|
[1]
|
Ferguson, B.S., Rogatzki, M.J., Goodwin, M.L., Kane, D.A., Rightmire, Z. and Gladden, L.B. (2018) Lactate Metabolism: Historical Context, Prior Misinterpretations, and Current Understanding. European Journal of Applied Physiology, 118, 691-728. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Warburg, O. (1925) The Metabolism of Carcinoma Cells. The Journal of Cancer Research, 9, 148-163. [Google Scholar] [CrossRef]
|
|
[3]
|
Chen, L. and Cui, H. (2015) Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. International Journal of Molecular Sciences, 16, 22830-22855. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Brooks, G.A. (2018) The Science and Translation of Lactate Shuttle Theory. Cell Metabolism, 27, 757-785. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rabinowitz, J.D. and Enerbäck, S. (2020) Lactate: The Ugly Duckling of Energy Metabolism. Nature Metabolism, 2, 566-571. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Liberti, M.V. and Locasale, J.W. (2016) The Warburg Effect: How Does It Benefit Cancer Cells? Trends in Biochemical Sciences, 41, 211-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007) Beyond Aerobic Glycolysis: Transformed Cells Can Engage in Glutamine Metabolism That Exceeds the Requirement for Protein and Nucleotide Synthesis. Proceedings of the National Academy of Sciences, 104, 19345-19350. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, L., Venneti, S. and Nagrath, D. (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering, 19, 163-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gordan, J.D., Thompson, C.B. and Simon, M.C. (2007) HIF and C-Myc: Sibling Rivals for Control of Cancer Cell Metabolism and Proliferation. Cancer Cell, 12, 108-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, G.L. and Semenza, G.L. (1993) General Involvement of Hypoxia-Inducible Factor 1 in Transcriptional Response to Hypoxia. Proceedings of the National Academy of Sciences, 90, 4304-4308. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, Z., Peng, W., Zhang, P., Yang, X. and Zhou, Q. (2021) Lactate in the Tumour Microenvironment: From Immune Modulation to Therapy. EBioMedicine, 73, Article ID: 103627. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Halestrap, A.P. and Wilson, M.C. (2011) The Monocarboxylate Transporter Family—Role and Regulation. IUBMB Life, 64, 109-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, D., Gao, J., Zhu, Z., Mao, Q., Xu, Z., Singh, P.K., et al. (2024) Lysine L-Lactylation Is the Dominant Lactylation Isomer Induced by Glycolysis. Nature Chemical Biology, 21, 91-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
He, Y., Song, T., Ning, J., Wang, Z., Yin, Z., Jiang, P., et al. (2024) Lactylation in Cancer: Mechanisms in Tumour Biology and Therapeutic Potentials. Clinical and Translational Medicine, 14, e70070. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xie, B., Zhang, M., Li, J., Cui, J., Zhang, P., Liu, F., et al. (2024) Kat8-Catalyzed Lactylation Promotes eEF1A2-Mediated Protein Synthesis and Colorectal Carcinogenesis. Proceedings of the National Academy of Sciences, 121, e2314128121. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ju, J., Zhang, H., Lin, M., Yan, Z., An, L., Cao, Z., et al. (2024) The Alanyl-tRNA Synthetase AARS1 Moonlights as a Lactyltransferase to Promote YAP Signaling in Gastric Cancer. Journal of Clinical Investigation, 134, e174587. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, J., Wang, Z., Wang, Q., Li, X. and Guo, Y. (2024) Ubiquitous Protein Lactylation in Health and Diseases. Cellular & Molecular Biology Letters, 29, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Pavlova, N.N., Zhu, J. and Thompson, C.B. (2022) The Hallmarks of Cancer Metabolism: Still Emerging. Cell Metabolism, 34, 355-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Epstein, T., Xu, L., Gillies, R.J. and Gatenby, R.A. (2014) Separation of Metabolic Supply and Demand: Aerobic Glycolysis as a Normal Physiological Response to Fluctuating Energetic Demands in the Membrane. Cancer & Metabolism, 2, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Teng, R., Liu, Z., Tang, H., Zhang, W., Chen, Y., Xu, R., et al. (2019) HSP60 Silencing Promotes Warburg-Like Phenotypes and Switches the Mitochondrial Function from ATP Production to Biosynthesis in ccRCC Cells. Redox Biology, 24, Article ID: 101218. