的晚期死亡率和心力衰竭住院率相关[63]。这些发现可能受到残余混杂因素的影响,需要在随机临床试验中进行验证。冠状动脉阻塞是TAVR后的罕见但致命并发症,尤其在接受瓣中瓣(VIV)的患者中,发生风险可增加6倍[49]。通过术前精细评估,特别是利用多层螺旋CT (MSCT)影像,可为预防策略提供依据[49]

4. 小结与展望

经导管主动脉瓣置换术(TAVR)作为一种重要的微创治疗方法,已在高危和中危患者中取得了显著的疗效,并逐步扩展到低风险患者和二叶式主动脉瓣(BAV)患者。针对低风险患者群体,其长期疗效尚缺乏足够的临床证据支持。随着TAVR设备的不断进步,新一代瓣膜在抗钙化、抗生物膜形成、结构稳定性等方面的改进,将进一步提高瓣膜的耐久性。ViV-TAVR作为治疗生物瓣膜衰败的新选择,虽然展示了较好的长期效果,但也伴随有较高的冠状动脉阻塞风险,需要在临床实践中谨慎应用。

尽管短期效果良好,TAVR的长期效果、瓣膜耐久性以及并发症管理仍然是未来研究的重要方向。特别是瓣周漏(PVL)、永久起搏器植入(PPI)及TAVR术后结构性瓣膜恶化(SVD)等问题,需要更多的长期数据和多中心研究来进一步验证。未来的研究应进一步聚焦TAVR适应症的精准扩展,特别是在年轻患者、BAV患者及低风险群体中的应用。

NOTES

*通讯作者。

参考文献

[1] Liu, X., He, Y., Liu, C., Wang, L., Gao, F., Yu, L., et al. (2018) First-in-Man Implantation of the Retrievable and Repositionable Venusa-Plus Valve. World Journal of Emergency Medicine, 9, 64-66.
https://doi.org/10.5847/wjem.j.1920-8642.2018.01.010
[2] Windecker, S., Okuno, T., Unbehaun, A., Mack, M., Kapadia, S. and Falk, V. (2022) Which Patients with Aortic Stenosis Should Be Referred to Surgery Rather than Transcatheter Aortic Valve Implantation? European Heart Journal, 43, 2729-2750.
https://doi.org/10.1093/eurheartj/ehac105
[3] Vahanian, A., Beyersdorf, F., Praz, F., Milojevic, M., Baldus, S., Bauersachs, J., et al. (2022) 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease: Developed by the Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Revista Española de Cardiología (English Edition), 75, 524.
https://doi.org/10.1016/j.rec.2022.05.006
[4] Edwards, F.H., Cohen, D.J., O’Brien, S.M., Peterson, E.D., Mack, M.J., Shahian, D.M., et al. (2016) Development and Validation of a Risk Prediction Model for In-Hospital Mortality after Transcatheter Aortic Valve Replacement. JAMA Cardiology, 1, 46-52.
https://doi.org/10.1001/jamacardio.2015.0326
[5] Chen, S., Redfors, B., Ben-Yehuda, O., Crowley, A., Greason, K.L., Alu, M.C., et al. (2018) Transcatheter versus Surgical Aortic Valve Replacement in Patients with Prior Cardiac Surgery in the Randomized PARTNER 2A Trial. JACC: Cardiovascular Interventions, 11, 2207-2216.
https://doi.org/10.1016/j.jcin.2018.08.006
[6] Leon, M.B., Smith, C.R., Mack, M.J., Makkar, R.R., Svensson, L.G., Kodali, S.K., et al. (2016) Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. New England Journal of Medicine, 374, 1609-1620.
https://doi.org/10.1056/nejmoa1514616
[7] Van Mieghem, N.M., Deeb, G.M., Søndergaard, L., Grube, E., Windecker, S., Gada, H., et al. (2022) Self-Expanding Transcatheter vs Surgical Aortic Valve Replacement in Intermediate-Risk Patients. JAMA Cardiology, 7, 1000-1008.
