[1]
|
Spees, J.L., Olson, S.D., Whitney, M.J. and Prockop, D.J. (2006) Mitochondrial Transfer between Cells Can Rescue Aerobic Respiration. Proceedings of the National Academy of Sciences, 103, 1283-1288. https://doi.org/10.1073/pnas.0510511103
|
[2]
|
Quintana-Cabrera, R. and Scorrano, L. (2023) Determinants and Outcomes of Mitochondrial Dynamics. Molecular Cell, 83, 857-876. https://doi.org/10.1016/j.molcel.2023.02.012
|
[3]
|
Gorman, G.S., Chinnery, P.F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., et al. (2016) Mitochondrial Diseases. Nature Reviews Disease Primers, 2, Article No. 16080. https://doi.org/10.1038/nrdp.2016.80
|
[4]
|
Mishra, P. and Chan, D.C. (2014) Mitochondrial Dynamics and Inheritance during Cell Division, Development and Disease. Nature Reviews Molecular Cell Biology, 15, 634-646. https://doi.org/10.1038/nrm3877
|
[5]
|
Ruby, J.R., Dyer, R.F. and Skalko, R.G. (1969) The Occurrence of Intercellular Bridges during Oogenesis in the Mouse. Journal of Morphology, 127, 307-339. https://doi.org/10.1002/jmor.1051270304
|
[6]
|
Austefjord, M.W., Gerdes, H. and Wang, X. (2014) Tunneling Nanotubes: Diversity in Morphology and Structure. Communicative & Integrative Biology, 7, e27934. https://doi.org/10.4161/cib.27934
|
[7]
|
Liu, Y., Fu, T., Li, G., Li, B., Luo, G., Li, N., et al. (2023) Mitochondrial Transfer between Cell Crosstalk—An Emerging Role in Mitochondrial Quality Control. Ageing Research Reviews, 91, Article 102038. https://doi.org/10.1016/j.arr.2023.102038
|
[8]
|
Babenko, V., Silachev, D., Popkov, V., Zorova, L., Pevzner, I., Plotnikov, E., et al. (2018) Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules, 23, Article 687. https://doi.org/10.3390/molecules23030687
|
[9]
|
Chakraborty, R., Nonaka, T., Hasegawa, M. and Zurzolo, C. (2023) Tunnelling Nanotubes between Neuronal and Microglial Cells Allow Bi-Directional Transfer of α-Synuclein and Mitochondria. Cell Death & Disease, 14, Article No. 329. https://doi.org/10.1038/s41419-023-05835-8
|
[10]
|
Marlein, C.R., Piddock, R.E., Mistry, J.J., Zaitseva, L., Hellmich, C., Horton, R.H., et al. (2019) CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Research, 79, 2285-2297. https://doi.org/10.1158/0008-5472.can-18-0773
|
[11]
|
Sinclair, K.A., Yerkovich, S.T., Hopkins, P.M. and Chambers, D.C. (2016) Characterization of Intercellular Communication and Mitochondrial Donation by Mesenchymal Stromal Cells Derived from the Human Lung. Stem Cell Research & Therapy, 7, Article No. 91. https://doi.org/10.1186/s13287-016-0354-8
|
[12]
|
Islam, M.N., Das, S.R., Emin, M.T., Wei, M., Sun, L., Westphalen, K., et al. (2012) Mitochondrial Transfer from Bone-Marrow-Derived Stromal Cells to Pulmonary Alveoli Protects against Acute Lung Injury. Nature Medicine, 18, 759-765. https://doi.org/10.1038/nm.2736
|
[13]
|
Irwin, R.M., Thomas, M.A., Fahey, M.J., Mayán, M.D., Smyth, J.W. and Delco, M.L. (2024) Connexin 43 Regulates Intercellular Mitochondrial Transfer from Human Mesenchymal Stromal Cells to Chondrocytes. Stem Cell Research & Therapy, 15, Article No. 359. https://doi.org/10.1186/s13287-024-03932-9
|
[14]
|
Yao, Y., Fan, X., Jiang, D., Zhang, Y., Li, X., Xu, Z., et al. (2018) Connexin 43-Mediated Mitochondrial Transfer of iPSC-MSCs Alleviates Asthma Inflammation. Stem Cell Reports, 11, 1120-1135.