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, F., Si, W., Xia, L., Yin, D., Wei, T., Tao, M., et al. (2024) Positive Feedback Regulation between Glycolysis and Histone Lactylation Drives Oncogenesis in Pancreatic Ductal Adenocarcinoma. Molecular Cancer, 23, Article No. 90. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chen, B., Deng, Y., Hong, Y., Fan, L., Zhai, X., Hu, H., et al. (2024) Metabolic Recoding of NSUN2-Mediated m(5)C Modification Promotes the Progression of Colorectal Cancer via the NSUN2/YBX1/m(5)C-ENO1 Positive Feedback Loop. Advanced Science, 11, e2309840. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zong, Z., Xie, F., Wang, S., Wu, X., Zhang, Z., Yang, B., et al. (2024) Alanyl-tRNA Synthetase, AARS1, Is a Lactate Sensor and Lactyltransferase That Lactylates P53 and Contributes to Tumorigenesis. Cell, 187, 2375-2392.e33. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhao, Y., Jiang, J., Zhou, P., Deng, K., Liu, Z., Yang, M., et al. (2024) H3K18 Lactylation-Mediated VCAM1 Expression Promotes Gastric Cancer Progression and Metastasis via AKT-mTOR-CXCL1 Axis. Biochemical Pharmacology, 222, Article ID: 116120. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, X., Yang, Y., Jiang, F., Hu, G., Wan, S., Yan, W., et al. (2024) Histone Lactylation Inhibits Rarγ Expression in Macrophages to Promote Colorectal Tumorigenesis through Activation of TRAF6-IL-6-STAT3 Signaling. Cell Reports, 43, Article ID: 113688. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xiong, J., He, J., Zhu, J., Pan, J., Liao, W., Ye, H., et al. (2022) Lactylation-Driven Mettl3-Mediated RNA m(6)A Modification Promotes Immunosuppression of Tumor-Infiltrating Myeloid Cells. Molecular Cell, 82, 1660-1677.e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cai, Y., Feng, R., Lu, T., Chen, X., Zhou, X. and Wang, X. (2021) Novel Insights into the m(6)A-RNA Methyltransferase METTL3 in Cancer. Biomarker Research, 9, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Meng, Q., Sun, H., Zhang, Y., Yang, X., Hao, S., Liu, B., et al. (2024) Lactylation Stabilizes DCBLD1 Activating the Pentose Phosphate Pathway to Promote Cervical Cancer Progression. Journal of Experimental & Clinical Cancer Research, 43, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bao, C., Ma, Q., Ying, X., Wang, F., Hou, Y., Wang, D., et al. (2025) Histone Lactylation in Macrophage Biology and Disease: From Plasticity Regulation to Therapeutic Implications. eBioMedicine, 111, Article ID: 105502. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Qiao, Q., Hu, S. and Wang, X. (2024) The Regulatory Roles and Clinical Significance of Glycolysis in Tumor. Cancer Communications, 44, 761-786. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, T., Ye, Z., Li, Z., Jing, D., Fan, G., Liu, M., et al. (2023) Lactate‐Induced Protein Lactylation: A Bridge between Epigenetics and Metabolic Reprogramming in Cancer. Cell Proliferation, 56, e13478. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, L. and Li, S. (2020) Lactic Acid Promotes Macrophage Polarization through Mct-Hif1α Signaling in Gastric Cancer. Experimental Cell Research, 388, Article ID: 111846. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sun, J., Feng, Q., He, Y., Wang, M. and Wu, Y. (2024) Lactate Activates CCL18 Expression via H3K18 Lactylation in Macrophages to Promote Tumorigenesis of Ovarian Cancer. Acta Biochimica et Biophysica Sinica, 56, 1373-1386. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Li, M., Sun, P., Tu, B., Deng, G., Li, D. and He, W. (2024) Hypoxia Conduces the Glioma Progression by Inducing M2 Macrophage Polarization via Elevating TNFSF9 Level in a Histone-Lactylation-Dependent Manner. American Journal of Physiology-Cell Physiology, 327, C487-C504. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cai, J., Song, L., Zhang, F., Wu, S., Zhu, G., Zhang, P., et al. (2024) Targeting SRSF10 Might Inhibit M2 Macrophage Polarization and Potentiate Anti‐PD‐1 Therapy in Hepatocellular Carcinoma. Cancer Communications, 44, 1231-1260. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Huang, C., Xue, L., Lin, X., Shen, Y. and Wang, X. (2024) Histone Lactylation-Driven GPD2 Mediates M2 Macrophage Polarization to Promote Malignant Transformation of Cervical Cancer Progression. DNA and Cell Biology, 43, 605-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sen, D.R., Kaminski, J., Barnitz, R.A., Kurachi, M., Gerdemann, U., Yates, K.B., et al. (2016) The Epigenetic Landscape of T Cell Exhaustion. Science, 354, 1165-1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Grist, J.T., Jarvis, L.B., Georgieva, Z., Thompson, S., Kaur Sandhu, H., Burling, K., et al. (2018) Extracellular Lactate: A Novel Measure of T Cell Proliferation. The Journal of Immunology, 200, 1220-1226. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Klein Geltink, R.I., Kyle, R.L. and Pearce, E.L. (2018) Unraveling the Complex Interplay between T Cell Metabolism and Function. Annual Review of Immunology, 36, 461-488. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Raychaudhuri, D., Singh, P., Chakraborty, B., Hennessey, M., Tannir, A.J., Byregowda, S., et al. (2024) Histone Lactylation Drives CD8+ T Cell Metabolism and Function. Nature Immunology, 25, 2140-2151. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zeng, Y., Huang, Y., Tan, Q., Peng, L., Wang, J., Tong, F., et al. (2024) Influence of Lactate in Resistance to Anti‑PD‑1/ PD‑L1 Therapy: Mechanisms and Clinical Applications (Review). Molecular Medicine Reports, 31, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yao, J., Lin, X., Zhang, X., Xie, M., Ma, X., Bao, X., et al. (2024) Predictive Biomarkers for Immune Checkpoint Inhibitors Therapy in Lung Cancer. Human Vaccines & Immunotherapeutics, 20, Article ID: 2406063. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., et al. (2019) Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Tong, H., Jiang, Z., Song, L., Tan, K., Yin, X., He, C., et al. (2024) Dual Impacts of Serine/Glycine-Free Diet in Enhancing Antitumor Immunity and Promoting Evasion via PD-L1 Lactylation. Cell Metabolism, 36, 2493-2510.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hu, X., Huang, Z. and Li, L. (2024) LDHB Mediates Histone Lactylation to Activate PD-L1 and Promote Ovarian Cancer Immune Escape. Cancer Investigation, 43, 70-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, C., Zhou, L., Zhang, M., Du, Y., Li, C., Ren, H., et al. (2024) H3K18 Lactylation Potentiates Immune Escape of Non-Small Cell Lung Cancer. Cancer Research, 84, 3589-3601. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhu, X., Zhu, H., Luo, H., Zhang, W., Shen, Z. and Hu, X. (2016) Molecular Mechanisms of Cisplatin Resistance in Cervical Cancer. Drug Design, Development and Therapy, 10, 1885-1895. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, J., Chen, Z., Pan, Y. and Zeng, L. (2025) The Important Role of Lactylation in Regulating DNA Damage Repair and Tumor Chemotherapy Resistance. Drug Resistance Updates, 78, Article ID: 101148. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Chen, H., Li, Y., Li, H., Chen, X., Fu, H., Mao, D., et al. (2024) NBS1 Lactylation Is Required for Efficient DNA Repair and Chemotherapy Resistance. Nature, 631, 663-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Li, G., Wang, D., Zhai, Y., Pan, C., Zhang, J., Wang, C., et al. (2024) Glycometabolic Reprogramming-Induced XRCC1 Lactylation Confers Therapeutic Resistance in Aldh1a3-Overexpressing Glioblastoma. Cell Metabolism, 36, 1696-1710.e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Yue, Q., Wang, Z., Shen, Y., Lan, Y., Zhong, X., Luo, X., et al. (2024) Histone H3K9 Lactylation Confers Temozolomide Resistance in Glioblastoma via LUC7L2‐Mediated MLH1 Intron Retention. Advanced Science, 11, e2309290. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Li, W., Zhou, C., Yu, L., Hou, Z., Liu, H., Kong, L., et al. (2023) Tumor-Derived Lactate Promotes Resistance to Bevacizumab Treatment by Facilitating Autophagy Enhancer Protein RUBCNL Expression through Histone H3 Lysine 18 Lactylation (h3k18la) in Colorectal Cancer. Autophagy, 20, 114-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Chen, J., Zhao, D., Wang, Y., Liu, M., Zhang, Y., Feng, T., et al. (2024) Lactylated Apolipoprotein C‐II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis (Adv. Sci. 38/2024). Advanced Science, 11, e2406333. [Google Scholar] [CrossRef]
|
|
[56]
|
Lu, Y., Zhu, J., Zhang, Y., Li, W., Xiong, Y., Fan, Y., et al. (2024) Lactylation‐Driven IGF2BP3‐Mediated Serine Metabolism Reprogramming and RNA M6a—Modification Promotes Lenvatinib Resistance in HCC. Advanced Science, 11, e2401399. [Google Scholar] [CrossRef] [PubMed]
|