https://doi.org/10.1001/jamacardio.2022.2695
[8] Mack, M.J., Leon, M.B., Thourani, V.H., Pibarot, P., Hahn, R.T., Genereux, P., et al. (2023) Transcatheter Aortic-Valve Replacement in Low-Risk Patients at Five Years. New England Journal of Medicine, 389, 1949-1960.
https://doi.org/10.1056/nejmoa2307447
[9] Forrest, J.K., Deeb, G.M., Yakubov, S.J., Rovin, J.D., Mumtaz, M., Gada, H., et al. (2022) 2-Year Outcomes after Transcatheter versus Surgical Aortic Valve Replacement in Low-Risk Patients. Journal of the American College of Cardiology, 79, 882-896.
https://doi.org/10.1016/j.jacc.2021.11.062
[10] Galper, B.Z., Chinnakondepalli, K.M., Wang, K., Magnuson, E.A., Lu, M., Thourani, V.H., et al. (2023) Economic Outcomes of Transcatheter versus Surgical Aortic Valve Replacement in Patients with Severe Aortic Stenosis and Low Surgical Risk: Results from the PARTNER 3 Trial. Circulation, 147, 1594-1605.
https://doi.org/10.1161/circulationaha.122.062481
[11] Khan, M.S., Mir, T., Ullah, W., Ali, Z., Idris, O., Khan, G., et al. (2020) Comparing Transcatheter Aortic Valve Replacement (AVR) with Surgical AVR in Lower Risk Patients: A Comprehensive Meta-Analysis and Systematic Review. Cardiology Research, 11, 168-178.
https://doi.org/10.14740/cr1046
[12] Otto, C.M., Nishimura, R.A., Bonow, R.O., et al. (2021) 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 143, e72-e227.
[13] Thyregod, H.G.H., Jørgensen, T.H., Ihlemann, N., Steinbrüchel, D.A., Nissen, H., Kjeldsen, B.J., et al. (2024) Transcatheter or Surgical Aortic Valve Implantation: 10-Year Outcomes of the NOTION Trial. European Heart Journal, 45, 1116-1124.
https://doi.org/10.1093/eurheartj/ehae043
[14] Tchetche, D., de Biase, C., van Gils, L., Parma, R., Ochala, A., Lefevre, T., et al. (2019) Bicuspid Aortic Valve Anatomy and Relationship with Devices: The BAVARD Multicenter Registry. Circulation: Cardiovascular Interventions, 12, e7107.
https://doi.org/10.1161/circinterventions.118.007107
[15] Zahr, F., Ramlawi, B., Reardon, M.J., Deeb, G.M., Yakubov, S.J., Song, H.K., et al. (2024) 3-Year Outcomes from the Evolut Low Risk TAVR Bicuspid Study. JACC: Cardiovascular Interventions, 17, 1667-1675.
https://doi.org/10.1016/j.jcin.2024.05.017
[16] Makkar, R.R., Yoon, S., Leon, M.B., Chakravarty, T., Rinaldi, M., Shah, P.B., et al. (2019) Association between Transcatheter Aortic Valve Replacement for Bicuspid vs Tricuspid Aortic Stenosis and Mortality or Stroke. Journal of the American Medical Association, 321, 2193-2202.
https://doi.org/10.1001/jama.2019.7108
[17] Forrest, J.K., Kaple, R.K., Ramlawi, B., Gleason, T.G., Meduri, C.U., Yakubov, S.J., et al. (2020) Transcatheter Aortic Valve Replacement in Bicuspid versus Tricuspid Aortic Valves from the STS/ACC TVT Registry. JACC: Cardiovascular Interventions, 13, 1749-1759.
