[1]
|
He, C., Huang, Z.S., Yu, C.C., et al. (2021) Preventive Electro-Acupuncture Ameliorates D-Galactose-Induced? Alzheimer’s Disease-Like Inflammation and Memory Deficits, Probably via Modulating the Microbiota-Gut-Brain Axis. Iranian Journal of Basic Medical Sciences, 24, 341-348.
|
[2]
|
Kesika, P., Suganthy, N., Sivamaruthi, B.S. and Chaiyasut, C. (2021) Role of Gut-Brain Axis, Gut Microbial Composition, and Probiotic Intervention in Alzheimer’s Disease. Life Sciences, 264, Article ID: 118627. https://doi.org/10.1016/j.lfs.2020.118627
|
[3]
|
吴明松, 梁莉莉. 高强度聚焦超声热消融在腹部恶性肿瘤治疗中的研究进展[J]. 生命科学仪器, 2024, 22(6): 118-120.
|
[4]
|
Zhou, F., Liu, C., Yang, S. and Wang, L. (2022) The Gut Microbiome: Implications for Neurogenesis and Neurological Diseases. Neural Regeneration Research, 17, 53-58. https://doi.org/10.4103/1673-5374.315227
|
[5]
|
Dinan, T.G. and Cryan, J.F. (2016) Gut Instincts: Microbiota as a Key Regulator of Brain Development, Ageing and Neurodegeneration. The Journal of Physiology, 595, 489-503. https://doi.org/10.1113/jp273106
|
[6]
|
Clemente, J.C., Ursell, L.K., Parfrey, L.W. and Knight, R. (2012) The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 148, 1258-1270. https://doi.org/10.1016/j.cell.2012.01.035
|
[7]
|
Perez-Pardo, P., de Jong, E.M., Broersen, L.M., van Wijk, N., Attali, A., Garssen, J., et al. (2017) Promising Effects of Neurorestorative Diets on Motor, Cognitive, and Gastrointestinal Dysfunction after Symptom Development in a Mouse Model of Parkinson’s Disease. Frontiers in Aging Neuroscience, 9, Article No. 57. https://doi.org/10.3389/fnagi.2017.00057
|
[8]
|
Saji, N., Niida, S., Murotani, K., Hisada, T., Tsuduki, T., Sugimoto, T., et al. (2019) Analysis of the Relationship between the Gut Microbiome and Dementia: A Cross-Sectional Study Conducted in Japan. Scientific Reports, 9, Article No. 1008. https://doi.org/10.1038/s41598-018-38218-7
|
[9]
|
Haran, J.P., Bhattarai, S.K., Foley, S.E., Dutta, P., Ward, D.V., Bucci, V., et al. (2019) Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. mBio, 10, e00632. https://doi.org/10.1128/mbio.00632-19
|
[10]
|
Cattaneo, A., Cattane, N., Galluzzi, S., et al. (2017) Association of Brain Amyloidosis with Pro-Inflammatory Gut Bacterial Taxa and Peripheral Inflammation Markers in Cognitively Impaired Elderly. Neurobiology of Aging, 49, 60-68.
|
[11]
|
Padhi, P., Worth, C., Zenitsky, G., Jin, H., Sambamurti, K., Anantharam, V., et al. (2022) Mechanistic Insights into Gut Microbiome Dysbiosis-Mediated Neuroimmune Dysregulation and Protein Misfolding and Clearance in the Pathogenesis of Chronic Neurodegenerative Disorders. Frontiers in Neuroscience, 16, Article ID: 836605. https://doi.org/10.3389/fnins.2022.836605
|
[12]
|
Jenkins, T., Nguyen, J., Polglaze, K. and Bertrand, P. (2016) Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients, 8, Article No. 56. https://doi.org/10.3390/nu8010056
|
[13]
|
张萌萌, 姜宁, 张爱忠. 肠道微生物对肠道屏障功能完整性的维护机制研究概况[J]. 微生物学通报, 2020, 47(3): 933-940.