|
[15]
|
Morrison, T.J., Jackson, M.V., Cunningham, E.K., Kissenpfennig, A., McAuley, D.F., O’Kane, C.M., et al. (2017) Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 196, 1275-1286. https://doi.org/10.1164/rccm.201701-0170oc
|
[16]
|
Suh, J., Kim, N., Shim, W., Lee, S., Kim, H., Moon, E., et al. (2023) Mitochondrial Fragmentation and Donut Formation Enhance Mitochondrial Secretion to Promote Osteogenesis. Cell Metabolism, 35, 345-360.E7. https://doi.org/10.1016/j.cmet.2023.01.003
|
[17]
|
Liang, W., Sagar, S., Ravindran, R., Najor, R.H., Quiles, J.M., Chi, L., et al. (2023) Mitochondria Are Secreted in Extracellular Vesicles When Lysosomal Function Is Impaired. Nature Communications, 14, Article No. 5031. https://doi.org/10.1038/s41467-023-40680-5
|
[18]
|
Boudreau, L.H., Duchez, A., Cloutier, N., Soulet, D., Martin, N., Bollinger, J., et al. (2014) Platelets Release Mitochondria Serving as Substrate for Bactericidal Group IIA-Secreted Phospholipase A2 to Promote Inflammation. Blood, 124, 2173-2183. https://doi.org/10.1182/blood-2014-05-573543
|
[19]
|
Clark, M.A. and Shay, J.W. (1982) Mitochondrial Transformation of Mammalian Cells. Nature, 295, 605-607. https://doi.org/10.1038/295605a0
|
[20]
|
Gollihue, J.L., Patel, S.P., Eldahan, K.C., Cox, D.H., Donahue, R.R., Taylor, B.K., et al. (2018) Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury. Journal of Neurotrauma, 35, 1800-1818. https://doi.org/10.1089/neu.2017.5605
|
[21]
|
Lamanilao, G.G., Dogan, M., Patel, P.S., Azim, S., Patel, D.S., Bhattacharya, S.K., et al. (2023) Key Hepatoprotective Roles of Mitochondria in Liver Regeneration. American Journal of Physiology-Gastrointestinal and Liver Physiology, 324, G207-G218. https://doi.org/10.1152/ajpgi.00220.2022
|
[22]
|
Kim, M.J., Hwang, J.W., Yun, C., Lee, Y. and Choi, Y. (2018) Delivery of Exogenous Mitochondria via Centrifugation Enhances Cellular Metabolic Function. Scientific Reports, 8, Article No. 3330. https://doi.org/10.1038/s41598-018-21539-y
|
[23]
|
Borcherding, N. and Brestoff, J.R. (2023) The Power and Potential of Mitochondria Transfer. Nature, 623, 283-291. https://doi.org/10.1038/s41586-023-06537-z
|
[24]
|
Phinney, D.G., Di Giuseppe, M., Njah, J., Sala, E., Shiva, S., St Croix, C.M., et al. (2015) Mesenchymal Stem Cells Use Extracellular Vesicles to Outsource Mitophagy and Shuttle MicroRNAs. Nature Communications, 6, Article No. 8472. https://doi.org/10.1038/ncomms9472
|
[25]
|
Xu, J., Shi, C., Yuan, F., Ding, Y., Xie, Y., Liu, Y., et al. (2024) Targeted Transplantation of Engineered Mitochondrial Compound Promotes Functional Recovery after Spinal Cord Injury by Enhancing Macrophage Phagocytosis. Bioactive Materials, 32, 427-444. https://doi.org/10.1016/j.bioactmat.2023.10.016
|
[26]
|
Baldwin, J.G., Heuser-Loy, C., Saha, T., Schelker, R.C., Slavkovic-Lukic, D., Strieder, N., et al. (2024) Intercellular Nanotube-Mediated Mitochondrial Transfer Enhances T Cell Metabolic Fitness and Antitumor Efficacy. Cell, 187, 6614-6630.E21. https://doi.org/10.1016/j.cell.2024.08.029
|
[27]
|
Kim, S., Kim, M., Lim, M., Kim, J., Kim, H., Yun, C., et al. (2023) Enhancement of the Anticancer Ability of Natural Killer Cells through Allogeneic Mitochondrial Transfer. Cancers, 15, Article 3225. https://doi.org/10.3390/cancers15123225
|
[28]
|
Zhang, H., Yu, X., Ye, J., Li, H., Hu, J., Tan, Y., et al. (2023) Systematic Investigation of Mitochondrial Transfer between Cancer Cells and T Cells at Single-Cell Resolution. Cancer Cell, 41, 1788-1802.E10. https://doi.org/10.1016/j.ccell.2023.09.003