https://doi.org/10.1016/j.jcin.2020.03.022
[18] Deeb, G.M., Reardon, M.J., Ramlawi, B., Yakubov, S.J., Chetcuti, S.J., Kleiman, N.S., et al. (2022) Propensity-Matched 1-Year Outcomes Following Transcatheter Aortic Valve Replacement in Low-Risk Bicuspid and Tricuspid Patients. JACC: Cardiovascular Interventions, 15, 511-522.
https://doi.org/10.1016/j.jcin.2021.10.027
[19] Williams, M.R., Jilaihawi, H., Makkar, R., O’Neill, W.W., Guyton, R., Malaisrie, S.C., et al. (2022) The PARTNER 3 Bicuspid Registry for Transcatheter Aortic Valve Replacement in Low-Surgical-Risk Patients. JACC: Cardiovascular Interventions, 15, 523-532.
https://doi.org/10.1016/j.jcin.2022.01.279
[20] Xiong, T., Ali, W.B., Feng, Y., Hayashida, K., Jilaihawi, H., Latib, A., et al. (2022) Transcatheter Aortic Valve Implantation in Patients with Bicuspid Valve Morphology: A Roadmap Towards Standardization. Nature Reviews Cardiology, 20, 52-67.
https://doi.org/10.1038/s41569-022-00734-5
[21] Cannata, S., Gandolfo, C., Ribichini, F.L., van Mieghem, N., Buccheri, S., Barbanti, M., et al. (2023) One-Year Outcomes after Transcatheter Aortic Valve Implantation with the Latest-Generation SAPIEN Balloon-Expandable Valve: The S3U Registry. EuroIntervention, 18, 1418-1427.
https://doi.org/10.4244/eij-d-22-01022
[22] Nazif, T.M., Cahill, T.J., Daniels, D., McCabe, J.M., Reisman, M., Chakravarty, T., et al. (2021) Real-World Experience with the SAPIEN 3 Ultra Transcatheter Heart Valve: A Propensity-Matched Analysis from the United States. Circulation: Cardiovascular Interventions, 14, e10543.
https://doi.org/10.1161/circinterventions.121.010543
[23] 孔祥权, 高晓飞, 张娟, 等. 经导管主动脉瓣置换术相关新瓣膜的研究进展[J]. 华西医学, 2023, 38(9): 1309-1313.
[24] Yoon, S., Galo, J., Amoah, J.K., Dallan, L.A.P., Tsushima, T., Motairek, I.K., et al. (2023) Permanent Pacemaker Insertion Reduction and Optimized Temporary Pacemaker Management after Contemporary Transcatheter Aortic Valve Implantation with Self-Expanding Valves (from the Pristine TAVI Study). The American Journal of Cardiology, 189, 1-10.
https://doi.org/10.1016/j.amjcard.2022.11.026
[25] Khera, S., Krishnamoorthy, P., Sharma, S.K., Kini, A.S., Dangas, G.D., Goel, S., et al. (2023) Improved Commissural Alignment in TAVR with the Newest Evolut FX Self-Expanding Supra-Annular Valve. JACC: Cardiovascular Interventions, 16, 498-500.
https://doi.org/10.1016/j.jcin.2022.10.041
[26] Merdler, I., Case, B., Bhogal, S., Reddy, P.K., Sawant, V., Zhang, C., et al. (2023) Early Experience with the Evolut FX Self-Expanding Valve Vs. Evolut PRO+ for Patients with Aortic Stenosis Undergoing TAVR. Cardiovascular Revascularization Medicine, 56, 1-6.
https://doi.org/10.1016/j.carrev.2023.06.003
[27] 王玺, 李怡坚, 欧袁伟翔, 等. 经导管主动脉瓣置换术中Venus A-Valve与进口瓣膜临床应用的比较[J]. 华西医学, 2019, 34(4): 379-384.