|
[14]
|
Yao, Y., Shang, W., Bao, L., Peng, Z. and Wu, C. (2024) Epithelial‐Immune Cell Crosstalk for Intestinal Barrier Homeostasis. European Journal of Immunology, 54, e2350631. https://doi.org/10.1002/eji.202350631
|
[15]
|
Pontarollo, G., Kollar, B., Mann, A., Khuu, M.P., Kiouptsi, K., Bayer, F., et al. (2023) Commensal Bacteria Weaken the Intestinal Barrier by Suppressing Epithelial Neuropilin-1 and Hedgehog Signaling. Nature Metabolism, 5, 1174-1187. https://doi.org/10.1038/s42255-023-00828-5
|
[16]
|
Liu, S., Gao, J.G., Liu, K.D. and Zhang, H.L. (2021) Microbiota-Gut-Brain Axis and Alzheimer’s Disease: Implications of the Blood-Brain Barrier as an Intervention Target. Mechanisms of Ageing and Development, 199, Article ID: 111560.
|
[17]
|
König, J., Wells, J., Cani, P.D., García-Ródenas, C.L., MacDonald, T., Mercenier, A., et al. (2016) Human Intestinal Barrier Function in Health and Disease. Clinical and Translational Gastroenterology, 7, e196. https://doi.org/10.1038/ctg.2016.54
|
[18]
|
Mou, Y., Du, Y., Zhou, L., Yue, J., Hu, X., Liu, Y., et al. (2022) Gut Microbiota Interact with the Brain through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Frontiers in Immunology, 13, Article ID: 796288. https://doi.org/10.3389/fimmu.2022.796288
|
[19]
|
Lacoste, B., Prat, A., Freitas-Andrade, M. and Gu, C. (2024) The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harbor Perspectives in Biology, a041422. https://doi.org/10.1101/cshperspect.a041422
|
[20]
|
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., Korecka, A., Bakocevic, N., Ng, L.G., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158.
|
[21]
|
Zhao, Y., Jaber, V. and Lukiw, W.J. (2017) Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer’s Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Frontiers in Cellular and Infection Microbiology, 7, Article No. 318. https://doi.org/10.3389/fcimb.2017.00318
|
[22]
|
Wang, L.M., Wu, Q., Kirk, R.A., et al. (2018) Lipopolysaccharide Endotoxemia Induces Amyloid-β and p-Tau Formation in the Rat Brain. American Journal of Nuclear Medicine and Molecular Imaging, 8, 86-99.
|
[23]
|
Cao, L., Tanga, F.Y. and DeLeo, J.A. (2009) The Contributing Role of CD14 in Toll-Like Receptor 4 Dependent Neuropathic Pain. Neuroscience, 158, 896-903. https://doi.org/10.1016/j.neuroscience.2008.10.004
|
[24]
|
Fernández-Calvet, A., Matilla-Cuenca, L., Izco, M., Navarro, S., Serrano, M., Ventura, S., et al. (2024) Gut Microbiota Produces Biofilm-Associated Amyloids with Potential for Neurodegeneration. Nature Communications, 15, Article No. 4150. https://doi.org/10.1038/s41467-024-48309-x
|
[25]
|
Twarowski, B. and Herbet, M. (2023) Inflammatory Processes in Alzheimer’s Disease—Pathomechanism, Diagnosis and Treatment: A Review. International Journal of Molecular Sciences, 24, Article No. 6518. https://doi.org/10.3390/ijms24076518
|
[26]
|
Fornari Laurindo, L., Aparecido Dias, J., Cressoni Araújo, A., Torres Pomini, K., Machado Galhardi, C., Rucco Penteado Detregiachi, C., et al. (2024) Immunological Dimensions of Neuroinflammation and Microglial Activation: Exploring Innovative Immunomodulatory Approaches to Mitigate Neuroinflammatory Progression. Frontiers in Immunology, 14, Article ID: 1305933. https://doi.org/10.3389/fimmu.2023.1305933
|
[27]
|
吕浪漫, 陈绍祥. 小胶质细胞在阿尔茨海默病发病机制中的作用[J]. 基础医学与临床, 2024, 44(12): 1746-1750.