|
[29]
|
Pandya, J.D., Valdez, M., Royland, J.E., MacPhail, R.C., Sullivan, P.G. and Kodavanti, P.R.S. (2020) Age-and Organ-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. Journal of Aging Research, 2020, Article ID: 7232614. https://doi.org/10.1155/2020/7232614
|
[30]
|
Nasoni, M.G., Carloni, S., Canonico, B., Burattini, S., Cesarini, E., Papa, S., et al. (2021) Melatonin Reshapes the Mitochondrial Network and Promotes Intercellular Mitochondrial Transfer via Tunneling Nanotubes after Ischemic‐Like Injury in Hippocampal HT22 Cells. Journal of Pineal Research, 71, e12747. https://doi.org/10.1111/jpi.12747
|
[31]
|
Borlongan, C., Gonzales-Portillo, B., Lippert, T., Nguyen, H. and Lee, J. (2019) Hyperbaric Oxygen Therapy: A New Look on Treating Stroke and Traumatic Brain Injury. Brain Circulation, 5, 101-105. https://doi.org/10.4103/bc.bc_31_19
|
[32]
|
Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., et al. (2016) Transfer of Mitochondria from Astrocytes to Neurons after Stroke. Nature, 535, 551-555. https://doi.org/10.1038/nature18928
|
[33]
|
Nzigou Mombo, B., Gerbal-Chaloin, S., Bokus, A., Daujat-Chavanieu, M., Jorgensen, C., Hugnot, J., et al. (2017) Mitoception: Transferring Isolated Human MSC Mitochondria to Glioblastoma Stem Cells. Journal of Visualized Experiments, No. 120, Article 55245. https://doi.org/10.3791/55245
|
[34]
|
杨涵琳. 游离线粒体改善化疗后早发性卵巢功能不全模型小鼠的实验研究[D]: [博士学位论文]. 贵阳: 贵州医科大学, 2022.
|
[35]
|
Masuzawa, A., Black, K.M., Pacak, C.A., Ericsson, M., Barnett, R.J., Drumm, C., et al. (2013) Transplantation of Autologously Derived Mitochondria Protects the Heart from Ischemia-Reperfusion Injury. American Journal of Physiology-Heart and Circulatory Physiology, 304, H966-H982. https://doi.org/10.1152/ajpheart.00883.2012
|
[36]
|
李震. 线粒体移植对小鼠皮肤烧伤的疗效和机制研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2024.
|
[37]
|
Kim, H., Cho, H.B., Lee, S., Park, J., Kim, H.J. and Park, K. (2023) Fusogenic Liposomes Encapsulating Mitochondria as a Promising Delivery System for Osteoarthritis Therapy. Biomaterials, 302, Article 122350. https://doi.org/10.1016/j.biomaterials.2023.122350
|
[38]
|
Westensee, I.N., Brodszkij, E., Qian, X., Marcelino, T.F., Lefkimmiatis, K. and Städler, B. (2021) Mitochondria Encapsulation in Hydrogel‐Based Artificial Cells as ATP Producing Subunits. Small, 17, Article ID: 2007959. https://doi.org/10.1002/smll.202007959
|
[39]
|
Yuan, Y., Yuan, L., Li, L., Liu, F., Liu, J., Chen, Y., et al. (2021) Mitochondrial Transfer from Mesenchymal Stem Cells to Macrophages Restricts Inflammation and Alleviates Kidney Injury in Diabetic Nephropathy Mice via PGC-1α Activation. Stem Cells, 39, 913-928. https://doi.org/10.1002/stem.3375
|
[40]
|
Patel, S.P., Michael, F.M., Arif Khan, M., Duggan, B., Wyse, S., Darby, D.R., et al. (2022) Erodible Thermogelling Hydrogels for Localized Mitochondrial Transplantation to the Spinal Cord. Mitochondrion, 64, 145-155. https://doi.org/10.1016/j.mito.2022.04.002
|
[41]
|
Sun, X., Chen, H., Gao, R., Qu, Y., Huang, Y., Zhang, N., et al. (2023) Intravenous Transplantation of an Ischemic-Specific Peptide-TPP-Mitochondrial Compound Alleviates Myocardial Ischemic Reperfusion Injury. ACS Nano, 17, 896-909. https://doi.org/10.1021/acsnano.2c05286
|
[42]
|
Wu, Z., Chen, L., Guo, W., Wang, J., Ni, H., Liu, J., et al. (2024) Oral Mitochondrial Transplantation Using Nanomotors to Treat Ischaemic Heart Disease. Nature Nanotechnology, 19, 1375-1385. https://doi.org/10.1038/s41565-024-01681-7
|