[28] 张航, 王华君, 石凤梧, 等. 应用Venus A-Plus瓣膜输送系统行经导管主动脉瓣置换术治疗重度主动脉瓣狭窄的回顾性队列研究[J/OL]. 中国胸心血管外科临床杂志, 2024: 1-6.
http://kns.cnki.net/kcms/detail/51.1492.R.20240522.0837.006.html, 2025-03-28.
[29] Katsaros, O., Apostolos, A., Ktenopoulos, N., Koliastasis, L., Kachrimanidis, I., Drakopoulou, M., et al. (2023) Transcatheter Aortic Valve Implantation Access Sites: Same Goals, Distinct Aspects, Various Merits and Demerits. Journal of Cardiovascular Development and Disease, 11, Article 4.
https://doi.org/10.3390/jcdd11010004
[30] Chamandi, C., Abi-Akar, R., Rodés-Cabau, J., Blanchard, D., Dumont, E., Spaulding, C., et al. (2018) Transcarotid Compared with Other Alternative Access Routes for Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 11, e6388.
https://doi.org/10.1161/circinterventions.118.006388
[31] Faroux, L., Junquera, L., Mohammadi, S., Del Val, D., Muntané-Carol, G., Alperi, A., et al. (2020) Femoral versus Nonfemoral Subclavian/Carotid Arterial Access Route for Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 9, e17460.
https://doi.org/10.1161/jaha.120.017460
[32] Lederman, R.J., Babaliaros, V.C., Lisko, J.C., Rogers, T., Mahoney, P., Foerst, J.R., et al. (2022) Transcaval versus Transaxillary TAVR in Contemporary Practice. JACC: Cardiovascular Interventions, 15, 965-975.
https://doi.org/10.1016/j.jcin.2022.03.014
[33] 于园园, 李怡坚, 王雅莉, 等. 经导管主动脉瓣置换术手术切开和经皮穿刺入路的临床结果比较[J]. 华西医学, 2022, 37(4): 522-530.
[34] Lopez-Pais, J., Lopez-Otero, D., Garcia-Touchard, A., Izquierdo Coronel, B., Antúnez Muiños, P.J., Cia Mendioroz, X., et al. (2020) Impact of Significant Paravalvular Leaks after Transcatheter Aortic Valve Implantation on Anaemia and Mortality. Heart, 107, 497-502.
https://doi.org/10.1136/heartjnl-2020-316941
[35] Okuno, T., Tomii, D., Heg, D., Lanz, J., Praz, F., Stortecky, S., et al. (2022) Five-Year Outcomes of Mild Paravalvular Regurgitation after Transcatheter Aortic Valve Implantation. EuroIntervention, 18, 33-42.
https://doi.org/10.4244/eij-d-21-00784
[36] Kananathan, S., Perera, L.A., Mohanarajan, M., Sherif, M. and Harky, A. (2022) The Management of Paravalvular Leaks Post Aortic Valve Replacement. Journal of Cardiac Surgery, 37, 2786-2798.
https://doi.org/10.1111/jocs.16672
[37] Wang, H. (2024) Risk Factors and Predictive Model for Moderate to Severe Perivalvular Leakage Following Transcatheter Aortic Valve Replacement. American Journal of Translational Research, 16, 7563-7572.
https://doi.org/10.62347/vrxs6310
[38] 刘新民, 王墨扬. 中国经导管主动脉瓣置换术临床路径专家共识(2024版) [J]. 中国循环杂志, 2024, 39(11): 1041-1057.
[39] Forrest, J.K., Kaple, R.K., Tang, G.H.L., Yakubov, S.J., Nazif, T.M., Williams, M.R., et al. (2020) Three Generations of Self-Expanding Transcatheter Aortic Valves. JACC: Cardiovascular Interventions, 13, 170-179.
https://doi.org/10.1016/j.jcin.2019.08.035
[40] Perl, L., Cohen, A., Dadashev, A., Shapira, Y., Vaknin-Assa, H., Yahalom, V., et al. (2021) Long-Term Outcomes of Catheter-Based Intervention for Clinically Significant Paravalvular Leak. EuroIntervention, 17, 736-743.