|
[28]
|
Sul, O. and Ra, S.W. (2021) Quercetin Prevents Lps-Induced Oxidative Stress and Inflammation by Modulating Nox2/Ros/NF-κB in Lung Epithelial Cells. Molecules, 26, Article No. 6949. https://doi.org/10.3390/molecules26226949
|
[29]
|
Hang, Z., Lei, T., Zeng, Z., Cai, S., Bi, W. and Du, H. (2022) Composition of Intestinal Flora Affects the Risk Relationship between Alzheimer’s Disease/Parkinson’s Disease and Cancer. Biomedicine & Pharmacotherapy, 145, Article ID: 112343. https://doi.org/10.1016/j.biopha.2021.112343
|
[30]
|
Sun, Y., Zhang, H., Zhang, X., Wang, W., Chen, Y., Cai, Z., et al. (2023) Promotion of Astrocyte-Neuron Glutamate-Glutamine Shuttle by SCFA Contributes to the Alleviation of Alzheimer’s Disease. Redox Biology, 62, Article ID: 102690. https://doi.org/10.1016/j.redox.2023.102690
|
[31]
|
Li, N., Tan, S., Wang, Y., Deng, J., Wang, N., Zhu, S., et al. (2023) Akkermansia muciniphila Supplementation Prevents Cognitive Impairment in Sleep-Deprived Mice by Modulating Microglial Engulfment of Synapses. Gut Microbes, 15, Article ID: 2252764. https://doi.org/10.1080/19490976.2023.2252764
|
[32]
|
付世青, 王纯尧, 王芳. 线粒体: 帕金森病潜在的精准诊疗靶点[J]. 中国生物化学与分子生物学报, 2025, 1-11.
|
[33]
|
Wang, H. and Wang, S.X. (2020) Discussion of Correlation between Chronic Psychological Stress Induced Liver Depression and Spleen Deficiency Syndrome and Microbiota-gut-Brain Axis and Study on Intervention Mechanism of Xiaoyaosan. Chinese Journal of Experimental Traditional Medical Formulae, 26, 193-200.
|
[34]
|
Cryan, J.F., O’Riordan, K.J., Sandhu, K., Peterson, V. and Dinan, T.G. (2020) The Gut Microbiome in Neurological Disorders. The Lancet Neurology, 19, 179-194. https://doi.org/10.1016/s1474-4422(19)30356-4
|
[35]
|
Liu, N., Sun, S., Wang, P., Sun, Y., Hu, Q. and Wang, X. (2021) The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. International Journal of Molecular Sciences, 22, Article No. 7931. https://doi.org/10.3390/ijms22157931
|
[36]
|
王琳. 基于5-HT信号通路探讨夏连通痞方干预FD的“脑肠”效应机制[D]: [博士学位论文]. 北京: 中国中医科学院, 2024.
|
[37]
|
Liu, G., Chong, H., Chung, F.Y., Li, Y. and Liong, M. (2020) Lactobacillus plantarum DR7 Modulated Bowel Movement and Gut Microbiota Associated with Dopamine and Serotonin Pathways in Stressed Adults. International Journal of Molecular Sciences, 21, Article No. 4608. https://doi.org/10.3390/ijms21134608
|
[38]
|
Aaldijk, E. and Vermeiren, Y. (2022) The Role of Serotonin within the Microbiota-Gut-Brain Axis in the Development of Alzheimer’s Disease: A Narrative Review. Ageing Research Reviews, 75, Article ID: 101556. https://doi.org/10.1016/j.arr.2021.101556
|
[39]
|
Petroff, O.A.C. (2002) Book Review: GABA and Glutamate in the Human Brain. The Neuroscientist, 8, 562-573. https://doi.org/10.1177/1073858402238515
|
[40]
|
Yunes, R.A., Poluektova, E.U., Dyachkova, M.S., Klimina, K.M., Kovtun, A.S., Averina, O.V., Orlova, V.S. and Danilenko, V.N. (2016) GABA Production and Structure of gadB/gadC Genes in Lactobacillus and Bifidobacterium Strains from Human Microbiota. Anaerobe, 42, 197-204. https://doi.org/10.1016/j.anaerobe.2016.10.011
|
[41]
|
Luo, W., Yun, D., Hu, Y., Tian, M., Yang, J., Xu, Y., et al. (2022) Acquiring New Memories in Neocortex of Hippocampal-Lesioned Mice. Nature Communications, 13, Article No. 1601. https://doi.org/10.1038/s41467-022-29208-5
|
[42]
|
Chen, C., Zhou, Y., Wang, H., Alam, A., Kang, S.S., Ahn, E.H., et al. (2021) Gut Inflammation Triggers C/EBPβ/δ‐Secretase-Dependent Gut‐to‐Brain Propagation of Aβ and Tau Fibrils in Alzheimer’s Disease. The EMBO Journal, 40, e106320. https://doi.org/10.15252/embj.2020106320
|
[43]
|
ter Haar, G. (2021) The History of Focused Ultrasound. https://www.fusfoundation.org/posts/the-history-of-focused-ultrasound/
|
[44]
|
Bachu, V.S., Kedda, J., Suk, I., Green, J.J. and Tyler, B. (2021) High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Annals of Biomedical Engineering, 49, 1975-1991. https://doi.org/10.1007/s10439-021-02833-9
|
[45]
|
Zhang, M., Rodrigues, A., Zhou, Q. and Li, G. (2021) Focused Ultrasound: Growth Potential and Future Directions in Neurosurgery. Journal of Neuro-Oncology, 156, 23-32. https://doi.org/10.1007/s11060-021-03820-9
|
[46]
|
(2017) Marketing Clearance of Diagnostic Ultrasound Systems and Transducers; Draft Guidance for Industry and Food and Drug Administration Staff; Availability. The Federal Register/FIND, 82(189).