https://doi.org/10.4244/eij-d-20-01206
[41] Popma, J.J., Deeb, G.M., Yakubov, S.J., Mumtaz, M., Gada, H., O’Hair, D., et al. (2019) Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. New England Journal of Medicine, 380, 1706-1715.
https://doi.org/10.1056/nejmoa1816885
[42] Ullah, W., Zahid, S., Zaidi, S.R., Sarvepalli, D., Haq, S., Roomi, S., et al. (2021) Predictors of Permanent Pacemaker Implantation in Patients Undergoing Transcatheter Aortic Valve Replacement—A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 10, e20906.
https://doi.org/10.1161/jaha.121.020906
[43] Kodali, S., Thourani, V.H., White, J., Malaisrie, S.C., Lim, S., Greason, K.L., et al. (2016) Early Clinical and Echocardiographic Outcomes after SAPIEN 3 Transcatheter Aortic Valve Replacement in Inoperable, High-Risk and Intermediate-Risk Patients with Aortic Stenosis. European Heart Journal, 37, 2252-2262.
https://doi.org/10.1093/eurheartj/ehw112
[44] 刘鹏, 鲍贤豪, 马孝琛, 等. 经导管主动脉瓣置换术术后并发症及其治疗进展[J]. 血管与腔内血管外科杂志, 2022, 8(9): 1093-1098.
[45] Bagur, R., Solo, K., Alghofaili, S., Nombela-Franco, L., Kwok, C.S., Hayman, S., et al. (2017) Cerebral Embolic Protection Devices during Transcatheter Aortic Valve Implantation. Stroke, 48, 1306-1315.
https://doi.org/10.1161/strokeaha.116.015915
[46] Gorla, R., Tua, L., D'Errigo, P., Barbanti, M., Biancari, F., Tarantini, G., et al. (2023) Incidence and Predictors of 30-Day and 6-Month Stroke after TAVR: Insights from the Multicenter OBSERVANT II Study. Catheterization and Cardiovascular Interventions, 102, 1122-1131.
https://doi.org/10.1002/ccd.30848
[47] Généreux, P., Piazza, N., Alu, M.C., Nazif, T., Hahn, R.T., Pibarot, P., et al. (2021) Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. Journal of the American College of Cardiology, 77, 2717-2746.
https://doi.org/10.1016/j.jacc.2021.02.038
[48] Levi, A., Linder, M., Seiffert, M., Witberg, G., Pilgrim, T., Tomii, D., et al. (2024) The Impact of Cerebral Embolic Protection Devices on Characteristics and Outcomes of Stroke Complicating TAVR. JACC: Cardiovascular Interventions, 17, 666-677.
https://doi.org/10.1016/j.jcin.2023.12.033
[49] Bernardi, F.L.M., Dvir, D., Rodes-Cabau, J. and Ribeiro, H.B. (2019) Valve-in-Valve Challenges: How to Avoid Coronary Obstruction. Frontiers in Cardiovascular Medicine, 6, Article 120.
https://doi.org/10.3389/fcvm.2019.00120
[50] Mercanti, F., Rosseel, L., Neylon, A., Bagur, R., Sinning, J., Nickenig, G., et al. (2020) Chimney Stenting for Coronary Occlusion during TAVR. JACC: Cardiovascular Interventions, 13, 751-761.
https://doi.org/10.1016/j.jcin.2020.01.227
[51] Palmerini, T., Chakravarty, T., Saia, F., Bruno, A.G., Bacchi-Reggiani, M., Marrozzini, C., et al. (2020) Coronary Protection to Prevent Coronary Obstruction during TAVR. JACC: Cardiovascular Interventions, 13, 739-747.
https://doi.org/10.1016/j.jcin.2019.11.024
[52] Khan, J.M., Babaliaros, V.C., Greenbaum, A.B., Spies, C., Daniels, D., Depta, J.P., et al. (2021) Preventing Coronary Obstruction during Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 14, 941-948.