|
[47]
|
F.U. Foundation (2022) 2022 State of the Field. https://www.fusfoundation.org/newsletters/august-3-2022-state-of-the-field-report-2022/
|
[48]
|
Shen, X. and Sun, Z. (2021) Microbe-Gut-Brain Axis and Neurological Disorders: A Review. Chinese Journal of Biotechnology, 37, 3781-3788.
|
[49]
|
张雪莹, 陈启仪, 李宁, 等. 菌群移植适应证的选择和临床应用策略[J]. 中华胃肠外科杂志, 2020, 23(5): 509-515.
|
[50]
|
Mormino, R. and Bungay, H. (2003) Composites of Bacterial Cellulose and Paper Made with a Rotating Disk Bioreactor. Applied Microbiology and Biotechnology, 62, 503-506. https://doi.org/10.1007/s00253-003-1377-5
|
[51]
|
Singh, G., Mullany, S., Moorthy, S.D., Zhang, R., Mehdi, T., Tian, R., et al. (2021) A Flexible Repertoire of Transcription Factor Binding Sites and a Diversity Threshold Determines Enhancer Activity in Embryonic Stem Cells. Genome Research, 31, 564-575. https://doi.org/10.1101/gr.272468.120
|
[52]
|
Chen, G.N., et al. (2020) A Surfactant-Mediated Sol-Gel Method for the Preparation of Molecularly Imprinted Polymers and Its Application in a Biomimetic Immunoassay for the Detection of Protein. Journal of Pharmaceutical and Biomedical Analysis, 190, Article ID: 113511. https://doi.org/10.1016/j.jpba.2020.113511
|
[53]
|
林友燕, 陈欣怡, 俞新燕, 等. 超声介导下中药经穴渗透疗法与5-氟尿嘧啶相关脾虚湿阻型腹泻肠道菌群结构的相关性研究[J]. 浙江中医杂志, 2023, 58(8): 572-574.
|
[54]
|
Jin, X., Li, H., Pan, S., Song, B., Jiang, Y., Shi, H., et al. (2024) DNA Nanopatch-Specific Modification of Probiotics for Ultrasound-Triggered Inflammatory Bowel Disease Therapy. Journal of the American Chemical Society, 146, 33817-33831. https://doi.org/10.1021/jacs.4c12139
|
[55]
|
Ye, B.S., Chang, K.W., Kang, S., Jeon, S. and Chang, J.W. (2025) Repetitive and Extensive Focused Ultrasound-Mediated Bilateral Frontal Blood-Brain Barrier Opening for Alzheimer’s Disease. Journal of Neurosurgery, 1-8. https://doi.org/10.3171/2024.8.jns24989
|
[56]
|
Rezai, A.R., D’Haese, P., Finomore, V., Carpenter, J., Ranjan, M., Wilhelmsen, K., et al. (2024) Ultrasound Blood-Brain Barrier Opening and Aducanumab in Alzheimer’s Disease. New England Journal of Medicine, 390, 55-62. https://doi.org/10.1056/nejmoa2308719
|