https://doi.org/10.1016/j.jcin.2021.02.035
[53] Mangieri, A., Gallo, F., Popolo Rubbio, A., Casenghi, M., Ancona, M., Regazzoli, D., et al. (2020) Outcome of Coronary Ostial Stenting to Prevent Coronary Obstruction during Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 13, e9017.
https://doi.org/10.1161/circinterventions.120.009017
[54] Lederman, R.J., Babaliaros, V.C., Rogers, T., Khan, J.M., Kamioka, N., Dvir, D., et al. (2019) Preventing Coronary Obstruction during Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 12, 1197-1216.
https://doi.org/10.1016/j.jcin.2019.04.052
[55] Khan, J.M., Greenbaum, A.B., Babaliaros, V.C., Rogers, T., Eng, M.H., Paone, G., et al. (2019) The BASILICA Trial. JACC: Cardiovascular Interventions, 12, 1240-1252.
https://doi.org/10.1016/j.jcin.2019.03.035
[56] Alkhouli, M. and Badhwar, V. (2017) Avoiding Coronary Obstruction after Transcatheter Aortic Valve Replacement: Is It the Skirt or What’s Inside That Counts? The Journal of Thoracic and Cardiovascular Surgery, 153, 819-820.
https://doi.org/10.1016/j.jtcvs.2016.11.034
[57] Chu, M.W.A., Bagur, R., Losenno, K.L., Jones, P.M., Diamantouros, P., Teefy, P., et al. (2017) Early Clinical Outcomes of a Novel Self-Expanding Transapical Transcatheter Aortic Valve Bioprosthesis. The Journal of Thoracic and Cardiovascular Surgery, 153, 810-818.
https://doi.org/10.1016/j.jtcvs.2016.11.054
[58] Lu, Y., Yin, M., Yang, Y., Wang, W., Dong, L., Yang, X., et al. (2024) A Coronary-Friendly Device Mitigating Risk of Coronary Obstruction in Transcatheter Aortic Valve Replacement. Clinical Interventions in Aging, 19, 1557-1570.
https://doi.org/10.2147/cia.s467594
[59] Erlebach, M., Lochbihler, S., Ruge, H., Feirer, N., Trenkwalder, T., Burri, M., et al. (2022) The 10-Year Horizon: Survival and Structural Valve Degeneration in First-Generation Transcatheter Aortic Valves. Archives of Cardiovascular Diseases, 115, 369-376.
https://doi.org/10.1016/j.acvd.2022.04.007
[60] Vahanian, A., Beyersdorf, F., Praz, F., Milojevic, M., Baldus, S., Bauersachs, J., et al. (2021) 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. European Heart Journal, 43, 561-632.
https://doi.org/10.1093/eurheartj/ehab395
[61] Webb, J.G., Murdoch, D.J., Alu, M.C., Cheung, A., Crowley, A., Dvir, D., et al. (2019) 3-Year Outcomes after Valve-in-Valve Transcatheter Aortic Valve Replacement for Degenerated Bioprostheses. Journal of the American College of Cardiology, 73, 2647-2655.
https://doi.org/10.1016/j.jacc.2019.03.483
[62] Nagasaka, T., Patel, V., Suruga, K., Shechter, A., Koren, O., Chakravarty, T., et al. (2025) Age-Related Outcomes of Valve-in-Valve Transcatheter Aortic Valve Replacement for Structural Valve Deterioration. Journal of the American Heart Association, 14, e37168.
https://doi.org/10.1161/jaha.124.037168
[63] Tran, J.H., Itagaki, S., Zeng, Q., Leon, M.B., O’Gara, P.T., Mack, M.J., et al. (2024) Transcatheter or Surgical Replacement for Failed Bioprosthetic Aortic Valves. JAMA Cardiology, 9, 631-639.
https://doi.org/10.1001/jamacardio.2024.1049